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ABSTRACT 

These lectures present some recent developments in the o- 
model approach to the Green-Schwarz superstring. Among the 
topics included are i) interpretation of the free superstring as 
a flat superspace o-model; ii) propagation of the superstring in 
curved superspace and iii) in the presence of background super 
Yang-Mills fields. The role of the world-sheet fermionic gauge 
symmetry needed to ensure consistent coupling to background 
fields is emphasized. 

1. INTRODUCTION 

In these lectures we will study some aspects of 2-dimensional non-linear o- 
models in relation to superstring theories. Non-linear a-models have been the 
focus of attention since the recent emergence’] of superstring theories as promis- 
ing candidates for the unification of all known forces, including gravity.2l One 
of the main reasons for this is the following. Since consistent superstring the- 
ories are formulated only in 10 space-time dimensions, to make contact with 
phenomenology one must carry through the program of dimensional reduction 
by which 6 of the 9 space dimensions are arranged to be invisible to us at present 
energies. One popular way of doing this is to curl up the extra 6 dimensions 
into a tiny compact space with a length scale of the order of Planck length. To 
determine the geometrical properties (and other characteristics) of this internal 
space one must study the solutions of the classical string field theory equations. 
Since these equations are as yet unknown, one way to learn something about the 
vacuum solutions is to study string propagation in background gravitational (and 
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possibly other) fields under the requirements of conformal invariance, supersym- 
metry, etc. * This naturally leads one to study non-linear a-models.4-61 One 
of the main results of the recent investigations along these lines is that consis- 
tent backgrounds must satisfy classical (point particle) field theory equations of 
motion.5l Furthermore, remarkable connections between the symmetries of non- 
linear a-models and string theory have been revealed. For example, anomalies 
in a-models have been shown to be intimately connected with anomalies in the 
point particle limit of string field theory.6l There is therefore enough reason to 
believe that in the absence of a more appropriate framework, one stands to learn 
much about the properties of string theory by studying a-models. 

There exist in the literature two different formulations of superstrings which 
lead to two different kinds of non-linear o-models when background fields are 
included. The Neven-Schwarz-Ramond (NSR) f ormulation’l of superstring the- 
ory possesses manifest Lorentz covariance and world-sheet supersymmetry, but 
not space-time supersymmetry. On the other hand, the Green-Schwarz (GS) 
formulation81 is manifestly space-time supersymmetric, but it cannot be quan- 
tized covariantly.gl Therefore, a manifestly Lorentz covariant and space-time su- 
persymmetric formulation of superstring theory does not exist. One works with 
the NSR or GS formulation depending on the type of questions one is interested 
in. It is simpler to study a-model loop corrections in the NSR formulation. So 
most of the quantum calculations have been done in this formulation. The GS 
formulation, on the other hand, is more suited for studying questions of space- 
time supersymmetry and it has been used for this purpose. In these lectures 
we shall mostly be interested in the symmetry properties of the superstring in 
the presence of background fields and, therefore, we shall be using only the GS 
formulation. 

An important aspect of the GS formulation is the presence of world-sheet 
fermionic gauge symmetry in the theory. 8~1 This gauge symmetry, convention- 
ally called the n-symmetry, enables one to gauge away the unphysical fermionic 
degrees of freedom of the superstring. In the physical (light-cone) gauge a global 
remnant of this symmetry appears as the physical (space-time) supersymmetry 
of the string. The /c-symmetry is, therefore, crucial for a consistent coupling of 
the superstring to background fields. As we shall see, ensuring that the non- 
linear a-model describing such couplings be K-symmetric is quite non-trivial and 
puts restrictions on the kinds of possible backgrounds. In fact, already at the 
classical level, the background fields are required to satisfy equation of motion 
of point particle field theory.11-131 

* Some information about possible vacuum solutions can also be obtained by studying com- 
pactification in the field theory limit.3] 
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Because of the critical role that K-symmetry plays in the GS formulation, this 
symmetry will be the main focus of attention throughout these lectures. We will 
begin with an introduction to the GS formulation of the free superstring.*] For the 
sake of definiteness (and because of its phenomenological promise) we will restrict 
our attention to the heterotic superstring. 141 We will study the symmetries of this 
theory and discuss why K-symmetry is crucial for the consistency of the theory. 
The GS superstring has been interpreted as a a-model defined on flat super- 
space and the corresponding non-linear a-models have appropriately been called 
superspace a-models. 15] We will discuss the reasons for this interpretation and 
construct the superspace a-model for the heterotic superstring using /c-symmetry 
as our guide. Our treatment will include both background supergravity as well 
as super Yang-Mills fields. As mentioned earlier, we will find that /c-symmetry 
constrains the background fields to satisfy point-particle field theory equations 
of motion. Since we will use the economical language of superfields to construct 
the superspace a-model, to see how these constraints come about we will need 
to known the superspace formulation of lo-dimensional N = 1 supergravity16] 
coupled to N = 1 super Yang-Mills theory. 1’1 In order to make these lectures as 
self-contained as possible a discussion of this theory is, therefore, also included. 
Finally, we will discuss some open problems and questions. 

