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ABSTRACT 

Large-N arguments suggest that baryons correspond to soliton solutions of 

the optimal low-energy Lagrangian of &CD. Such solitons are characterized by 

a hedgehog symmetry which mixes isospin and space rotations. We show that 

this symmetry implies linear relations between experimental KN and ?rN elastic 

partial wave scattering amplitudes. At least in one case these linear relations are 

satisfied with an extremely high accuracy. 
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Several years ago it was suggested by Witten that the low-energy effective 

Lagrangian of QCD is some kind of a generalized non-linear sigma model in which 

baryons correspond to soliton configurations of the chiral meson field. That 

picture strongly relies on the intuition obtained by formally considering QCD in 

the limit where the number of colors becomes large. The Skyrme mode12-4 is the 

simplest example of such a non-linear sigma model admitting soliton solutions. 

Recently there has been a great deal of activity in calculating the properties of 

baryons in the Skyrme model and several similar models. 

In this paper we pursue a somewhat different direction. We will examine 

the consequences of the assumption that the optimal low energy effective La- 

grangian of Nature is characterized by the same symmetry as the Skyrme model. 

That refers in particular to the assumption that the soliton which corresponds 

to the nucleon has a “hedgehog” shape2 and is only invariant under simulta- 

neous isospin and space rotations. While the detailed structure of the optimal 

Lagrangian is unknown, one can rely on the symmetry alone in order to de- 

rive model-independent predictions for relations between experimental scattering 

amplitudes. This approach has been previously applied to elastic and inelastic 

pion-nucleon scattering with rather satisfactory results.5-8 Here we shall extend 

that framework to include processes involving strange particles. This extension 

involves some additional (mild) technical assumptions’ and leads to linear rela- 

tions between strange and non-strange partial-wave amplitudes which are rather 

well satisfied in Nature. 

Consider a meson-baryon scattering process in which both the initial and 

the final states consist of a pseudoscalar meson octet and a $’ octet or a $’ 
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decuplet baryon. The initial and the final state are described by the set of 

quantum numbers {LsRRt,t71 tot I stotYtotJ}, where L denotes the orbital angular 

momentum of the meson; s and R are the spin and the flavor representation of 

the baryon [i.e., (s,R) = (:,8) or (%,lO)]; J is the total angular momentum 

of the meson-baryon system; &,t, Y&t, Itot and Iztot are the total SU(3)d,,, 

quantum numbers: the SU(3) representation, the hypercharge, the isospin and 

its third component, respectively; and finally 7 is a discrete index which serves 

to distinguish between degenerate representations that can occur in the product 

of two W(3) p re resentations, as for example the 8sym and 8mtisrm in 8 x 8. 

If the effective Lagrangian describing that process shares the symmetry of 

the Skyrme model, then one can show5-’ that any experimental meson-baryon 

scattering amplitude T 
physical 

can be expressed as a linear combination of a 

number of “reduced” amplitudes T 
reduced 

labelled by a quantum number K, 

which corresponds to vector sum I+L, of isospin I and orbital angular momentum 

L. (K is the generator of the symmetry under which a chiral soliton remains 

invariant .) 

This relation between the experimental and the reduced amplitudes can be 

schematically written as 

T physical = CnTrdUCed 
c (1) 

n 

Here C, are group theoretical factors, depending only on the hedgehog symmetry. 

They are tabulated in Ref. 8. The reduced amplitudes in the real world are 

not known, since they depend on the detailed structure of the optimal effective 

Lagrangian. 
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On a more explicit level, eq. (1) corresponds, in the three flavor case, to 

T({LsRRt,tyltotlztotYtotJ} + {L’s’R’Rt,tr’lt,tZt,tYt,tJ}) = 

(-l)“‘-” ~ 
dimR . dimR’ 

dim Rtot c c C(%i + 1)(2K + 1) 
{IY} i K 

where 7 {I’) KL,L are the reduced matrix elements; the quantities in parentheses are 

SU(3) isoscalar factors 10 ; the quantities in braces are Gj-symbols; the pair 

{IY) is summed over {1,0},{0,0}, and {i, f 1) and the index K assumes in- 

tegral values when {IY} = {l,O} or {O,O} and odd-half-integral values when 

{IY} = {k, fl}, while th e index i assumes odd-half-integral and integral values, 

respectively, in these cases. The derivation of (2) is carried out in detail in Refs. 

8 and 9. 

