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1. Introduction 

In recent years, Kaluza-Klein unification schemes have resurged. In a simple 

scenario, a higher dimensional space is compactified to the direct product of flat 

four dimensional Minkowski space with a two sphere. If the four dimensional 

metric contains the gauge fields, there is an SO(3) gauge theory on the product 

space at low energies. PI 

As a model of this low energy theory, I consider an SU(2) gauge theory on 

the direct product of a flat two dimensional Minkowski space M2 with a two 

sphere S2 and neglect gravitational effects. In this theory, a background vector 

potential preserving two dimensional Lorentz invariance is allowed. I choose an 

‘t Hooft-Polyakov monopole on S 2 WI 

where r and 2, are the radius of is the outward normal to the sphere. This back- 

ground gauge field, or any topologically non-trivial one in any compactification 

scheme, will induce a multiplet of massless chiral fermions and massive gauge 

bosons and fermions on the uncompactified space. If the compactification scale 

is very large compared with the weak scale, only the massless fermions can be- 

come the observed quarks and leptons. No one has examined in detail how they 

might obtain the correct masses. 

This paper develops the perturbative analysis of this problem on M2 x S2. 

It is shown that chiral symmetry preservation on the total space implies chiral 

symmetry preservation in the uncompactified space. However, on M2 the ground 

state monopole vector potential couples to fermions as a pseudoscalar boson and 
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can act as a Higgs field. Only the massless fermions in the field of the lowest 

charged (z = 1) SU(2) doublet monopole receive tree level Higgs mass insertions. 

For higher charged (z 2 2) doublet backgrounds, the massless fermions obtain 

masses from one loop fermion-Higgs Yukawa couplings. All these techniques can 

be easily generalized to arbitrary Mn. But then one must confront the usual 

problems of perturbative non-renormalizability in higher dimensions which I will 

not address. 

In the next chapter, I find the vector potential and fermion eigenmodes in 

the field of a monopole. In chapter three, I find the induced fermion-vector and 

fermion-pseudo-scalar couplings on M2 by integrating out the S2 dependence of 

the fermion-gauge field coupling on the total space. I verify that chiral symmetry 

is preserved on M2 in chapter four and calculate the one loop fermion-Higgs 

couplings to obtain a mass heirarchy in chapter five. 

2. Quantum Fluctuations 

2.1 GAUGE BOSONS 

In this section, I will find the fluctuation states about the monopole back- 

ground. The Yang-Mills action on a curved space 

S = -1 
%I2 J 

dn+2zTrFp”F w 

A, = A;T, 

3 



yields the inverse propagator 

Ap” G 
S2S 

ab bA;“A; = (-DaDagClu + 2F,.w + I$Jab (24 

in the background field gauge 

Dib6A; = (va - z.A,)“~~A; = 0 (24 

where a, b, are group indices. The variation operator (2.1) is manifestly diagonal 

for p, Y = 1,2 and will be diagonalized for CL, v = 3,4 E 8,d. All terms with one 

index in M2 and one index in S2 are zero. When acting on its eigenvectors A:: 

has the form Aabglr,,. 

The D,D, terms in the numerators of the gauge boson propagators 

(A:;)-’ = A;;[gpY - (1 - @] 

are zero in the one loop diagrams of chapters four and five by Ward identities. 

Therefore, I only need to find the eigenvalues and eigenvectors of the variation 

operator in the background field gauge (2.2) and assume that the boson prop- 

agators are proportional to g,, to obtain gauge invariant results. The relevant 

Ward identities will be proved in chapters four and five. 

Vectors Polarized in M2 

The variation operator for vectors polarized in M2 is” 

tfl A discussion of collective angular momenta and monopoles has been given by D. Olive. 141 
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= [k2 + @a2 - (Er - T121vt3 . . 
r 