2. FREE HETEROTIC STRING 

The basic variables describing the propagation of free heterotic string in the 
GS formulation are the space-time coordinates X”(e) and the fermionic variables 
P( 0, which constitute a single Majorana-Weyl fermion in 10 dimensions but 
transform as world-sheet scalars. The action is 

where 
vi” = a,xa + a#qgP . (2) 

Our notation and conventions are as follows: e = (to = 7, El = a) are the 
coordinates of a point on the world-sheet; g ‘j is the world-sheet metric with 
signature (+, -) and g = det gij; &ij is the 2-dimensional Levi-Civita symbol 
(&‘l = +I); r]ab(t& b = o,l,. . . ,9) is 19-dimensional Minkowski metric with sig- 
nature (+, -, . . . , -); P (o = 1,2,. . . , 16) are 16 real anticommuting variables; 
and o’ is the slope parameter. We are using 16 x 16 dimensional representation 
for Dirac r-matrices. In this representation the Dirac algebra is represented by 
two sets of r-matrices, {I’$} and {Ia@}, which we have chosen to be symmet- 
ric. The distinction between these two sets arises because there is no way the 
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fermionic indices can be raised or lowered. The Dirac algebra is 

rzprbP7 + r$pp7 = 2rl%~ . (3) 

In addition to the Xa and P the heterotic string has gauge degrees of free- 
dom which may be represented either by 16 left-moving world-sheet and Lorentz 
scalars or by 32 left-moving world-sheet Majorana-Weyl fermions and Lorentz 
scalars.14] We shall work with the fermionic representation. In this representa- 
tion the contribution of the gauge degrees of freedom to the action is 

I 
1 

YM=G 
/ 

d2( fi gij tJ’piaj$” (4) 

where ‘s’ is the gauge index and $” transforms either in the fundamental rep- 
resentation of SO(32), for the gauge group SO(32)/&, or of the maximal sub- 
group SO(16) x SO(16) of the other possible gauge group &3 x Es. Also, p” are 
a-dimensional Dirac r-matrices satisfying the algebra 

( j, $1 = zgij . (5) 

Moreover, $” is real (Majorana condition) and satisfies the Weyl condition 

P_“i Pj ?fG” = 0 3 (6) 

where 
. (7) 

Because of the Majorana-Weyl condition on q!P, the connection term in the deriva- 
tive in (4) does not contribute. 

The expressions given in (1) and (4) are manifestly invariant under 2- 
dimensional general coordinate transformations. It is convenient to partially 
fix this symmetry by going to the conformal gauge, 

9 ii = qij e-2p , (8) 

where q- ij = diag(+l, -1). In the rest of these lectures we will work in this gauge. 
We will also set (Y’ = l/2 for convenience. Then (1) and (4) take the form 

1 
IYM=% 

J 
d2 &,b”h,b” , 

(9) 

(10) 

where we have used that +” is real and satisfies (6). We have also used the 
notation, for any 2-dimensional vector vi, vf = 210 f VI. In the conformal gauge 
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the total action I + IYM, given by the sum of (9) and (lo), must, of course, be 
appended by the Virasoro constraints that follow from the equation of motion 
for gij obtained from the sum of (1) and (4). These constraints are 

v? =0,Vf+2@ a, 111” =o, (11) 

where V: = V$Vi?lab . 

The action I contains cubic and quartic interactions in X and 8. The dy- 
namics described by it would, therefore, appear to be quite complicated. This is, 
in fact, not actually the case. The reason is that this action possesses a fermionic 
gauge symmetry, the n-symmetry, which enables one to reduce it to a free theory 
in terms of physical variables. To see how this happens let us first study the 
symmetries of this action. 

2.1 Conformal Reparametrizations 

The gauge (8) is invariant under the conformal reparametrizations given by 

sti = f’(E), a-f+ = 0 = a+f- , (12) 
under which the conformal factor, p, transforms as 

6p = --f%# - i(a+f+ + a-f-) . (13) 

I is, therefore, invariant under the conformal transformations 

Although T,P is a 2-dimensional spinor in (4) the change in its transformation 
property in (14) is due to the fact that in going from (4) to (10) in the conformal 
gauge we have redefined $+ to absorb a factor of ePi2 in it, which gives the 
additional term in S@ in (14). 



2.2 Global N = 1 Space-Time Supersymmetry 

Here the transformations are 

6xa = Pr;,ep , 68” = &a . (15) 

The parameter of transformation &* is a constant lo-dimensional Majorana-Weyl 
spinor. To verify that I is invariant under (15) one notices that Via is trivially 
invariant and, therefore, so is the first term in (9). The invariance of the second 
term follows if one uses the Fierz identity 

ranpr&5 + rap7rzG + ra7ar;b = 0 (16) 

2.3 Fermionic Gauge Symmetry (K-symmetry) 

In this case the parameter of transformation, tcia, is a lo-dimensional 
Majorana-Weyl fermion and a 2-dimensional vector, satisfying the self-duality 
condition 

P~lcja = ~~ (17) 

Using the notation /Vsp = VtriP, the K-transformation can be written as 

To verify that (9) is invariant under (18) one first shows that SVia = 2&PI’$Yl?~ 
and then uses (16) to get 

s d2( v? d+e%+& . 

This vanishes due to the Virasoro constraint V! = 0, (11). Alternatively, the 
above variation in I can be cancelled by changing the transformations in (18) by 
a reparametrization with 

f0 = -fl = 48”K+*, a+lc+, = 0 . 

Note that this is not a conformal reparametrization (under which I is invariant) 
since f- is not necessarily a function of I- only. 