The role of the K symmetry in (2) can be understood by invoking an analogy 

with the role of isospin in x*N scattering: experimentally one measures four 

distinct elastic amplitudes involving a charged pion and a nucleon - rr+p, ~+n, 

?r-p and r-n. However, since isospin is a good symmetry of Nature, these four 

physical amplitudes can be expressed as linear combinations of only two reduced 

I = l/2 and I = 3/2 amplitudes: 

T 
r+n = ‘1/1TI=l/2 + C,/,TI,,I, etc. (3) 

where Cl/, and C3/2 are Clebsch-Gordan coefficients. As a consequence, there 

is one linear relation connecting any three elastic &N amplitudes. In a similar 
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fashion, one can use eq. (2) to derive more extensive linear relations relating 

various partial wave meson-baryon scattering amplitudes. Such relations for non- 

strange processes are in general quite successful.5’8 Here we shall extend this 

framework to relate strange and non-strange processes. 

Meson-baryon scattering processes with one meson and one baryon in the 

initial and the final state can be divided into two categories. In the first, the 

angular momentum of the outgoing meson is equal to that of the incoming me- 

son. In the second, the angular momentum of the meson L jumps by two units. 

(I ALI = 1 is forbidden by parity conservation). 

In what follows we shall concentrate on the processes in which L remains 

unchanged. In that case for, a given value of L, any physical meson-baryon scat- 

tering amplitude allowed by SU(3)flavor can be expressed as a linear combination 

In the Skyrme model, where the reduced amplitudes can be explicitly calculated, 

it turns out that, for each L 2 3, the three reduced amplitudes, 

are significantly larger than the other five.’ This two-tiered hierarchy results 

from three different sources: (a) smallness of the Wess-Zumino terml’ll contri- 

bution to reduced amplitudes; (b) repulsive contribution to reduced amplitudes 

with K > L; (c) vanishing of 7iif) . The hierarchy among reduced amplitudes 

suggested by the Skyrme model is most probably also present in Nature, since it 

gives the simplest explanation of the relative sizes of the experimental TN and 

EN elastic partial wave amplitudes and it is also responsible for the success of 

the linear relations between non-strange experimental amplitudes.5’8 

5 



With this in mind, we can neglect five of the reduced amplitudes and make an 

assumption that, for a given L, any meson- baryon scattering process in Nature 

can be approximately expressed, via Eq. (2), as a linear combination of three 

reduced amplitudes. This implies one linear relation between any four physical 

amplitudes with the same L. In order to decide which physical amplitudes we 

should look at, it is useful to remind oneself that experimentally elastic zN 

scattering is characterized by an interesting pattern relating the magnitudes of 

the four independent amplitudes with a given L: 

T 
RN 

T 
TN 

I=1/2,J=L-l/2’ I=1/2,J=L+1/2’ 
T 

TN 

I=3/2,J=L-l/2 
and T TN 

1=3/2,J=L+1/2’ 

Typically TrN TN 

I=1/2,J=L-l/2 
and T 

1=3/2,J=L+l/2 
are much larger than 

T TN TN 
I=1/2,J=L+1/2 

and T 
I=3/2,J=L-l/2 ’ 

An analogous albeit less sharp pattern holds for KN scattering with I = 0 and 

I = 1 replacing I = l/2 and I = 3/2. 

Thus for a given L, there are eight independent elastic zN and ri;N am- 

plitudes, out of which typically four are larger than the others. That pattern 

emerges naturally in the context of the soliton picture of the baryon: 598 since the 

physical amplitudes are linear superpositions of reduced amplitudes, the question 

which physical amplitudes will be large is determined by the relative size of the 

group theoretical coefficients multiplying the reduced amplitudes. The physical 

amplitudes which are relatively large typically receive relatively big contributions 

from the three large reduced amplitudes. In other words, the approximation in 

which five small reduced amplitudes are neglected is expected to be more ac- 

curate for the physical amplitudes which are dominated by the large reduced 
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amplitudes. It is therefore natural to write down a linear relation connecting 

these four amplitudes. 

Taking the group-theoretical factors from eq. (2), we have the following 

prediction: 

41OL + 631 rN 

479(L + 2) TI=l,2,J=L-l,2 - 

702L2 + 1279L + 506 TIN 

958L(L + 2) 1=3/2,J=L+l/2 = 

(4 
FN 

T 
EN 559L + 275 
I=o,J=L-l/2 - 479L 

T 
I=l,J=L+1/2 

In the Skyrme model the agreement between theory and experiment is usually 

best for L = 3, i.e. F-waves.8912-14 . We expect this to be true not only in the 

Skyrme model but rather in the whole class of models to which eq. (2) applies. 

This expectation is reinforced by the results of Ref. 5 which examines model- 

independent relations between non-strange experimental amplitudes. 

