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1 INTRODUCTION AND SUMMARY 

This paper is intended as a companion paper to ‘Circular Machine Design 
Techniques and Tools’ presented at this conference by Roger Servranckx. The 
intent here is to provide a tutorial discussion on the basic optics of circular 
particle accelerators for the benefit of those readers who have a fundamental 
knowledge of charged particle optics but do not make it their profession to 
design particle accelerators. 

We begin the tutorial by presenting the solutions of the first-order differential 
equations of motion for a single particle in a closed circular machine introducing 
the concepts of phase shift, beta functions, and the Courant-Snyder invariant. 
From these solutions we derive the transfer matrix between two points in the 
machine as a function of the phase shift and the parameters contained in the 
Courant-Snyder invariant. 

We then introduce typical optical building blocks (modules) used in circular 
machine designs and relate them to their characteristic transfer matrix elements, 
the phase shift through them, and the Courant-Snyder-Twiss parameters, /3, QI, 
and 7. 

Next we discuss the systematics of some elementary phase ellipse matching 
problems between optical modules. 
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The report ends with a discussion of second-order optical modules and how 
they are used to provide the momentum bandwidth needed for the design of a 
typical circular machine. 

2 FIRST-ORDER OPTICS 

2.1 NOTATIONS AND DEFINITIONS 

As in TRANSPORT,[‘][” I31 we represent the position and direction of travel 
of a particle via a six-dimensional vector: 

x= 

The coordinates x and y represent, respectively, the horizontal and vertical 
displacements at the position of the particle, and x’ and y’ represent the slopes 
of the projection of the trajectory in the same planes. The quantity 1 repre- 
sents the longitudinal position of the particle relative to a particle travelling 
on the reference trajectory with the reference momentum. The last coordinate 
6 = (p - po)/po gives the fractional deviation of the momentum of the particle 
from the central design momentum of the system. 

In first-order optics, the motion is described by the following matrix equa- 
tion: 

6 

xi = c Rjxoj 3 i= 1,2,...,6 (2.1) 
j=l 

Equation (2.1) can also be rewritten in compact matrix notation as 

X=RXo. 

In optics studies it is customary first to study the properties of a set of optical 
elements by restricting the momentum of the test particles to one value (called 
the reference momentum), and then to study the properties as the momentum 
is changed. The elements Rij of the matrix R that contain one subscript with 
the value 6 are called chromatic terms. The elements Rij for which no subscript 
is equal to 6 are referred to as geometric terms. 
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If midplane symmetry is applicable, then the R matrix has the following 
decoupled form : 

R= 

’ h(S) h(S) 0 0 0 dz (4 
&f(S) &‘(S) 0 0 0 G(s) 

0 0 4s) %(4 0 0 
0 0 q/‘(s) s/(s) 0 0 

R51 R52 R53 R54 R55 R56 

. Rsl as2 &3 R64 &5 R66 

2.2 SINGLE-PARTICLE LINEAR OPTICS FOR A CLOSED MACHINE 

The first-order equations of motions, in a circular machine, are given by”’ 

2 + k;(s)x =$$ = 6h(s) , 

d2y p + qs)Y =o , 

where 6 =Ap/p . 

In a closed machine the functions k,(s),ky (s) and p(s) are periodic functions 
of s with the period L, where L is the length of the closed orbit in the circular 
machine. Let us consider solutions for the nondispersive (6 = 0) stable case. 
The theorem of Floquet (see Ref. 4) states that there exist two functions ,8(s) 
(periodic) and +(s) in terms of which the general solution x(s) can be expressed. 
For the x phase plane the result is: 

where c and 4 are two arbitrary constants and the two functions p(s) and $J(s) 
are not independent, but are linked by the simple relation 

0 

$J(s) is called the “machine phase shift” between points 0 and s. Differentiation 
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of x(s) with respect to s yields 

x’(s) = d- -Lp,O COS($J(S) + 4) - &$J(sin(ti(s) + 4)&) P(s) 2 

sin(llr(s) + 4) ) 
where we now define the function o(s) by 

P’(s) = -24s) 

Alternatively x’(s) can be written in the form 

, . ~ . ~ . 
x’(s) = +Ertfq cos(x(s) + 4) 

where x(s) satisfies the relation 

ta+f+> - x(s)) = -& 

or equivalently 

sin($(s) - x(s)) = - 
x47&m 

and the function 7 (s) is defined by 

1+ o(s)2 
7(s) = p(s) - 

The functions ,0(s), o(s), and 7(s) are all periodic with the period L, where L 
is the length of the closed machine. Consider the values of the solution for x and 
its derivative at successive revolutions at a fixed point s. We can describe the 
motion at position s by plotting the values of x and x’ in the “z-phase plane”. 
Eliminating the trigonometric functions from the expressions of x(s) and x’(s) 
yields, after some manipulation, the ‘Courant-Snyder’ invariant15’ (the equation 
of the machine ellipse). The result is: 

7(s)x2 + 24s)xx’ + P(s)x t2 = E , 

which shows that the positions (x,x’) of a particle at the coordinate s upon 
successive turns lie on an ellipse. The parameters QI, ,B, and 7 are sometimes 
referred to, in the literature, as the Twiss parameters.[” Similar equations may 
be derived for the y, y’ phase plane. We assume, in this discussion, that midplane 
symmetry is applicable and therefore there is no linear coupling between the x 
and y phase planes. 
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2.2.1 The Machine Ellipse 

This ‘machine ellipse’ may also be represented in a matrix form as follows: 

T = P(s) 
( 

-44 
-44 7(s) ) 

(2.2) 

where T has a determinant equal to 1. The equation of the ellipse characteristic 
of the machine may then be written in the matrix form 

XtT-lX = E where P-3) 

The area of the ellipse is KITE. We can compute the maximum x excursion xmax 
and the maximum x ’ excursion x ‘max. They are given by the expressions: 

Xmax = x6 E , X’ma=fi. 