2.4 Gauge-Fixing 

We have already mentioned that the complicated-looking interactions in I 
are actually a gauge-artifact and that in the physical gauge I reduces to a free 
theory. Let us now see in more detail how that happens. 
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The action (9) possesses two local (world-sheet) symmetries - the confor- 
ma1 reparametrizations and n-symmetry. To quantize this system one needs to 
gauge-fix these symmetries. This is achieved by the following light-cone gauge 
conditions: 

x+(e) = x+ + p+7, r&e@ = 0 , (19) 

where xa and pa are respectively the center-of-mass coordinate and total momen- 
tum of the string and we have used the notation, for any lO-dimensional vector 
TP, v * = -#v” f vg). (Th ere is no possibility of confusion between the ‘3’ of 
2 dimensions and 10 dimensions because the reference will always be clear from 
the context.) The first of (19) fi xes the freedom of conformal transformations 
and the second that of the rc-transformations. It is easy to verify that these two 
symmetries allow the gauge choice in (19) and that it fixes the gauge completely. 

In the light-cone gauge I takes the following simple form: 

I&*) = -& / d2 ( [ 1 , Sa = &F ea. (20) 

(The index & takes on only the transverse values 1, 2, . . . . 8.) We see that the 
interactions have disappeared! This miracle happens because &PI’z,6fl vanishes 
unless the index ‘a’ takes the value ‘-‘. (This is because 

aiev;,ep = +e*r;#+r- +r-r+)P 7e7 

= $+6~I’~p(I’+I’-)p 767 ( because of (19)) 

= 0 , except when ‘a = -’ .) 

The light-cone action I(l.c.) possesses a global supersymmetry which shows up in 
the spectrum of the theory. The possibility of such a symmetry arises because 
the light-cone gauge condition lYQP + 6p = 0 cuts down the number of 6 variables by 
half (because l?@I’+p7 = 0 and I’+ is a matrix with eight-dimensional kernal) 
making the number of physical fermionic variables equal to the number of phys- 
ical (transverse) coordinates of the string. This is the reason why n-symmetry 
is so crucial for the consistency of the GS superstring. The global supersym- 
metry of +*) can actually be seen to be a combination of the global N = 1 
supersymmetry of (9) and the K-symmetry. The transformations are given by 

&p = 1 
d-- P+ 

tv$sP, 6s" = --L d-xa(Pr+)QpP, 
243 

r,pP =o. (21) 
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There is, in fact, another combination that also survives: 

6p=0, 6p = 6a, r-$P =o . (22) 

But this has no physical consequences for the present problem. 

It is now straightforward to quantize the above system and obtain the spec- 
trum. At the massless level the spectrum of this theory is precisely that of 
N = 1 supergravity coupled to super Yang-Mills in 10 dimensions. We shall 
not pursue the details of quantization of (20) h ere but proceed on to discuss the 
a-model interpretation of the GS superstring. The interested reader is invited to 
see the papers by Gross, Harvey, Martinet and Rohm141 for details of light-cone 
quantization of the heterotic string. 

3. SUPERSPACE a-MODELS 

In 10 dimensions the superspace which admits of an N = 1 supersymmetry 
has 10 commuting (bosonic, X”) and 16 anticommuting (fermionic, Sa) direc- 
tions. Let us denote the generators of supertranslations on this superspace by 
(Pa, Qa). They satisfy the algebra 

[pa, pb] = 0 = [pa, Qa], {&a, Qp) = -2iripf’a (23) 

and the normalization conditions 

Consider now an element h of supertranslations, which may be written as 

h = ,ix”P,i-B”Q, (25) 

Using (23) it is easy to show that 

h-l&h = iVi”P, - dieaQa (26) 

with Vi” defined as in (2). We may, therefore, rewrite the first term in I as 

1 -- 
27r / 

d2( vi’ tr(h-‘aih) (h-‘ajh) (27) 

Since the superspace coordinates (Xa,eL1) p arametrize elements of the super- 
translation group (- superPoincar& group/Lorentz group), (27) may be viewed 
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as the action for a a-model defined on flat superspace. The second term in I can 
then be understood as the corresponding Wess-Zumino term:151 

1 -- 
7r / 

d3[ &‘jk tr(h-‘dih)(h-‘dih)(h-‘dkh) (28) 
The existence of the Wess-Zumino term in this model can be traced to the fact 
that even flat superspace has torsion, which is reflected in the (anti)commutation 
relations (23). Th e coefficient of this term is, however, not quantized in the 
present case since the integrand in (28) can be written as a total derivative, and 
so this term gives a local action on the world-sheet. 15*181 Its value (relative to the 
first term) is, nevertheless, fixed by the requirement of n-symmetry as we have 
already seen. In this respect K-symmetry is like the higher (gauge) symmetry 
which ordinary bosonic a-models develop at the infrared-stable fixed point where 
the coefficient of the Wess-Zumino term has a specific value relative to the kinetic 
energy term.lgl 

The above discussion clarifies in what sense the GS superstring may be re- 
garded as a superspace a-model. So far, we have been discussing only the free 
superstring, i.e. flat superspace a-model. To generalize this model to curved 
superspace we need some tools from superspace differential geometry. We also 
need to know the superspace formulation of supergravity and superyang-Mills 
theories. The next section is devoted to building the necessary technology. 

4. SUPERSPACE DIFFERENTIAL GEOMETRY 

Let us consider a superspace with points parametrized in local coordinates 
by ZM = (xyeq, where Xm are ordinary bosonic world coordinates and 6p 
are anticommuting fermionic world coordinates. At each point in superspace we 
introduce a set of basis one-forms {eA}: 

eA=dZMeMA , 

where eM A is the superveilbein. We shall denote its inverse by EAM: 

eM A EAN = SM N, EAM eMB = 6~~ . 