= [k2 + x2 - Pr - T121rlij 
r (2.3) 

i, j = 1,2 

The conserved monopole charge, e,. . T, commutes with (Jz)i . In the adjoint, 

(e^, . T) has eigenvalues 0, fl. Equation (2.3) is the gauge covariant Laplacian 

for scalars times qPV whose spectrum is bounded below; the J2 = 0 state has 

2, . T = 0. (If G/H = S2 = SO(3)/SO(2) with SO(2) generated by 15~ . T , 

these operators have the form Cz(G) - Cz (H) = Cz(G/H), where Cz denotes the 

second Casimir invariant .) 151 

By separation of variables, the fluctuations polarized in the M2 directions 

are generalized scalar harmonics Y(e,.T)lm times plane waves times unit vectors 

where 2 ,? and 2 are on M2, 8,4 are coordinates on S2, and lower component 

is on S2. In M2 they represent two infinite towers of very massive gauge bosons 

,2 = w + 1) - 1 
r2 

1= l,...,oo 

and another tower of very massive gauge bosons with one massless gauge boson 

m2 = iP+ 1) 
r2 1 =o,...,oo 

Henceforth 1 will denote the gauge field angular momentum. 
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It will far easier to compute in chapters three and four in the Abelian 

gauge. 16971 The rotation from the previous notation to the abelian gauge essen- 

tially rotates d, . T to &. T. The rotation matrix is 

The gauge covariant derivative 

is transformed to 

where NH and SH denote the northern and southern hemispheres. In compo- 

nents, 

I can now add SU(2) monopoles colinearly, or put a Q in front of Tz to change 

the charge of one SU(2) monopole. I will henceforth use Q to denote this factor. 

Scalar eigenfunctions of DaD, in the adjoint are now just the Wu-Yang 

monopole harmonics PI y ql~ with q = 0, zkt&. In the northern hemisphere 

Y qlm - - Mqlm 2nn! 
o”(1 - x)Y(l+ ~)~ei(m+dm2E[(l - z)a+n(l + z)P+,] 

= 2m-n[2z + 1 (1 - m)!(l + m)!]l(-l)n 
x-- (I-q)!(Z+q)! . 

2 ,,(l - z)F(l + z)? x 
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A.&(1 _ ,y+n(l + x)P+n] x eiCrn+q)+ 

= (-l)n2m[- 2z + ’ (’ - m)! (’ + ml!]l(l _ x)G(1 + x)gpa,/3ei(m+q)4 
47r (Z-q)! (l+(1)! n 

a=-q-m P=q-m n=Z+m x=COSe 

Pa@ is a Jacobi polynomial. The southern hemisphere harmonics are related to n 

the northern hemisphere ones by by (Yqlrn)s~ = eWi2q#Yqlrn. and obey the same 

derivative formulas. 

The fluctuations on M2 are Yqrm times plane waves times unit vectors 

Vectors Polarized in S2 

For vectors polarized in S2, defining Tr - i$ . T, Te s 6?g . T and T4 z 24 * T, 

the variation operator is 112 [g-13] 

( -DQ&gpu - 2iF,, + R,,)AV = 

(k2 - Va Va gpu + R/w) AV 

+tT2 - T,2), 
r2 p 

+2i~[T’bOAe - cscdTe(iQAe - cotOA,)] 

fl2 Related calculations have been performed by Horvath et al, A. Schellekens, and M. Evans 
and B. Ovrut.161 
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+2i3T4(d0 - cot6’)A4 - TO(cscB+A4 + cot OA,)] 

2icscBTrAd *. 2isidT,Ae ~ - 
r2 e8 + r2 e4 

This formula should be compared with 

[k2 + (L + T + S)2 - (G - T>2 ]-J = 
r2 

+k2[&AB + i?+A+] 

+$[(a; + csc2BL$)Ae + 2cscecot ep, - isin13TeA4) 

+ csc2 8A0 + 2iTecscBa4AB - 2iT%30A0 + (T; + T;)A8 

-2iT,A4 + icot BTdAO + 2AB)] 

+$[-(~3; + CSC~ ea;) - 2cscecote(a4 - iTesine)Ae 

+csc28Ag - 2iT4&Ad + 2iTBcscbVQA4 + (T; + T,j)A4 

+2iT,A0 + icotBT4A4 + 241 

If c and s denote the first and second equations, they are equal under the resealing 

As before, [Z, -T,g+ = 0 = [i,.T,m]. 
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Once again, I will assume separation of variables and focus on the angular 

dependence. The solutions of the angular equation will be called SU(2) vector 

spherical harmonics and denoted by Jqlrn . They are vectors on S2 but scalars 

on M2. Hence, the fluctuations polarized in the S2 directions are SU(2) vector 

spherical harmonics times plane waves 

(2.5) 