From the explicit equation of the ellipse one can also obtain the coordinates of 
the intercepts with the axes: 

E 
Xinter = 

r ’ 
X ‘inter = ;. 

and from these expressions one can deduce alternative expressions for the area 
of the ellipse: 

Area = XE = XX~~X ‘inter = zzinterz lrnax . 

This result can be generalized to dimension n. For n dimensions c is the product 
of one intercept, one maximum and (n - 2) maxima of subspace intercepts. 
Figure 1 illustrates these points in two dimensions. 
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Fig. 1. An Ellipse based on the Machine Parameters /?, cr, 
7, illustrating single-particle motion in a closed machine. The 
area of the ellipse is A  = ATE. 

Consider now two points Sr and S2 on the reference orbit of the closed 
machine. Let Tr and T2 denote the machine ellipse matrices at these two points 
and R the optical transfer matrix from point Sr to point S2. Similar to the beam 
ellipses in TRANSPORT,‘a1’31 we have the following transformation relating T2 
to Tl: 

or 

T2 = RTl Rt 

R,21 -2RllRn R,22 

-Rdh 1 + 2&&l -Rd’h 

R,21 -2&l&2 R222 
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2.3 THE RELATIONSHIP BETWEEN THE BEAM ELLIPSE AND THE 
MACHINE ELLIPSE 

Consider a closed machine that is characterized by the ellipse El with emit- 
tance e and area Al, as shown in Fig. 2. Let Pr denote a point on that ellipse and 
let 0 denote the origin of the axes. After successive turns around the machine 
the point Pr will reappear at Pz, P3, etc. 

5-84 I 4809All 

Fig. 2. The Superposition of Beam Ellipses 
Ez and E3 with a Machine Ellipse El. 

Consider now an ellipse Es inscribed in El with a contact point at Pr. Let the 
ellipse E2 represent a beam of particles circulating in the machine. Ellipse E2 
becomes, after one turn, ellipse E3 with contact point Pz. Ellipses E2 and E3 
have the same area. 

When the beam ellipse E2 is concentric and similar to the machine ellipse 
El, the beam is said to be matched to the machine. In this instance the beam 
reappears on successive turns as the same ellipse, but the individual particles in 
the beam rotate around the ellipse as did the points Pr etc. 

Let us find the transfer matrix which transforms the machine ellipse defined 
by the input values pr and CY~ at position sr into an ellipse with the values p2 
and 02 at position sz. 

Consider again the solutions as given by the Floquet theorem: 
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4s) =amos(ti(s) + 4) , 

44 = - P;.) \r( - a(s) cos($(s) + 4) + sin($(s) + 4) 1 . 

Expanding the trigonometric functions and simplifying the notation gives 

5 =@(cos+cos4- sin$sin+) , 

5’ = - 
$ 

6’ crcos$cos~$-osin+sin~+sin$cos~+cos$sin$). 

The point having $ = 0 is assumed to be associated with the values pr and o1 
and x1 and xl’; these values then satisfy the following relations: 

Xl’ = - d $’ arcos4+sincj). 
1 

Denoting by /32, cy2, x2, and x ‘2 the values associated with $ nonzero, and 
eliminating cos 4 and sin 4 from the previous four equations, one gets 

x2 =x1 
\i 

$cosd + w sin $,> + xl’&Zsin ti , 
1 

x2’ =x1 
-a2 cos + - sin 1c, - o301 sin $ + or cos + 

m 
+ Xl’ F(cos$ - ozsin$) . 

2 

From the above equations we deduce the transfer matrix between position 1 and 
position 2 to be 

R= 

A$ + or sin A+) 

(1 + aroz) sin A+ + ((~12 - al) cos A$ - 
m d- 

$(cos A$ - (~2 sin A$) 
2 

(2 

where A$ is the phase shift between position sr and 82. 



In the particular case where the input values (PI, or) are equal to the output 
values (p2, (~2) the transfer matrix becomes 

R= 
cosp + crsinp psinp 

-7 sin p cosp - asinp > 
P-6) 

where we have defined 

P = Pl = P2 , a = a1 = az; , lJ=W, 

and 
1+ a2 

7=-. 
P 

Formula (2.5) expresses the elements of the transfer matrix R in terms of the 
input parameters ,f3r, (~1, the output parameters ,f?2, a%, and the phase advance 
AII, between positions sr and 82. 

The linearised stable motion around the reference closed orbit of a circular 
machine can always be expressed by the matriz formula (2.6). 

It is also possible to express the output Twiss parameters and the phase 
advance in terms of the input Twiss parameters and the matrix elements. The 
first part of this inversion process is achieved in formula (2.4) which we reproduce 
here: 

P2 

0 i 

RI1 -2RllRn G2 

03 = -Rll&l l+ 2RnR21 -RI&~ (2.7) 

72 R221 ---2&l&2 R222 

The phase shift A+ is derived from formula (2.5) as 

tan A$J = R12 

RnPl - R12w 

or 
R12 

sinA+ = m 

or equivalently by the formulas relating $J(s) and ,8(s) : 

(2.8) 

(2.9) 

Let us look at some elementary configurations and determine their phase 
shifts: 
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a) A thin lens is characterized by sr = sz so that A$ = 0. 

b) If Rrz = 0 (point to point imaging) then A+ = nr. 

c) If Rir = 0 (parallel to point imaging) then tan A+ = -l/al. 

d) For a drift of length L, Rrz = L and sin A$ = .L/@&. 