(29) 

The tangent-space indices A,B, . . . can either be bosonic a, b, . . . or fermionic 
(Y, p, . . . (We will always contract indices diagonally as in (29) and (30). One 
is, of course, free to make a different choice.) A basis for p-forms is constructed 
from the set {eA}, in the usual way, by forming wedge products, except that the 
wedge product is now graded, i.e. 

eAeB = -(-)[Al[Bl eBeA , (31) 
where [a] = 0 and [Q] = 1. We have omitted an explicit wedge symbol in (31) 
for ease of notation. 



Under supergeneral coordinate transformations the superveilbeins transform 
as follows: 

2 + 2’ E z’(z), eMA + eh A(z’) = dhZNeN A(z) . (32) 
For infinitesimal transformations, 

62 = &(z), 6eMA = -ENdNeMA - aMENeN A . (33) 

The transformation property (32) of the superveilbeins is designed so that the 
one-form eA transforms as a scalar i.e. 

2 + Z’, eA(Z) -+ erA(Z’) = eA(Z) . 

Vectors transform under the tangent-space group as 

6vA = vBLBA, bv, = -LAG VB . (35) 
It is clear that there is some freedom in the choice of the tangent-space group. 
With the most general possible choice (super Lorentz group) one is lead to an 
analogue of Riemannian geometry in superspace. However, in this formulation 
it is not so straightforward to make contact with the ordinary formulation of 
supergravity theories. For this reason we make a more restrictive choice of the 
tangent-space group, namely, we choose it to be the ordinary Lorentz group.* 
This choice implies that the Lie-algebra-valued matrices LAB must satisfy 

La %O=L,Q, Lap = iLab(r’“),P , (36) 

as must all other Lie-algebra-valued tensors. (Here Pb*** is a totally antisym- 
metrized product of Dirac r-matrices normalized to unit weight.) As a result of 
(36) a general vector VA splits into two irreducible pieces, namely, an ordinary 
(bosonic) vector Va and a spinor Va which transform as usual under the Lorentz 
group. 

In curved superspace we also introduce the covariant exterior derivative D = 
dZ”DM = eADA, which may be defined by its action on vector-valued p-forms: 

DVA = dVA + VBuBA, DVA = dVA - (-)PuABV~ , (37) 

where wAB = dZ”WMAB = eDWDA B is the superconnection one-form. The 
operator d = dZ”dM is the exterior derivative. It satisfies d2 = 0 and obeys 

* This is the Wess-Zumino formulation of supergravity in superspace.20] 
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Leibnitz rule with the following sign convection given by its action on the product 
nrR2, where nz is a p-form: 

+1n2) = f-h@%) + (-)“(dfh)n, . (38) 

Under a supergeneral coordinate transformation the superconnection one- 
form WA B transforms as a scalar, 

2 + 2’ - Z’(Z), ‘dAB(z) -+ ‘daB(z’) = wAB(z) , 
while under the tangent-space group it transforms as 

6‘dAB= wA C 'L B-LAC, B-dWAB . c 

(39) 

As a result of (34) and (39) our formalism will be manifestly supergeneral co- 
ordinate invariant (and, therefore, also supersymmetric) if we work with objects 
that carry no world indices. This is the plan that one follows in formulating 
supergravity in superspace. 

From the superconnection and superveilbein one can construct two basic 
geometrical quantities, namely, the supertorsion two form TA and the supercur- 
vature two-form RA B, as in the ordinary bosonic case: 

DeA E TA , (41) 

dWAB+WACWcBE RAB . 

In components, 

TAE$dZMdZNTNMA=LeCeBTBCA, 
. 2! 

RA 
B- 1 = 3 dZM dZN RNMAB = -$ ec eD RDcAB . 

. . 

(42) 

(43) 

(44 

As a result of our choice for the tangent-space group RAB and wAB satisfy 
relations similar to (36). 

An immediate consequence of the definitions of TA and RA B is that they must 
satisfy consistency conditions, called Bianchi identities. These can be obtained 
from (41) and (42) by using, d2 = 0 and are 

DTA = eB RBA , (45) 
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DRAB=0 . 

It turns out that because of our choice of the tangent-space group the Bianchi 
identities (45) and (46) are not all independent. 211 One can show that, in fact, 
(46) is identically satisfied by virtue of (45). Thus (45) is the only independent 
Bianchi identity. In components it is 

(47) 

where [ ) represents graded antisymmetrization normalized to unit weight (e.g. 
P[AB) = $ { PAB - ( -)[AIIBI PBA}) . I n d ices with a caret are excluded from this 
operation. 

So far our discussion has been general, applicable to superspace formulation 
of supergravity in any dimensions. We would now like to specialize to N = 1 
supergravity in 10 dimensions. We must then consider a superspace of 10 bosonic 
and 16 real fermionic coordinates, i.e. a (10,16) superspace. Also, the tangent- 
space group is just the lO-dimensional Lorentz-group, i.e. SO(l, 9). The degrees 
of freedom of N = 1 supergravity in 10 dimensions consist of a graviton, an 
antisymmetric (rank two) field, a scalar field (dilation), a gravitino and a ‘spin- 
1’ field. In order to accommodate each degree of freedom of the theory in the 
i = 0 component of some superfield we need to introduce a two-form field B, in 
addition to the geometrical objects already introduced: 

B E $ dZ”dZNBNM = f eDeCBcD 
. . (48) 

The 6 = 0 component of B,, is just the antisymmetric field mentioned above. 
(The rest of the degrees of freedom of the theory can be accommodated in the 
6 = 0 components of the superveilbein eM A in an appropriate gauge, e.g. the 
Wess-Zumino gauge). The way we shall introduce B is by constructing a closed 
three-form H in superspace: 

H z k dZN dZ”dZLHLMN = $ ec eB eA HABC, 
. 