The reason for this pattern may be understood with the help of the following 

observation. In a model in which the nucleon is treated as a soliton of a chiral 

Lagrangian, the physical pseudoscalar mesons correspond to small fluctuations of 

the chiral field around the soliton solution. Some fluctuations of the chiral field 

however do not correspond to mesons, but rather reflect the motion of the soliton 

as a whole, either under translation or under rotation. A proper treatment of 

such zero-modes should disentangle them from the physical meson excitations. 

Eq. (2) is derived in the leading order in the l/NC expansion, and therefore it 

neglects nucleon recoil. As a result, the unphysical zero-modes mix with physical 

meson excitations in the low partial waves - S, P and D.5’13 On the other 

hand the experimental results are less accurate for higher L, because as L grows 
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extraction of partial waves from the experimental cross-sections becomes more 

difficult. Consequently, we expect eq. (4) to work best for the lowest L which is 

free from the zero-mode problem - L = 3, i.e. the partial waves Fir, and F37 in 

TN ---) zN on the one hand, and Fo5 and Fl7 in EN --) RN on the other hand. 
- 

(TN partial waves are labelled by L21,2 J while KN partial waves are labelled by 

LI,2J-) 

The relation (4) is derived in the idealized case of exact SU(3)pavor, i.e. 

ms = mu = md. In Nature, the u and d quarks are very light, while the strange 

quark mass is about 150 MeV and in order to compensate for that we need to shift 

the elastic EN amplitudes by 150 MeV. Other than this, the relevant amplitudes 

are taken directly from the experimental partial wave analyses. 15,16 

The two linear combinations are plotted on Fig. 1. They agree to a re- 

markable degree of accuracy. It should be stressed that two curves result directly 

from superposition of experimental data and the only outside input is the strange 

quark mass. The lower limit of the center of mass energy range shown is deter- 

mined by the KN threshold ( minus 150 MeV) while the upper limit is taken 

somewhat above the energy range covered by the existing EN experimental par- 

tial wave-analysis l6 . The purpose is to provide a prediction which will be tested 

when the RN partial-wave analysis is extended to higher energies. 

Although the case L = 3 is expected, on theoretical grounds, to work best, 

it is instructive to examine higher angular momenta as well. The relevant ex- 

perimental KN partial-wave solutions published so far go only up to L = 4, i.e. 

G-waves, and this is the case we examine in Figure 2. The shapes of the two 

curves in the Im(T) vs. Re(T) representation are rather similar but the magni- 
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tudes and the energy dependence differ substantially. This can be traced back 

to the smallness of the experimental 
- 

G 19 elastic KN amplitude in the partial 

wave solution. l6 The fact that G~Q is small violates the earlier mentioned pat- 

tern relating the magnitude of the four independent amplitudes with a given L. 

It would be very interesting to re-analyze the experimental data regarding that 

particular issue. 

At this point it should be emphasized that there is no known way of deriving 

these relations using more conventional symmetries like SU(3)fravor or SU(6). 

While SU(3)flavor is part of the symmetry used to derive Eq. (2), it is clear 

that SU(3)flavor alone cannot produce such relations, since they mix amplitudes 

with different total angular momentum. As for SU(6), the relevant candidate 

symmetry is the so-called SU(6) W. As far as I know, no linear relations analo- 

gous to the ones presented here have been published. In addition one needs to 

remember that SU(6) w can only relate various strange and non-strange partial 

wave amplitudes under two rather stringent assumptions: a) the amplitudes have 

to be purely resonant; b) the mass differences of the relevant resonances can be 

neglected compared to their width. The second of these assumptions is certainly 

not satisfied by the F-wave data. 

If conventional symmetries cannot explain the success of the F-wave linear 

relations, than these relations should be viewed as evidence in favor of the view 

that a nucleon is indeed a soliton in a field of mesons, as suggested by large-N 

arguments. We hope that in future the connection between this viewpoint and 

QCD will be put on a more quantitative basis. 
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Fig. 1. Test of the linear relation (3) for F-waves. The scattering matrix T 

is plotted both as function of energy and in Im(T) VS. Re(T) representation. 

Continuous. lines show the linear combination of Fl5 and F37 experimental TN 

amplitudes while dotted lines show the linear combination of Fo5 and Fly exper- 

imental TN amplitudes. KN amplitudes here and in Figure 2 are shifted by 

m, = 150 MeV. 
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Fig. 2. Test of the linear relation (3) for G-waves. Continuous lines show the 

linear combination of G 17 and &Q experimental TN amplitudes while dotted 

lines show the. linear combination of Go7 and G~Q experimental EN amplitudes. 