It is perhaps worthwhile to comment on the meaning of ‘phase shift’ in a 
circular machine. 

-M I-- R= ~ 
1 
F 

5-86 

.O 

4 

1 
M 

1 

5399A23 

Fig. 3 Phase Shift for Point to Point Imaging 

Consider Fig. 3 where we show a single lens imaging from point 1 to point 2. 
This corresponds to the matrix element Riz = 0. From the figure and Eq. (2.5) 
we can conclude that the phase shift is z. In this case we only need to know that 
R12 = 0 in order to conclude that the phase shift is zero or n?r. With the further 
information contained in Fig. 3 we know that the answer is z. No additional 
information about the incoming phase ellipse is necessary. 

Now, in contrast, consider Fig. 4 where again we have a single lens but with 
the matrix element Rri = 0. This corresponds to parallel to point imaging. 

Comparing again with Eq. (2.5), we discover that we need to know the 
orientation of the incoming phase ellipse, or, at the entrance of the module in 
order to evaluate the phase shift through the module. 
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Fig. 4 Phase Shift for Parallel to Point Imaging 

If w = 0, corresponding to an upright ellipse, then the phase shift is 

otherwise 

tan(A$) = -& 

/--*+=n/2 + 
a2=0 

Fig. 5 Phase Shift for Point to Parallel Imaging 

As a third example consider Fig. 5 where R22 = 0, corresponding to point to 
parallel imaging. In this case we readily conclude that we must have a knowledge 
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of the orientation, ap, of the machine ellipse at the endpoint of the module in 
order to determine the phase shift through the module. Here we find that if 
(~2 = 0 (an upright ellipse) then 

otherwise 

A$=; 

tan(A+) = $ 

In more complex modules, such as a FODO array, to be discussed later, 
it will be seen that it is often necessary to know both p and CL! at either the 
beginning or the end of the module, in addition to the transfer matrix, in order 
to deduce the phase shift through the module. This can be seen by inspection 
of Eq. (2.8). 

3 OPTICAL BUILDING BLOCKS 

We shall now turn our attention to the study of special elements or sets of 
elements which can be used to design optics modules for particle accelerators. 

3.0.1 A Drift Space or Field-Free Region 

The transfer matrix of a drift is 

R= 

from which one derives 

Ax = x2 - x1 = Lx1 ’ and x2 ’ = xi ’ = a constant . 

The Twiss parameters transform as follows according to formula (2.7): 

0 P2 cy2 72 = i 0 00 1 -2L 1 -L L2 1 

From this relation one obtains 

ACY = cy2 - cyl = -Lrl and 72 = 71 = a constant . 

The relation (2.9) applied to the drift gives 

sin A$ = J-212 

m 
= 

showing the relation between the phase advance and the length. The relation 
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(2.8) gives 

tanA+ = R12 L 
RI& - R12w = PI - La1 ’ 

Consider the extreme point on the beam ellipse shown in Fig. 6. 

As the beam travels through the drift space, this point will be displaced by 
Ax given by 

where ,Bw is the /3 value achieved at the point where the beam has a waist, 

xl= constant y =constant 

5-W Ax=Lx’ Aa=-Ly 39WA2 

Fig. 6. The Transformation of an Ellipse through a Drift (Field-free) Space. 

3.0.2 A Thin Lens 

A focusing thin lens has the following transfer matrix: 

R= 

from which one derives 

t 

:. 

x2 = x1 = a constant and Az’=~~‘-z!‘=-$. 
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The Twiss parameters transform according to formula (2.7), 

which gives 

pz = /?I = a constant and Pl Acx=cY~-cY~=~. 

The relation (2.8) gives 

tan A~,!J = R12 

&lPl - R12a = 
0 

and so A$ = 0 because the integral 

J ds 

AlCl= P(,)=O 

since the thin lens has a length .equal to zero. The transformation of an ellipse 
through a focusing thin lens is illustrated in Fig. 7. 

r t 

XI 
I 

’ int 
= $ = a constant 

XI XI =--.-+x1 
2 I= I 

= constant 

x = constant 0 = constant 

3989A3 

Fig. 7. The Transformation of an Ellipse through a Focusing Thin Lens. 
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can be written as follows: 

R= 
1 0 

. 
?l/F 1 ) 

We have assumed here that the quantity F is positive. 

The phase advance is zero in both planes, and ,B is constant in both planes. 
The change in CI! is given by 

P Aa=+ 

3.0.3 A Quadrupole 

The thin lens quadrupole behaves in each phase plane (x, x ‘) and (y, y ‘) like 
a thin lens of opposite signs. If the lens is focusing in the x-plane, the matrices 

In these expressions the upper sign applies to the (x, x ‘) focusing plane and the 
lower sign to the (y, y ‘) defocusing plane. 