(49) 

dH=O. 

Because H is closed it can be written, at least locally, as H = dB, where B is the 
desired object. Thus H may be regarded as the field strength for the potential 
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B and (49) as the Bianchi identity following from the definition of H in terms of 
B. In components (49) reads 

D[AHBCD) + 5 T[ABE H,&CD) = ’ - (50) 
The theoretical tools and the various superfields introduced above are nec- 

essary for a superspace formulation of N = 1 supergravity in 10 dimensions. 
However, the number of ordinary (i.e. x-space) fields that we have introduced is 
far greater than the number of dynamical fields required to describe this theory. 
(Remember, each of the superfields TAB’, HABC and RABc D can be written 
as a polynomial in 6, the maximum power of 6 being sixteen. The coefficient 
of each power in 6 is an independent x-space field.) This, in fact, is a basic 
feature of superspace formulation of all supersymmetric theories. It is, therefore, 
necessary to impose constraints on some of the superfields to eliminate the re- 
dundant x-space fields. Actually it is sufficient to impose constraints on TABc 
and HABC since RABc D can be related to TABc using the Bianchi identity (45). 
Once constraints are imposed on TAB’ and HABC (47) and (50) are no longer 
identically satisfied. In fact, for an appropriate set of constraints some of these 
equations determine all the unconstrained superfields in terms of the dynamical 
(x-space) fields (which are undetermined) and the rest provide equations of mo- 
tion for them. The present formulation is, therefore, an on-shell formulation of 
supergravity theories. 

No systematic procedure for determining an appropriate set of constraints in 
the general case exists. One just proceeds by trial and error. Some simplification 
can, however, always be made. To illustrate this point, and to motivate the set 
of constraints we shall use, let us rewrite the definition of TABC given in (41) and 
(43) in the following form: 

TAB c = -2 DiAEBjM eMC . (51) 
Let us now look at one particular component, say, Taa p: 

Tamp = -2D[,EajMeMP 

= -2E[a,?&;MeMP + W,,’ , 

(52) 

where Ea G Eyd~. Also, Taa ’ has the following general decomposition in 
terms of irreducibles of SO(1,9): 

T,,’ = Kaha ’ + &,c(rbc)aP i- &bcde(rbcde)aP . (53) 

(Note that since the fermionic indices cannot be raised or lowered, the irreducible 
decomposition of Taa ’ can only involve even number of r-matrices. Also, since 
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we are working with 16 x 16 dimensional representation for r-matrices we may 
restrict ourselves to a maximum of four r-matrices.) From (52) and (53) we 
see that &be can be set to zero, without loss of generality, by redefining the 
component wabc of superconnection (Since W=a P = &&(rbc)/). Thus we may 
write 

T,, p = Ka 6, p + &bcde(rbcde)aP . (54 

We emphasize that (54) is quite general and does not constitute a constraint on 
Taa P. The redefinition of W&c required to bring (53) in the form (54), however, 
shifts the component Tabc G Tabd q& of the supertorsion. Thus, we could alter- 
natively have set Tabc to zero and decided to work with (53). But if we use (54) 
Tabc is, in general, not zero. One can similarly redefine away parts of the other 
components of the supertorsion. In this way one is left with a certain minimal set 
of superfields (Ka, Kabcde, etC). Any further restrictions on this set constitute 
what we have called constraints. That such restrictions must be imposed is clear 
since the number of x-space fields is still too large. Moreover, it is also clear 
from the above discussion that one can impose different, but equivalent, sets of 
constraints. For the theory under discussion there do indeed exist two different 
sets of constraints in the literature. 11~161 One can, however, show that they are 
equivalent. For our purposes we shall use the following set: 

T 4 a = 2rzp, T b=O=-T,a7, aa Tap7=0 , 

(55) 
Taa ' = (rati), p = -Taap , 

with Tab ‘, Tabc and ?+!@ unconstrained. In addition we will impose the following 
constraint on HABC: 

H aP7 - -0 (56) 

Using (55) and (56) one can now solve for all the unconstrained components in 
terms of the physical (x-phase) fields and obtain equations of motion for the 
latter. For details we refer the reader to the literature. 11*16~‘1 Here we only list 
solutions for the components of HABC: 

H aP7 = 4 rap7, Hab7 = --i(rab), ‘x6, Habc = -;6 Tabc 3 (57) 

where X, E Da+ and C$ is a scalar superfield. The 6 = 0 components of 4 
and X, are respectively the dilation and the ‘spin-l/2’ degrees of freedom of 
lo-dimensional N = 1 supergravity theory. 