In the Abelian gauge, the SU(2) vector spherical harmonics are 

? CY qlm = qJ,(m-i)Ei(J2(M - i)lilJ21ZM) 
i 

with q = &Q,O in exact analogy with the usual vector spherical harmonics 

7 ljm = c YJcm+( J M - i lil JlZM) 
i 

Both of these vectors are in three dimensions and must be specialized to the the 

sphere by imposing 

& * 7 qlm = 0 = 8, - ?lrn 

It will be extremely convenient to rotate these harmonics into a ‘spin Abelian 

gauge’. Recalling the monopole harmonic addition theorem 

Y qlllrnl (n)yq212m2 W) = ccl1 al2 42 p112 13 (Ql + 42,)) 
13 

’ (‘1 ml ‘2 m21zl l2 l3 Cm1 + m2))Y(ql+qa)13(ml+mz)(n) 
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the vector potential is rotated by 

to 

T dm = e”Yq-l Ii&-l + Yql~i?O + e -‘$y 
q+l lid+1 

for each J2. 

Let’s specialize to a Q = +l ( or equivalently Q = -1) background and find 

the angular momentum degeneracies. Continuous Wu-Yang harmonics cannot 

have 1 less than q. Consequently, T*rZrn has 3 x (21 + 1) states for 1 2 2. At 

1 = 1, there are only 2 x (21 + 1) b ecause J2 cannot be zero. At 1 = 0, there are 

two unstable states with eigenvalues 

ox(o+l)-l=~~ 
r2 r2 

They correspond to tachyonic bosons on M2. (The existence of these two insta- 

bilities substantiates a claim by Hosotani and refutes another by Schellekens.l’] 

[151 ) COlrn has 3 x (21+ 1) states for 1 # 0 and one zero mode. This degeneracy 

analysis can be done for any Q background. 

Since I know that I can impose the Er . + V = 0 condition before the rotation 

and still have an eigenfunction of the variation operator, I can also impose it 

after the rotation. Since 

&=- 47rYolo=~ooo d-’ 
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in spin abelian gauge is 

forcing the vector potential to lie on the sphere implies 

T qlm = ei4Yq4 uk&l + e+Yq+, ~~i?+~ 

Now there are 2 x (2Z+ 1) states for I 2 1 , q = 0 and for 1 2 2 , q = fl. For 

l=l,q= fl there are (2Z+ 1) eigenvectors. 

2.2 F ERMIONS 

The gamma matrices on M2 x S2 may be written as16] [161 

IyM2 x S2) = 
( 

IqW)@l 
k(M2) 63 P(S2) = > ( 

IqW)c31 
i7s(M2) 8 0s > 

with j = 1,2 and s = 3,4. The Dirac Operator on M2 x S2 is 161 [17,181 

o,,(A) = kjri(M2) + i75(M2)eg,I’8(S2)[+g - igAB] 

+i75(M2)f+rS(S2)[ &a, - k+] - ~7~(M2)er81”(S2)~ 

- 3 = k.ri(M2) + i75(M2)~B - -i?[+ - z-g&] 

It will be convenient to rewrite this operator such that the rotational symmetry 

is obscured. Let’s rotate to spin abelian gauge again by taking e^, to 0. The Dirac 
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operator becomes 

q?(M2) + c%c+3e + +qj + a34 --&j - igAT”“] - iga,bA= 

Now let’s find the solutions for 6A, = 0. Let B = fz and z for fermions in a 

doublet be the analogues of q = 0, &Q and Q for gauge bosons in the adjoint. By 

separation of variables, the solutions are direct products of two two-component 

spinors 

zeM2 x S2, x6M2, yes2 . Using the monopole harmonic addition theorem, the 

eigenspinors are rotated by eita2eiga3 from 

to 

for B greater than zero, and 

for B less than zero, with eigenvalues 

E=f 
J(J + 1) + a - I32 

r r 
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and 

Once again B is an isospin index. For fermions in an isodoublet, B = fz and 

z is the charge of the SU(2) background. Positive and negative z’s have zero 

modes with zero upper and lower components, respectively. Henceforth, fermion 

angular momenta will be labeled J or Ji. 