3.0.4 A thin Dipole 

A wedge dipole with the field index n equal to 0 (i.e. a uniform field) can 
be simulated as a thin element (having zero length), located at its middle, and 
having the following transfer matrix: 

R = (-siio/p % si:o) 

where cy is the deflection angle of the central trajectory and where the third row 
and column describe the part of the transformation associated with the energy- 
dependent parameter 6 = (Ap/p). Th e wedge dipole behaves like a thin lens 
of focal length F = p/sin Q in the (x,x’) plane. In the (y, y ‘) plane the wedge 
dipole behaves like a drift for a sharp cutoff field boundary. The matrix R gives 
us 

x2 = x1 = a constant and A,z’=x2’--q’= - x1 sin cy + 6sina . 
P 

The formula (2.7) becomes 

1 

sin o/p 

sin2 o/p2 
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which gives 

/32 = pi = a constant and Ao=02-ol= 
p1 sin CI! 

P - 

As for the thin lens, the relation (2.9) shows that A$ = 0 for the zero length 
dipole. 

3.1 STUDY OF SIMPLE USEFUL COMPOSITE MODULES 

Using the basic elements discussed in the previous section we shall now 
explore some typical composite modules. 

3.1.1 Basic Focusing Module 

If a focusing thin lens of focal length F is placed between two drifts of length 
F, the transfer matrix for the composite system is 

From the matrix R we observe that angles are transformed to displacements and 
displacements to angles as follows: 

x2 = FxI’ and L-5 
372 - F’ 

From the relation (2.7) we have 

from which 

P2 = F271 and 03. = -a1 . 

Relations (2.8) and (2.9) yield 

tan A+ = -$ and sinA$ = && 

from which we can conclude the following result: If ~1 = cll2 = 0 then, since 
sinA$ > 0, we must have AII, = 7r/2 and F = dm. 
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This relation links the lens focal length F and the length L = 2F of the 

. module to the magnitude of the /3 values. 

Practical tw+dimensional modules based on this concept are typically achieved 
by symmetric triplets or by quadruplets, as shown in Fig. 8. 

For the triplet, the focal length is different in the two phase planes (x,x’) and 
(y, y ‘) because of basic properties of triplets. 

If it is required that Fz = F,, then a symmetric quadruplet array of quadrupoles 
may be used as illustrated in Fig. 8. 

-. 

F,= Fy 

6-84 fl f2 f2 fl 4809A22 

Fig. 8. A Triplet and a Quadruplet Lens System 
Possessing Parallel to Point and Point to Parallel 
Imaging in Both Planes. 

3.1.2 The FODO Array 

The FODO array is perhaps the most common building block used in the 
design of machine lattices and beam lines. Its structure is illustrated in Fig. 9 
when it is composed entirely with quadrupoles. A FODO array with interspersed 
dipoles is discussed in Ref. 7. 

It is informative to study the FODO array at two different observation points 
in order to better understand its basic properties. 

1) First case: The cell begins and ends at the center of a lens, then the 
transfer matrix for the x and y planes is obtained by the following multiplication: 
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where again the upper sign applies to the (x,x’) plane and the lower sign to the 
(34, y ‘) plane. 

6-84 4809A21 

Fig. 9. A FODO Array as a Building Block for 
Lattices. 1) The Transformation for one Cell be- 
tween the Centers of the Lenses. 2) The Trans- 
formation for one Cell between the Centers of the 
Drift Regions. 

If we assume that PI = ,82 = ,8 and al = (~2 = CY, then 

R= 

I 

from which 

P GY 
= 2L1 * si4&4 

sin j.4 9 

and 

WY - -0, 

Using symmetry arguments, the ratio of the beta functions in the focusing and 
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defocusing lenses is given by 

P max 1 + sin(P/2) 
- = 1 - sin(j.k/2) * P min 

Note that this ratio is independent of the length of the cell. 

2) Second case: If we now begin the FODO array in the middle of one 
of its drifts; the transfer matrix for one cell is given by 

R=(i “i”) (*i,f :) (ii :) (,:,, Y) (i- “i”) ; 
then 

L3 
c+cYs ps 

2L-- 
4f2 R= 

--YS c - as 

from which we obtain 

L2 cosp= l-- 
( ) 2j2 ’ 

which is the same as in case 1, but 

&Y = & (2 - sin2(p/2)) 

and 

ffz,y = F 
2 sin(j.4/2) 

sinp . 

The last two relations show that at this location we have the result 

Pz = Py and a!, = -cxy , 

which is the same property possessed by a thin lens quadrupole. 
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A case of particular interest is obtained when ~1 = 7r/2. This corresponds 
to (L/f) = fi. This FODO cell is then often referred to as a ‘quarter-wave’ or 
X/4 transformer and is shown schematically in Fig. 10. 

*--+L/2-j- L+L/2+ 

f f 
6 - 84 4809A23 

Fig. 10. The X/4 Transformer. 

The transfer matrix R of this quarter-wave transformer is 

and we have the interesting property R11 = -R22 and R11, and R22 both change 
signs between the x and y planes. This is a useful cell for phase space matching 
as will be discussed later. 

3.1.3 A Telescopic System 

The optical system illustrated in Fig. 11 is called telescopic. 

Its transfer matrix is given by 

R=(tl :)(-ll/F. Y)(i “:“)(-:, :)(i T) 
-&/FI = 

0 -F;,F2) = (-,” -P/M) ’ (3.1) 
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x2=-Mx, 

5-84 

Q r constant 
P2= M2B, 
A$= TT = Phase Shift 

:. 

3989.45 

Fig. 11. A oneDimensional Telescopic System. 
From the R matrix we obtain 

. , 
x2 = -Mxl and x2’ = -51 , 

M 
The relation (2.7) becomes: 

which shows that 

P2 = M2P1 and ~32 = cq = a constant . 

Since R12 = 0, the relations (2.8) and (2.9) reduce to 

tanA$=O and sin A$ = 0 . 