Since we shall also be discussing superstring propagation in curved superspace 
in the presence of background super Yang-Mills fields, we also need to introduce 
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here the necessary formalism. Let us denote by A the (Lie-algebra-valued in the 
gauge group) one-form potential of super Yang-Mills theory. The corresponding 
two form field strength is defined by 

dA+A2=F . (58) 

In components 

F 3 $ dZ”dZNFNM = $eA eB FBA . 
. . (5% 

Analogous to (45), (46) and (49) ‘t 1 sa is t’ fi es a Bianchi identity given by 

DF=dF+[F,A] =0, (60) 

where D is the gauge- and Lorentz-covariant exterior derivative. In components 
(60) reads 

D[AFBc) +TIABDJ'ac) =O - (61) 

One must also impose constraints on FAB since it has many more x-space fields 
than are needed to describe lo-dimensional N = 1 super Yang-Mills theory. The 
appropriate constraint in this case is 

Fap = 0 . (62) 

It turns out that the theory obtained by solving the Bianchi identities (47), 
(50) and (61) under the constraints (55), (56) and (62) does not describe lO- 
dimensional N = 1 supergravity coupled to super Yang-Mills theory. The modi- 
fication needed to rectify this is simple and aesthetically very beautiful. One is 
only required to change the Bianchi identity satisfied by H to 

dH = cl tr F2 , (63) 

where the trace is taken over the gauge group indices and cl is, a priori, and 
arbitrary constant (of length dimensions four). This modified Bianchi identity 
for H together with (47) and the constraints (55), (56) and (62) completely 
specifies the coupling of supergravity to super Yang-Mills.17l Moreover, since 
tr F2 = dw3yM, where 

W3YM = tT (A& iA3) 

is the super Yang-Mills Chern-Simmons three-form, we can still construct a two- 
form potential B which, however, now satisfies 

dB = H - cl W3YM . (65) 

As a result B is no longer gauge-invariant (since H is, by definition, so). In fact, 
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under the gauge transformation c5~A = DA, it transforms as 

&,B = -cl tr(AdA) . (66) 

Modifications similar to (63), (65) and (66) are also needed in the x-space version 
of this theory given by Chapline and Manton.22] 

Solving (47), (61) and (63) under the constraints (55), (56) and (62) does 
indeed give coupled supergravity - super Yang-Mills equations of motion for the 
physical fields. We refer the reader to the literature”] for details and quote here 
only the solutions for the components of HABC: 

H a/37 = 4rap7, 

(67) 

H abc = -+aix + :(rabc)op tr(XaXP) , 

where xa is the super Yang-Mills fermion in terms of which 

Faa = Faapxp = -F aa (68) 

solves one of the equations in (61). 

With this rather lengthy but necessary discussion of the ‘background’ mate- 
rial we are now ready to discuss superstring propagation in background fields. 

5. SUPERSTRING IN CURVED SUPERSPACE 

We have already emphasized the important role that K-symmetry plays in 
the GS formulation of the superstring. To consistently couple the superstring to 
background fields we must ensure that the resulting curved superspace a-model 
possesses n-symmetry. As we shall see below this requires that the constraints 
given in (55) and (56) b e satisfied. Since these constraints imply supergravity 
equations of motion via the Bianchi identities, we then have that supergravity 
equations of motion for the background fields ensure a consistent coupling of 
these to the superstring. Let us now see in detail how this comes about. 

To write down the curved superspace a-model and its n-symmetry we begin 
by rewriting the flat superspace action (9) and its K-symmetry (18) in a fashion 
which will make the transition to curved superspace almost obvious. (For the 
moment we shall ignore the gauge degrees of freedom. These will be reinstated 
in the next section when we introduce background super Yang-Mills fields.) 
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In flat superspace the superconnection WA B = 0 and the only nonvanishing 
component of torsion is Tapa = 2lY$. From the definition of torsion (41) we 
then have 

de’ = eaehYa pa, dea = 0 . (69) 

These equations are solved by 

ea = dXa + deq-EaeP, ea = dP . (70) 
Thus the flat superveilbein has the following form: 

eM Az 
( 

emu = Sma e O=O m 

eP a = b;r;,ep elca = 6; ) 
We can, therefore, rewrite Vi” and &ea as follows: 

Via = diXa + f3if3alY$6P = aiZ”CMa , 

(71) 

(72) 
&ea = diz”eMa z vim . 

Consider now the three-form H 

H = fea ep earapa 

Using (69) and the Fierz identity (16) we can readily verify that H is closed, i.e. 
dH = 0. Moreover, H can also be shown to be exact, i.e. 

H = dB, B = -fea earaap6P . (73) 

The only nonvanishing components of B are Baa = -Baa = l/2 lYaa@. Using 
(71), (72) and (73) we can recast the Wess-Zumino term in (9) in the following 
form: 

&ij qa LljtP rzp eP 

= &“j (Vi” VFB,a + Vi* VrBa,) (74 

=. &ij ViA Vjc BCA 
. . 

= &‘J diZN djZM BMN . 
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Hence the flat superspace action (9) can be rewritten as 

I = 1 
7r 

iqij Vi” Vj” vab + iEij diZN aiZM BMN 1 (75) 

with VP = t3.ZNe 1 a N A. Also, using (71) we can rewrite the rc-symmetry (18) as 

6zM eMa = 0, 6z”eM” = 2FFp k$ . (76) 

The flat superspace action (75) and its K-symmetry (76) are written in a 
form in which they can be readily extended to curved superspace. Since all the 
world indices (M, N, . ..) are contracted these formulae are manifestly invariant 
under supergeneral coordinate tranformations (provided the backgrounds are 
also tranformed appropriately). However, a Give extension of (75) to curved 
superspace (by simply interpreting eM A to describe curved superspace with BMN 
the corresponding antisymmetric field) does not possess the rc-symmetry (76). 
The subtlety is associated with the dilation superfield 4 and the way it enters in 
the solutions of the Bianchi identity (50) for the various components of HABC, 
listed in (57). It turns out that the correct action to use is 

vii 4 Via Vi” vat, + Ei’ a;ZN ajZM BMN 1 (77) 
This action possesses the /c-symmetry (76) if the constraints (55) and (56) are 
satisfied. To verify this statement one proceeds as follows. We have, 

6vt = di(bz”) eMa + 6izM 6eMa 

= d#ZM eMa) - 6zM &eMa + dizM 6eMa 
= dizN 6zM a[MeN)a (78) 

= -(bz”eMa)(vt wab a + 2vip r;,) 
where we have used (51) and (76). Also, using (57) and (76) we get 

S(Eij a;ZN djZM BMN) = E’j &ZN ajZM 6ZL{3 d[L BMN)} 

+ surface terms(S.T.) 

