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Recently the anomalous electroweak effects due to the instanton like contri- 

butions draw attention in connection with the baryon asymmetry of the universe. 

Kuzmin et al. [l] 1 c aimed that at enough high temperature of the order of 200 

Gev, the anomalous processes give a competing rate against the expansion rate 

of the universe. It means that the baryon number non-conserving reactions take 

part in up to that temperature to bring about the complete thermal equilibrium. 

They referred to a master equation for the total baryon and lepton numbers, 

dB dL --z---7 
dt- dt -l(B+L) , (1) 

and concluded that the thermalized baryon number at TC N 200Gev is given by 

(B) = i (Bin - Lin) 7 (2) 

where Bin ( Lin) are primordial baryon ( lepton ) asymmetries produced by any 

other non-equilibrium processes until that time. Using Eq.(2), Fukugita and 

Yanagida [2] noted that, for getting the present baryon asymmetry, Bin is not 

necessarily to be produced by, say, the usual GUT scenario, supposing that Li, 

can be generated via heavy Majorana neutrino decay products. 

In this note, we comment on the formulae above. We claim that the final 

thermalized baryon number, Eq.(2), should read 

(B) = i(Bi, - Lin) . (3) 

In order to clarify the origin of the factor appearing above, we take a case with 

SU(N,) color N-plet quarks whose baryon number is l/N,. 

First of all, we note that, if the thermal equilibrium is realized, then one does 

not have to consider any master equations. Instead, one can immediately write 

down the general canonical distribution formula which is assured by an infinite 
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heat bath: 

P(n) = exp(--CLiQi) , (4 

where Qi are conserved additive quantum numbers of the system, and pi are the 

corresponding generalized chemical potentials which may be positive or negative. 

In our case, the conserved quantities are the energy and the B - L quantum 

number which is respected even by the anomalous interactions. The partition 

function is expressed as 

z= ~~V(--PE-PB-L~B-L) , 

n&L = 2 ‘nh 
i NC - nl , 

(5) 

(6) 

where nt (nl) is the difference between the numbers of particles and antiparticles 

for quarks (leptons). 

To see the thermal expectation value of na’s ( a = i for quarks, a = N, + 1 

for leptons), 
. 

(na) = $ C hexP(-PE-PB-LnB-L) , 

we expand it with respect to /J&L. For a small symmetry breaking where the 

ratio of (n,) to the entropy < 1, the lowest order estimate will give a fairly good 

approximation: 

(na) - (%Jo - PB-L((nanB-L>o - (na>o (nB-do) 3 (8) 

where ( )e means an expectation value with ,UB-L = 0 in Eq. (7). Due to the CPT 

invariance of the theory [3], (na)O vanishes exactly. Neglecting the off diagonal 

parts and quark-lepton differences of the two body correlation, since they come 
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from higher loop effects and/or finite mass effects, we find that 

= -+ (nl) = -$PB-L (nf& , 
C C 

and therefore 

(B) = -+(L) . 
C 

This indicates that 

(B) = & (B -L) = 
C 

-$-q-(Bin - Lin) 3 
C 

(9) 

(10) 

01) 

which gives Eq.(3) for NC = 3. 

Now we check the above formula by deriving the corresponding master equa- 

tion for the anomalous processes. A general form of the master equation is written 

as 

~ =‘j--fi~&${~(p’ dnbl > 
dt + P) fi 4P’) fiu f n(p)) 

mn 1 1 1 1 

-r(P + P’) fin(P) fro* 4P’))l 9 
1 1 

(12) 

where n(p) is the particle density of a state defined by a set of quantum numbers 

p ; r is a rate of the process; and f is taken as + for bosons and - for fermions. 

Due to the unitarity, the fixed points of the above equation are given by the 

type of solutions in Eq.(4), whether the microscopic T-invariance holds or not 

[4]. (Of course this guarantees the consistency between the distribution(4) and 

the master equation (12).) Let us expand the equation (12) around the fixed 

point (4), introducing a deviation via defining different chemical potentials for 

each fermion. Getting a linearized master equation for chemical potentials, we 

transform it into that for (n,) by using the linear relation in Eq.(9) [5]: 

d (4 
dt = Mab (nb) 3 (13) 

where the matrix M,b is (NC + 1) dimensional matrix. 
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Taking a common (n,) value for quarks of every color, the only interactions 

contributing to the master equation is those of violating B and L conservation, 

since, for any other interactions, the trial function used above is already their zero 

mode function. In the lowest order approximation, the anomalous interactions 

has an exchange symmetry among each kind of fermions, because they do not 

discriminate the fermion species, quarks or leptons. Therefore the driving matrix 

in Eq.(13) can be approximated such that 

Mab = cl bab + c2uab T (14 

where U,b = 1 for all a , b. The above matrix is easily diagonalized. Noticing 

that the anomalous processes conserve NC quantities, nt - nl (i = 1, NC), we 

conclude that Cr must vanish and M has only one non-zero eigenvalue whose 

eigenmode ?ZNz is defined by 

nNZ=2n6+nl, (15) t 

that is, the sum for all relevant fermions. Hence the correct master equation 

should read 

1 (N,B + L) = -7-l (N,B + L) , (16) 

instead of Eq. (1). This equation leads to exactly the same baryon asymmetry 

as is given by Eq.(ll). 

In conclusion, the additional factor in Eq.(ll) comes from the fact that the 

particle excess of a fermion depends on its charge of a conserved quantum number 

(which is B - L in this case) . Only the conserved quantities determine the 

canonical distribution and the charge gives the effective chemical potential for 

each component. 
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