Using the formula (2.5) rewritten as 
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we deduce that cos A$ < 0, and consequently that A$ = r. 

A telescopic system has an optical magnification M given by 

It also has the property that the transfer matrix R is an invariant if a drift 
length situated to the right of the lenses is transported to the front with the 
multiplication factor M2. To prove and illustrate this property, consider the 
telescopic system having the transfer matrix of Eq. (3.1) and let it be preceded 
by a drift of length 11 and followed by a drift of length 12. The total matrix is 

-M 0 
RT = 

0 -(l/M) 

-M -Ml1 - 12/M 
= 

0 > -(l/M) ’ 

The matrix RT is equal to the matrix of the original telescopic system if and 
only if the following condition holds: 

Ml1 +12/M = 0 

or equivalently 

l2 = -M211 , 

In practice, to achieve a telescope in both planes one needs at least two 
quadrupoles to simulate each lens of the telescope. Figure 12 shows such a 
solution. 

The magnification may be different in each plane; therefore, the general 4 x 4 
transfer matrix of the system becomes 

-Mz 0 0 0 

0 0 0 
R= 

-l/M= 

0 0 -My 0 

0 0 0 -l/M, 
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Fig. 12. A two-Dimensional Telescopic System. 

or 

R= 

0 0 

3.2 PHASE ELLIPSE MATCHING IN CIRCULAR MACHINES 

All lattices, be they beamlines or segments of circular machines, are made 
by the juxtaposition of a series of cells having different transfer properties. One 
important problem facing the designer can be expressed in the following way: 

Consider a section S2 which is to follow a section Sr. Is it possible to design 
an intermediate section Sl2 such that Sr and S2 are matched? The problem of 
finding such a section Sr2 is called the section matching problem. 

Many design programs help the designer in solving this problem in its gen- 
erality. It is, however, important to have some rational guidelines on how this 
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matching can be achieved. The following paragraphs indicate two general meth- 
ods for matching one FODO array to another FODO array or an ‘interaction 
region’ to the main lattice of the machine, etc. 

3.2.1 General Considerations on FODO Cell Matching 

Consider the matched symmetric FODO cell that was described in paragraph 
4.1.2. If we choose the beginning of the cell to be halfway between the two 
quadrupoles, the following conditions hold at this point in every cell: 

Pz = Py and oZ=-cry. 

Consider now two sets of FODO cells characterized by the two sets of rela- 
tions 

Plz = Ply and QIlz = -my , 

P2z = P2y and cQZ = -clay . 

What properties should a matching section have in order to transform the 
values PI, al, 71 into the values ,&, (~2, 72? If the transfer matrix of the 
matching section for the x, x’ plane is 

R= 

then the following relation exists: 

R:, -2&l Rlz J-G2 

-Rdh RllRm + R12R21 -R12R22 (3.2) 

R221 -2&l I-h2 R222 

Let us note the following: 
If at the input of the matching cell we have 

Plz = Ply and Qlz = -wy (3.3) 

and if the transfer matrix R of the matching cell is such that the underlined ele- 
ments in Eq. (3.2) change sign from the (x,x’) plane to the (y, y’) plane and the 
other elements do not change sign, then it follows from the Twiss transformation 
that: 

P2z = P2y and cyl2s = -cQy . 

When such a situation is created, then the phase ellipse values of one FODO 
cell are matched to the values of another FODO cell. This, however, does not 
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mean that the above procedure matches any FODO cell to another arbitrar- 
ily chosen FODO cell. The following procedure will exemplify and extend the 
preceding one. 

The first condition can be realized generally in two ways: either the matrix 
R is such that 

. 

R= 

or it is such that 

R= 

where we have underlined the elements that must change sign as one switches 
from plane (2,~‘) to plane (y, y’). One example of a practical matching system 
is the following. 

3.2.2 Beam Matching with a Quarter- Wave Transformer 

Consider the quarter-wave transformer defined in the FODO array section 
of paragraph 4.1.2 and illustrated in Fig. 13 . 

Qi f f Q2 
6-84 4809A18 

Fig. 13. A Quarter-Wave Matching Transformer. 

The matrix element of this cell can be written as 

where, according to our convention, the underlined elements change sign when 
switching from the (2, z’) plane to the (y, y’) plane. 

The transformation of this cell satisfies the condition of the previous para- 
graph, and this cell will match pairs of FODO cells whose parameters both 
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satisfy the relation 

Using the X/4 cell, which matches specific pairs of FODO cells, one can obtain, 
by the addition of two elements, a cell which will match any two pairs of.FODO 
cells (with some constraint on the range of p2). 

Consider a quarter-wave transformer to which we add a quadrupole Q1 at 
its entrance and another quadrupole 92 at its exit. 

The insertion of quadrupole 92 does not change the exit value p2 but will 
change the value (~2 of the planes (z, z’) and (y, y’) in opposite directions and 
so preserves the condition ~2~ = -oay. 

The insertion of quadrupole Qr at the entrance does not change the value 
/31 or the relation cyrz = -or1 but it does change the absolute values of ols 
and cry. The Twiss transformation, Eq. (2.7), for the quarter-wave transformer 
shows that this variation of Qr will change the values of both p2 and cy2 while 
preserving the conditions /31z = &, and crlz = -oly. 