= &ii aizN ajZM 6ZL HLMN + S.T. 

=,&“j (6zM eMa) 

(79) 
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Finally, we also have 

which follows from the definition of X, and (76). Using (78)) (79) and (80) one 
can show that 

which vanishes because of the Virasoro constraint V! = 0. 

We emphasize that we need to use the constraints (55) and (56) to ensure 
that lcBgd) h as K-symmetry. This result (which requires the background fields 
to satisfy equations of motion of supergravity for a consistent coupling to the 
superstring), true already at the classical level, may be contrasted with the NSR 
formulation of the superstring in which it is the requirement of quantum con- 
formal invariance that implies equations of motion for the background fields. Of 
course, since we have used the Virasoro constraint V? = 0 to prove K-symmetry, 
we must ensure that lcBgd) h as no conformal anomaly. No quantum calculations 
have as yet been carried out with ltBgd), b u we expect that the requirement t 
of (quantum) conformal invariance will not imply any new conditions on the 
background fields. In a sense, then, n-symmetry encodes both the physical su- 
persymmetry as well as the conformal invariance of the superstring. 

6. INTRODUCING BACKGROUND SUPER YANG-MILLS FIELDS 

So far we have ignored the gauge degrees of freedom of the superstring. We 
would now like to reinstate these and extend the analysis of the previous section 
to the case in which background super Yang-Mills fields are also present. It is 
of interest to do so since vacuum configurations of string field theory having 
nonvanishing Yang-Mills fields seem to be phenomenologically promising.3l 

The gauge part of the free heterotic superstring is given in (lo), which we 
rewrite here for convenience. 

1 
IYM=% 

/ 
d2e $” a- ?p (81) 

To couple background super Yang-Mills fields to the superstring one obvious 
change that we must make is to replace the ordinary derivative in (81) by the 
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gauge - covariant derivative. This gives 

#W) - 1 
YM - G  

J 
d2t S”(D-+)” , (82) 

where 

(D-$)” = a-$” - (A-)“t ?p , (83) 
A- = a-Z”A M b eing the projection on the world-sheet of the lo-dimensional 
super Yang-Mills potential AM. Since A- transforms under a n-transformation, 
the gauge part of the superstring action is no longer trivially n-invariant. For 
correct coupling to background super Yang-Mills fields we must, therefore, check 
whether (82) is n-invariant or not. To do so we need to find out how A- trans- 
forms under (76). We have, 

6A- = a-(6Z”) AM + a-ZM CSAM 

= a-(6zM AM) - 6ZM a-AM + a-Z”6AM 

= a- (6zM AM) -i- a-ZN 6ZM a[MAN) 

= D- A~ +a-ZNGZM FMN 

where 

D-A, = d- A~ +[&A-], A~ s 6Z”A~ . (85) 

Now, using the super Yang-Mills constraint (62), the solution (68) for Fa,a and 
the Virasoro constraint VT = 0, we can show that 

6A- = D- An . (86) 

Thus, the n variation of A- is a field-dependent gauge transformation. Therefore, 
contrary to what happens in the free case, in the presence of background super 
Yang-Mills fields the superstring action possesses K-symmetry only if the gauge 
fermions T+!J” transform by a gauge transformation: 

6$,” = (A,&)’ . (87) 

With this transformation rule for T/J’ ILBi” is n-invariant. One might, there- 
fore, conclude that the total action I(Bgd) + IiBA’) is admissible as a proper 
description of the superstring propagating in curved superspace in the presence 
of background super Yang-Mills fields. Further reflection, however, shows that 
there are serious problems with the above system. As discussed below these 
problems and their resolution are intimately connected with the properties of 
the field theory limit of the superstring. 
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A puzzling aspect of the above analysis is that in proving the K-invariance 
of liBi’) we implicitly assumed that lcBgdl is separately n-invariant, which is 
true only if we assume that H satisfies the Bianchi identity (49). However, as 
mentioned before the constraints (55), (56) and (62) and the Bianchi identities 
(45), (49) and (60) do not imply coupled supergravity - super Yang-Mills equa- 
tions of motion. What we have above is, therefore, somewhat surprising since, in 
analogy with the pure supergravity case, one would have expected to have used 
the coupled equations of motion to ensure the K-symmetry of the superstring. 
The resolution of this puzzle is deeply connected with the other, more serious, 
problem that the above system has. The gauge fermions $J” are 2-dimensional 

VW) chiral fermions and the action IyM involves chiral gauge couplings. So the 
(background) gauge symmetry of this action has an anomaly. As a consequence 
of this and the fact that the rc-transformation of T,P is a gauge transformation, the 
K-symmetry is also anomalous. The resolution of this problem lies in adopting 
the modified Bianchi identity (63) for H. This is satisfying since it also resolves 
the puzzle mentioned above. 

One result of using (63) instead of (49) is that the two-form potential B is no 
longer gauge-invariant but transforms as in (66). This has the welcome feature, 
familiar from a similar phenomenon that occurs in purely bosonic a-models,6l of 
removing the gauge anomaly from liB$“. Less obvious is the fact that it also 
eliminates the anomaly in the K-symmetry, as we shall now show. 