Fermions in an arbitrary isospin background can be written as direct products 

of doublets or triplets. For example, a background of 

i o$o 0 0 ;o 0 0 -; 0 0 0 0 0 -g I 

P-7) 

in a quadruplet is equivalent to doublet monopoles of charge z = 3 and z = 1 or 

to four abelian monopoles of charge B = Z!Z~ and B = rt$. 

3. Induced Tree Level Yukawa Couplings 

3.1 DECOMPOSITION OF THE INTERACTION 

Fluctuations depending on 8 and 4 induce effective coupling constants on 

M2 through integrals over 8 and C#J of the fermion-gauge field interaction on 

M2 x S2 “‘I . For gauge fields in an isotriplet and fermions in an isodoublet, the 

decompostion (2.6) implies 
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For our fluctuations (2.4) and (2.5) these reduce to 

-iF J d2Y+lJ2M2 (Y)V$mQ8+cJ1Ml (Y) X J d2X~AJa(x)i75(M2)Uc~,(X) 

= - - S’gAC 
J 

d2Xa&X): - ?(M2)eikzucJl(X) 

-~MAc d2x~AJ~(X)i75(M2)~cJ1(X) 
J 

I am taking the gauge fields to be in an isotriplet and the fermions in an isodou- 

blet. However, using the decompositions similar to (2.7), the fermions can be in 

any isopsin representation and in the presence of a monopole of arbitrary charge 

. The first term will induce an effective two dimensional vector interaction while 

the second will induce an effective pseudo-scalar interaction. 

3.2 EFFECTIVE VECTOR COUPLING CONSTANTS 

The vector coupling constant matrix only picks up contributions from A$, 

and A$,. The triple overlap integral I need to evaluate is 

QAC = $ 
J 

d2YYqlm(Y)G~Jz~s(Y)‘kJM~(Y) 
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The Dirac equation was solved for a background 

i&i?)=-z(l- COS e)$A JM&~dCJM 

with A+Q = 0 = A-Q. It is convenient to make the definitions 

Note that 1~11 and 1~21 are not necessarily equal. So, explicitly, 

9 
J 

332 =- 
2r3 

d2Yy+Q~m[IEzI~+~J~-M~y=1-JJIM~ 

El :+A& -- ,EI,y-,,-~J~-M~~l+lhM~l ’ (-l)-“-- 

with similar expressions for g-, go (++I and g6--‘s 

To evaluate these integrals, I use a formula of Edmonds.‘201 If O~~,,(cypy) 

is an angular momentum matrix element 



A bit of algebra shows that this implies 

27r A 2a 3 

x e-imi~eiqiqd~sineded7 

The last integral is non-zero if and only if the exponentials go away. This means 

that all of the m’s and q’s must separately add to zero on the left hand side. So, 

for ml + m2 + m3 = 0 = ql + q2 + 43, 1141 

= (++la+h) (211 + 1)(2/2 + I)(213 + 1) 

4r 

The eei2q4 coming from switching hemispheres will not matter. The minus one 

factor for us will always be (-1) J1+Jz+‘. It will henceforth be implicitly assumed 

in all our coupling constants and will eventually cancel out of the one loop cal- 

culations below. 

Using our overlap formula 

JI 52 1 

b2l 

4 E2 JI 52 1 

z-k z2+; Q 21 + ; 22-i Q 
}(-q-za-;+Ma 
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(251 + 1)(2J2 +1)(21 +l) J1 J2 1 x 
47r MI -M2 M > 

E2 

-4 
JI 52 I 

‘IE2l -zl-i -z2+i -Q 
El 

> 4 

Jl 52 

+ IElI -zl + + -z2 - + 

x(-1)- za-;+Mz 

(251 + I)(252 + I)(21 + 1) 
47r 

-t JI J2 21 - ; ‘) - g& (.,“: + sz;e + $-l)--~+~ 
-z2+; 0 

(251 + 1)(2J2 + 1)(22 + 1) J2 1 x 
47r -M2 M > 

-t Jl J2 I) - +& ( wz;+; .,“‘$ ~)w--++a -21-i z2++ 0 
Note that I have used Yzrn = (- l)ZSmY-Z~ -m. The g& are non-zero if and only 

if Q = -22. This is the same constraint required for the interaction to be gauge 

invariant. On the other hand, the go’s are potentially non-zero for any value of 

Q and 2q. 