Using the transformation matrix of the quarter-wave transformer and con- 
sidering crl to be variable (via variation of the strength of Ql), one can show 
that the value p2 that can be matched by the preceding cell has a minimum 
value equal to b2/&, as follows: 

The expression for p2 is 

p2 =a2& - 2abal + b2yl 

=a2/31 - 2abal+ 
b2(1 + a;) 

Pl - 

The first and second derivatives with respect to crl are 

dP2 2b2cq - = -2ab •t - 
da1 Pl 

and 
d2Pz 2b2 > o 
-=- 

da; PI ’ 

Therefore, a minimum will be achieved if 
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and the value of this minimum is 

b2 
Plmin = - - 

Pl 

The procedure of adjustment of the matching cell then becomes: 

The quadrupole Qr is adjusted so that, given the input values PI, (~1, the 
required output value /?2 is achieved at the exit. Quadrupole 92 is then adjusted 
to obtain the required cy2, and the match is accomplished. There are other 
modules that have similar properties. Information about some of them can be 
found in Ref. 8. 

Sometimes there are situations where it is not possible to install quadrupole 
Qr. An example of this might be at the interaction region of a collider. In 
this case, the quarter-wave matching transformer can still be made to work by 
choosing the parameter b in the above equations so as to achieve the required 
output value of p2 at the exit of the module. Then the quadrupole 92 may be 
adjusted to obtain the required cr, = -oy at the exit of the transformer. : 

3.2.3 Matching with Half- Wave Transformers 

Fig. 14. A Half-Wave Matching Transformer: 1) using Doublets; 
2) using Triplets. 
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Telescopic systems which have a phase shift of r may also be used as match- 
ing transformers with the restriction that CY~ = cyr and /32 = M2&, where M is 
the optical magnification of the transformer. Their most obvious application is 
to match between two points where cyr = cy2 = 0 (the location of an erect phase 
ellipse). They have the advantage that Mz does not have to equal My. They 
also have the property of minimizing the higher-order optical distortions be- 
cause of their optical symmetry. Examples of half-wave matching transformers 
are illustrated schematically in Fig. 14. 

4 SECOND-ORDER OPTICS MODULES 

In TRANSPORT a general notation for the coefficients of the Taylor expan- 
sion of the solution of the equations of motion was introduced. The notation 
of the first-order terms was simplified in order to conform with the standard 
matrix notation. For example, 

&I = (+o) , R21 = (+o) , R34 = (YlYb) * 

In order to ease the writing, a similar simplification of notation was intro- 
duced for the second-order terms: the tensor Tiik can be defined in a similar 
way. For example, 

T112 = (+o&) , T246 = (X’Idd) - 

All terms for which no subscript is equal to 6 will be referred to as geometric 
aberrations because they depend only upon the central momentum PO. 

Any term where one subscript is equal to 6 will be referred to as a chro- 
matic aberration by virtue of the fact that its effect depends on the momentum 
deviation 6 = Ap/po of the particle. 

4.1 CHROMATIC CORRECTIONS USING THE -1 MODULE 

Chromatic effects occur because particles with different momenta respond 
differently to a given magnetic field. Consider two FODO cells in repetitive 
sequence tuned so that pz,y = 90 degrees for each cell. Such a setup is often 
referred to as a -I telescopic transformer because its transfer matrix in both 
the x and y transverse planes is 

R,,, = -I = 

The same would be true for three 60 degree cells, etc. 
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In Fig. 15 is a schematic representation of such a -I transformer. Let 1 
and 2 denote the entrance and exit positions. 

AK 

L 2 
-1 

I 

6-84 

Fig. 15. Principle of a -I transformer. 
4809A17 

A particle at position 1 with coordinates xl, 4 will emerge at position 2 with 
coordinates 52,s given by 

x2 = -x1 and +-+ 

Imagine now that we place at position 1 a thin magnetic element that produces 
an angle kick to the particle, say AK. The particle of momentum po will now 
arrive at position 2 with the coordinates 

. 
x2 = -X1 and 4=-d-AK. 

If we now submit the particle to another angle kick equal to AK at position 2, 
we see that the exit coordinates are the same as they were without kicks. In 
conclusion, when particles are submitted to equal angle kicks at the entrance 
and exit points of a -I transformer, there is no visible effect on their behavior 
outside the -I transformer for monoenergetic particles having momentum PO. 

Let us apply this principle, using some of our elementary building blocks. 

1) Dipoles: Dipoles are even-order elements in the sense that the angle 
kick they deliver to a particle is an even function of the lateral displacement (in 
this case a constant function). Thus, if we place two identical dipole magnets 
(one at the entrance and one at the exit) of a -I transformer, there will be no 
net angular deflection experienced by particles of momentum po outside of the 
-I transformer and the total system will be achromatic to first-order. 

2) Quadrupoles: The angular displacement produced by a quadrupole 
is an odd function of the lateral position x. (In this case the angle kick is 
proportional to 2.) Consequently two identical quadrupoles of opposite polarity 
placed at the entrance and exit of a -I transformer will have no net geometric 
effect outside the transformer. 

3) Sextupoles: Sextupoles are even-order elements . The angular kick 
they produce is proportional to x2. In this instance pairs of equal strength 
sextupoles will have no net geometric effect outside the -I transformer. 
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Thus, in summary, all odd-order elements (quadrupoles, octupoles,.etc.) will 
have to be introduced in pairs of opposite polarity, and all even-order elements 
(dipoles, sextupoles, etc.) have to be introduced in pairs with the same polarity 
in order for the geometric cancellation to be effective. 