We start by integrating out the gauge fermions from lLB&“. In perturbation 
theory the resulting effective action, ILEAf), can be written as the sum of n-point 
functions all of which, except for n = 2, are finite by power counting. Thus, 
although the gauge field couples to r,!~” only through A-, the effective action 
acquires a dependence on A+ through the regularization needed for the 2-point 
function. Now, the gauge-variation of 1$$‘) can be shown to be equal to the 
anomaly 

(Eff) - l 
“‘IY M -iG I 

d2E &ii tr(A&Aj) (88) 
Since the nonlocal part of the effective action is a functional of A- only, the 
effective action must contain a local piece equal to -A s d2c tr(A+A-) in order 
to reproduce (88). We may, therefore, write the result of integrating +” from 

ILEAf) = -1 
167r / 

d2( tr(A+A-) + G[A-] . 

Before proceeding further we remark here that cancellation of the anomaly in 
(88) by the change in lcBgd) (induced by the anomalous transformation law of B, 
(66)) fixes the arbitrary constant cl to be -l/16. More precisely, if we restore 
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the ten-dimensional gauge coupling constant gre, Newton’s constant lcre and the 
slope parameter cy’ in the action then the anomaly cancellation gives the heterotic 
string relation gre/kre - l/a. It is interesting that this result follows from 
purely a-model considerations. 

We are now ready to show that ltBgd) + lkEdf’ is invariant under (76). The 
proof rests on the observation made earlier in (86), namely, that the n-variation 
of A- is just a gauge transformation. This is crucial for the present analysis 
since it allows us to compute the K-variation of (89) without knowing the exact 
form of G. In fact, using (88), (89), (86) and the expression for K-variation of 
A +9 

6A+ = D+ AK +x*(/v, F-1: “+p , (90) 

which can be obtained as for A-, we get 

,Ij$fJ = 2- 
87r J 

d2( Eii tr(A, &Aj) - & / d2[ tr(xP(~+~-)~ “+p A-) 

(91) 
To find the K-variation of the total action ltBgd) + liEdf) we must add to (91) 
the K-variation of ltBgd). The K-variation of the B-term is 

6(Eij &ZN djZM BMN) 

= Eii diZN ajZM 6ZL{ 3 G[LBMNJ} + S.T. 

= Eii dizN ajzM 6ZL{ HLMN - ~c~(w~YM)[LMN)} + S.T. 

where in the last equality we have used (65). Th e K-variation of the first term in 
lcBgd) combines with the H-term above and vanishes as in the pure supergravity 
case. The W3yM piece contributes 

1 J d2t &ij tr{ AK diAj + x”(,Vi,V-),P "+PAjl - 

Using cl = -l/16 and the Virasoro constraint VT = 0 one can verify that the 
sum of (91) and (92) vanishes. 

We thus have now an action which consistently couples the superstring to 
background super Yang-Mills fields in curved superspace. 
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7. OUTLOOK 

There are several problems and questions that have been left unresolved by 
the analysis of the last few sections. Among them a relatively more serious one 
is the fact that the model described by lcBgd) is expected to have a Lorentz 
anomaly. The reason for this is that in the physical (light-cone) gauge the 8’s 
are a-dimensional chiral fermions and so in the presence of background fields 
they have chiral couplings to the spin connection. In the case of purely bosonic 
a-models a similar problem arises61 which is resolved by ascribing an anomalous 
transformation law to the antisymmetric field under local Lorentz rotations, much 
like the modification we needed in the presence of background super Yang-Mills 
fields. It has been suggested that a supersymmetric extension of this might work 
in the present case also. 121 In effect, what this means is that we must further 
modify the Bianchi identity satisfied by H to read 

dH = cl tr F2 + cg tr R2 (93) 

where c2 is, a priori, an arbitrary parameter and the trace in the second term 
is over tangent space indices. A detailed analysis of the resulting supergravity 
theory for the background fields has as yet not been carried out, but there are 
indications that the equations of motion of this theory cannot be obtained in a 
closed form but only as infinite expansions in the parameter ~2. 171 So the whole 
thing starts looking more and more like the GS mechanism’] for the anomaly 
cancellation in the field theory limit of the superstring. It is, therefore, tempting 
to speculate that (93) d escribes some sort of field theory limit of the superstring 
theory, but that it is really so is far from clear. Moreover, it has not yet been 
verified that (93) actually removes the Lorentz anomaly from lcBgd) and that 
this Bianchi identity is consistent with n-symmetry. A thorough investigation of 
this problem is clearly required. One expects that this will also fix c2 in the same 
manner as cl was fixed by the cancellation of the gauge anomaly. 

Another aspect of the superspace a-models that remains poorly understood 
is the nature of n-symmetry. It is true that we have learnt to efficiently use 
n-symmetry as a guiding principle for building consistent superspace a-models. 
Nevertheless, a deeper understanding of its nature and its connection with the 
symmetries of the lo-dimensional field theory is clearly desirable. 

Finally, there is still the problem of finding a manifestly covariant and super- 
symmetric description of the superstring. Such a description is clearly needed 
for a manifestly covariant and supersymmetric formulation of superstring field 
theory. Some progress in this direction has been claimed in Ref. 23 but this 
formulation appears to have problems. 241 Clearly much work remains to be done. 
We hope that these lectures have sufficiently aroused your interest to actively 
pursue answers to some of the questions and problems mentioned above. 
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