If I only want to know how the light particles couple amongst themselves, 

then I set J1 = jzll- i ,J2 = lz2l -i. S ince there are no light gauge bosons with 
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&Q charge 

g+(light)(zl,z2,Ml,M2)(Al) = 0 

g-(Zight)(zl,z2,Ml,M2)(Al) = 0 

But 

gF+)(zight) ( 914 14 a,a,Ml,M2)(Al) = - = - 
4r&G 4l-&iG 

&)(Zight) ( .q,z2,Ml,M2)(A1) 914 I4 = -- = -- 
4r&iG 4r&G 

The U(1) (massless) gauge boson does indeed couple to the light (massless) 

fermions. This light boson is the zero mode polarized in M2 with Cr . T = 0. 

3.3 EFFECTIVE PSEUDO SCALAR COUPLING CONSTANTS 

By the Ward identity, I do not need to find the explicit solutions to the back- 

ground field gauge. Thus, I can consider the two independent spatial fluctuations 

of A2 qlm simultaneously and the corresponding induced pseudoscalar coupling con- 

stant. 

The coupling constant matrix is 

MAC = 9 
/ 

d2Yllrfi JIM, (Y)V& (Y)~s?J~J~M~ (Y) 

It is convenient to make the definitions 

MA++) = 
0 M;-I)+(;+ :)+(o” :-) 

Explicitly, using the previous solutions to the Dirac equation and the vector 
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potential fluctuations 

M+ = J d2~~(~l)~“2~“M2[1zY,2+~~2 -M,YQ-~ ~MY~~++J~M~ IElI IJ734 

+yz,- 4 JZ -M2 Y y Q+l In zl- 4 ~~~~ 1 

with similar expressions for M-, MA’+) and MA--). 

Once again the overlap formula gives 

(251 + 1)(252 + 1)(21 + 1) J2 1 
47r ’ -M2 M > 

Jl J2 1 

I( 

Jl J2 1 

a+; z2+$ Q-l 
+ 

Zl - ; 22-i Q+l 
)(-l)-a-++M~ 

M- = $ (251 + 1)(2Jz + 1)(2Z + 1) 52 1 
47r ’ -M2 M > 

{ 
E2 El Jl 52 1 -- 

,E211E1, -zl++ -z2++ -Q-l > 

Jl J2 + 
-z1- + -22 - $ -d+ 1 1 }(-1)+x-i+M* 

MA++) (2J1 + 1)(2J2 + 1)(21+ 1) 52 1 
4T x -M2 M > 

h -4 El JI + -z2+; 52 -1 1 

Jl 52 +a-;+A& 
21 ; zl-; -z2-i 

MA--) (2J1 + 1)(2J2 + 1)(21+ 1) J2 1 
47r 

X 
-M2 M 
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El 
-4 

Jl J2 1 

‘,EI, -z1 + $ 

Jl 52 

%2++ -1 -zl-f z2-; :1 
(ml)-zz-;+Ma 

4. One Loop Chiral Symmetry Preservation on M2 

4.1 POSITIVE CHIRALITY SPINORS AND GAMMA MATRIX STRUCTURE 

Chiral symmetry preservation on M2 x S2 implies its preservation on M2. 

Positive chirality spinors on M2 x S2 have the form 

eYq-i JMcey 4) 

0 

and 

*(B=-Z)JM = u!--;(x) @ d--;M(Y) f uI-,?(x) @ d--;,(Y) 

where (+) and (-) superscripts denote positive and negative chirality spinors on 
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the subspaces, and 

lY5(M2 x S2) = 74M2) ciao3 

The 22 zero modes for B = fz are 

’ 
$=+z)(z-$4 = &iJ(x) @  ; 

eY%f(z-f)M(e9 4) 
0 

By looking at the gamma matrix structure of the interaction, on can see that SAC 

vertices leave the chirality on both subspaces unchanged while the MAC vertices 

flip both chiralities. Hence, the zero mode massless fermions cannot obtain mass 

corrections from self energy diagrams. 

As a check that no mass counterterms are gernerated for the massless fermions 

on M2, I now calculate the one loop self energy diagrams for a z = i background. 