4.1.1 A -I Transform Sextupolar Chromatic Correction section 

Consider now a -I transformer with two sextupoles of equal strength placed 
at the entrance and exit, and suppose that dipoles have been inserted in each 
cell of the -I transformer. From the previous discussion we know that the 
sextupoles will not introduce second-order geometric aberrations. The presence 
of the dipoles between the sextupoles ensures that there will be coupling be- 
tween the sextupole strengths and the chromatic behavior of particles. Having 
thus demonstrated the principle of the chromatic correction, let us analyze its 
feasibility in greater detail. 

In practice one must do at least one chromatic correction per phase plane, 
and sometimes two or more per plane. The ideal situation, from the point of 
view of the second-order geometric aberrations, is to assemble enough -I trans- 
formers so that the different sextupole pairs (placed -I apart) do not interfere 
with each other.“] This condition is often prohibitive in its space requirement 
and in its cost. So let us analyze the effect of interlacing sextupole pairs used 
in chromatic corrections. 

Consider, as shown in Fig. 16, two consecutive -I transformers containing 
two interlaced pairs of sextupoles Sr and Sz. 

If the sextupoles are pure second-order elements, no additional second-order 
aberrations are introduced by the coupling between the sextupoles of the two 
pairs. 

tT----I s2 

SI SI I 
6- 84 
4809Al6 

ip--I- -4 
Fig. 16. Interlaced Sextupole Pairs. 

Suppose a particle arrives at the first sextupole Sr with displacement xl. 
As it reaches the first sextupole of the pair Sz, its motion, within the -I trans- 
former that separates the pair Sr, is perturbed, and the particle will reach the 
second sextupole of the S1 ‘pair with a displacement that is not equal to -xl. 
Consequently the second sextupole of the Sr pair will not exactly compensate 
the geometries introduced by the the first sextupole. However since the distur- 
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bance introduced by the sextupole S2 is of order two, the uncorrected geometric 
aberration of the pair Sr is of order three and four. 

In a following paragraph we shall show a complete practical setup of a cor- 
rection scheme using interlaced families of sextupoles. 

4.2 GEOMETRIC CORRECTION USING REPETITIVE SYMMETRY 

The second-order geometric aberrations are obtained by the computation 
of integrals containing the sinelike and cosinelike functions from TRANSPORT 
theory. We know that symmetries introduced in the design of a lattice may have 
the desirable effect of canceling some aberrations.[“’ The important symmetry 
to be considered here is the repetitive symmetry. 

Let us look at a general approach to the study of the effect of this symmetry 
on the second-order aberrations. 

Second-order geometric aberration terms can be expressed as 

L 

Zjk = 
/ 

Kp(&j(s))n(Rik(s))mds where (n+m)=3 
0 

where Ko is the dipole strength per unit length and K2 is the sextupole strength 
per unit length, see Ref. 2. Pure quadrupoles do not generate second-order 
geometric aberrations so Kl is not important for this discussion. 

Since the Q(s) are linear combinations of sin A$ and cos A$, we can write 

L 

qjk = 
J 

Fp sinn(A$) cosm(A$)ds 
0 

where the functions Fp are equal to the strengths Kp multiplied by some power 
of the /3(s) functions. Adopting a complex variable notation, we obtain the 
condition for having all second-order geometric terms Ti3.k vanish, namely, 

L L 

/ 
F,e’“+ds = 0 and 

J 
Fpef3”+ds = 0 . 

0 0 

The integral of the expressions F,ef”$ and Fpe*3”$ for each separate element 
of a lattice can be represented geometrically as a vector in the complex plane, as 
shown in Fig. 17. The integrals over the total lattice become the vector sums of 
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all the complex vectors representing the geometric aberrations of the individual 
elements, namely, 

N 

c Fkeitik and fl: Fke”@ ’ . 
1 1 

For reasons that should appear clear in the next paragraph, one generally places 
the vectors corresponding to i+ in one diagram and the vectors corresponding 
to 3irl, in another. Thesecond-order geometric aberrations are zero if both these 
sums are zero. 

6-84 2 4809A13 

Fig. 17. Complex Plane Diagram for Second-Order Geometric Aberrations. 
For repetitive symmetry (i.e. when the lattice is made of a sequence of 

equal cells), the beta functions are equal from cell to cell and so are the element 
strengths. 

In this case the functions F*(s) are equal in value at the same location from 
cell to cell. Let us analyze two special cases: a lattice containing four identical 
cells and a lattice containing three identical cells, and such that the total phase 
advance for the lattice is 27r in both cases. 

Consider the $J plot of Fig. 18. The vectors correspond to the number of 
the cell to which they belong. In the $J plane they appear in consecutive order 
with an angle of 90 degrees. Their sum obviously is zero. In the 3$ plane the 
angle between consecutive vectors becomes 270 degrees, and their sum will also 
be zero. 

In conclusion, in a lattice made of four equal cells with total phase shift of 
27r, the second-order geometric aberrations originating in individual elements 
will cancel. 

Consider now the ?,,!J plot of Fig. 19. The three vectors display an angle of 
120 degrees, and so their sum is also zero. However, in the 31/1 plot they will 
have an angle of 360 degrees and will all coincide. Their sum is not zero unless 
their amplitude is zero. 
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. 

In conclusion, for a lattice with three cells and a total phase shift of 27r, 
some geometric aberrations do not cancel. 

We can now formulate the following important theorem: 

In a lattice made of n identical cells with n > 3 and having a total phase 
shift of 2m7r, all second-order geometric aberrations will cancel. 

3 

2 
YJ 

1, 

I 3 - 

4 

4 
3JI 

I 

6-84 

2 

4809A14 

Fig. 18. Complex Plane Diagram for Second-Order Aberrations in a Four-Cell 
Lattice with Repetitive Symmetry and a 27r Phase Shift. 

Fig. 19. Complex Plane Diagram for Second-Order Aberrations in a Three-Cell 
Lattice with Repetitive Symmetry and a 27r Phase Shift. 

33 



4.2.1 The First-Order Achromat 

Consider a lattice made of n identical cells having the following transfer 
matrix: 

R=(i ; ,)=(T ‘li). 

The total transfer matrix T will be 

Mn Mn-lw’+Mn--2c+...+c 
T= 

> 
. 

0 1 

The dispersive vector of the total transfer matrix T can be written in the fol- 
lowing form: 

& (M-l + Mn-2 + .-- + I)d = (Mn - I)(M - I)-% . 

From the above expression one can deduce the following theorem: 

A lattice made of n identical cells is achromatic to first order if and only if 

l)Mn=I 

or 

2) tz=o. 

In other words, it is achromatic if and only if each cell is achromatic, or 
the total transfer matrix is the identity matrix (equivalently if the total phase 
advance is 2rnr for any integer m). 

This first-order result is the basis for the building of second-order achromatic 
beam lines. 

4.2.2 A Practical Second-Order Achromat 

Figure 20 shows a possible layout for a four-cell second-order achromat. 
The labels BD stand for bending dipoles. The labels QF and QD stand for 
horizontally focusing quadrupoles and horizontally defocusing quadrupoles. We 
assume that the quadrupoles have been tuned to provide a total phase advance 
of 27r. 

34 



I I V” % “A ’ V” L-L “II ’ 
OF QD QF QD QF QD QF QD 

6-84 4809Al2 

Fig. 20. Example of a Practical Second-Order Achromat with Four Cells. 

Sextupoles have been introduced so that the chromatic correction procedure 
can be performed in both the (x,x’) and the (y, y’) plane. 

The sextupoles of the family SF will couple predominantly with the x plane 
because they are located close to the focusing quadrupoles, where the values of 
the pZ function are greater. 

Similarly the sextupoles of the family SD will couple predominantly to the 7. 
y motion, where par is larger. 

Once the quadrupoles have been tuned to provide a 2n phase shift, the 
second-order geometric aberrations introduced by the dipoles and by the sex- 
tupoles cancel exactly. 

One then tunes the sextupoles SF and SD so that one of the second-order 
chromatic terms Tlje or T2je and one of T3j6 or T4j6 are zero. It has been shown 
previously [“I that all the second-order chromatic terms except T566 then become 
simultaneously zero. 

We now have a system that is completely achromatic to second order with 
the only exception being the momentum dependence of the path length. 

4.2.3 Application of the Achromat Concept to Chromatic Corrections 

The second-order achromat as described above is an optical system whose 
transformation matrix is the identity matrix to a precision of second order in all 
of the phase space variables x, x ‘, y, y ‘, 1, and 6 except for the matrix elements 
for the path length which depenmd only upon 6 . These are R56 and Tsty,. 

While the second-order achromat may not be directly applicable to the de- 
sign of circular machines, the optical principles evolved for its development are 
definitely useful when formulating the sextupole configurations necessary for the 
chromatic corrections in circular machines and in particular for storage rings, 
where the interaction regions have very small beta functions. Let us review the 
salient features of the second-order correction theory developed above that are 
applicable to this problem. 
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1) Any family of sextupoles inserted into a lattice such that their vector sums 
cancel in the $ and 3$~ diagrams described above will not introduce second-order 
geometric aberrations. 

2) The interlacing of two or more sextupole families, each of which satisfies 
criterion 1), does not introduce second-order geometric aberrations. 

3) Interlacing of one sextupole family with another sextupole family will 
introduce third- and higher-order distortions to the lattice. 

4) It should be noted that in order for the sextupoles not to introduce second- 
order geometric distortions, the tune shift per cell of the lattice in the region of 
the sextupoles must remain fixed. The quadrupoles in this region must not be 
used to vary the tune of the machine. The variation in tune must be achieved 
in a ‘sextupole-free’ region. 

In summary we may state the following theorems : 

Theorem A : One of the important principles of the second-order achromat is 
the following: “If one combines four or more identical cells consisting of dipole, 
quadrupole, and sextupole components, with the parameters chosen so that the 
overall first-order transfer matrix is equal to unity (+I) in both transverse planes, 
then it follows that such a system will have vanishing second-order geometric 
(on momentum) aberrations”. 

Theorem B : Furthermore, “If the sextupole components are adjusted so as to 
make one second-order chromatic aberration vanish in each transverse plane of 
the +I sections, then ALL second-order aberrations (geometric, chromatic and 
path length) will vanish except for the path length matrix elements depending 
only upon 6 . 

Theorem A is useful for making chromatic corrections in particle accelerators 
such as storage rings and linear colliders where low beta sections are used for 
the interaction regions. For these applications, it is sometimes referred to as a 
“pseudoachromat”. 

The entire achromat, using both theorems A and B, is useful for the design 
of secondary beams or for the transport of primary beams , such as in the arcs 
of the Stanford Linear Collider, where optical distortions must be kept to a 
minimum. 

The property of the second-order achromat, whereby dipole and sextupole 
families may be inserted into a lattice for chromatic corrections without intro- 
ducing second-order geometrical (on momentum) optical distortions, has been 
incorporated in several new particle accelerator designs. These include the SLC 
at SLAC, LEP at CERN, the EROS pulstretcher ring at SASKATOON, the 
CEBAF ring at SURA and the MIT ring.“” 
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