In general, the graphs for the fM states of the 22 massless multiplet are equal by 

the symmetry relating the 3-j symbols with the signs in the bottom row reversed. 

4.2 A WARD IDENTITY 

Consider the diagram in figure l(a). Let’s introduce the notation 

,Y!q)) = qqjm(Z) 3 

(Y/q), = Q;jm(Z)ro(M2 x S2) 

Then for incoming and outgoing zero modes, second order perturbation theory 
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equates the first diagram to 

Now operate on this diagram with D(O)p and symmetrize the boson legs 

~(y~:‘~D’“‘“A~,m~,jk;‘;),‘cy;~Ao~m~~~y~~~) 
j=l 

p(f) 3 
i 

Next integrate each vertex by parts and note that 

p(t)ly(+) &b- + 1) - a 
j)= r G  E,Y?) 

3 

We then get that D(O)p acting on the symmetric sum of diagrams is 

Similarly, it’s easy to show that the symmetric divergence of the diagram of 

figure l(b) is zero. This proves that the results of the next section are gauge 

invariant, since the DpD, terms in the boson propagators are automatically 

zero. A similar identity will be derived for the one loop fermion-higgs Yukawa 

couplings calculated below. 
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4.3 SELF ENERGY DIAGRAMS 

For fluctuations polarized in the M2 directions, conservation of the z com- 

ponent of isopspin only permits two diagrams. (See figure 2). In this case, 

zr = k = 22. Therefore, either the incoming or outgoing g+ or g- in figure 2 (b) 

is zero. But the diagram in figure 2 (a) is non-zero. The clebsches in go (++I en- 

force 52 = 1. Although the incoming and outgoing couplings interchange 51 and 

J2, the minus signs from switching the columns of the 3-j symbols will cancel to 

give the same expression for each vertex. So summing over the positive internal 

fermion eigenvalues, the negative internal fermion eigenvalues, and the internal 

fermion zero mode, we get the contribution to the self energy 

$&J&$v+1)7~ * ’ /A + i75&iy7p (k + p)2 + Z(Z + 1) 

2 g2 d2k i 
+4?r16r J (2r)27’J7p (k : p)2 

where p is the external M2 momentum. Bringing the gamma matrices into the 

numerator of the first two terms causes the mass terms proportional to 75 to 

cancel. Then 
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1 

+&& da: J J r/.4- B47P 
& [k2 + p2x(l - x)12 

0 

Similarly, the two fluctuations polarized on S2 give zero M+ and M- but 

non-zero MA++). Neglecting the tachyons, and taking the special degeneracies at 

1 = 1 into account, 

C(P,Ailm) = -$& jdxJ&+l+q 7pW bx)7p 
[k2 + Z(1+ 1) + p2x(l - x)12 

0 

In this graph, two m E factors from the couplings cancelled on the internal fermion 

line. 

5. One Loop Yukawa Couplings and Mass Heirarchies 

5.1 A PSEUDOSCALAR HIGGS 

A slight extension of the results of chapter three shows that a vector potential 

of the form 

induces a pseudoscalar coupling for rPq( x on M2 for each q. More explicitly, the ) 
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Yang-Mills Lagrangian on M2 x S2 induces the Lagrangian for the triplet 

It is reasonable for this scalar to obtain a vacuum expectation value. The 

scale of this vacuum expectation value must be well below the compactification 

scale since we are neglecting gravity. For simplicity, I will give a vev to the x 

dependent part of the ground state hedgehog 

(Ti;;;l) = (-2:,,) = @+yx)) (; 
r 

,” -+) 

= (d+dx)) 0 
r ( > f +100 

implying 

((c~A~~~)%~) = (‘+jx)’ 

We now have gauge boson and fermion mass insertions on M2 

= $I~~+wI~ J d2yA-*A- = $,($+(x)),~ 

MAC 4+ = $,(4+(x)), J d2y[~y~+tJ2M2yc-;JlMl 
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for A, C greater than zero and 

for A less than zero and C greater than zero. 

Since opposite chirality zero modes have opposite charge, M$F can only 

generate tree level masses for the massless fermions with A = -$, C = k To 

obtain a family mass splitting for higher charged fermions, we must go to one 

loop. 

5.2 ANOTHER WARD IDENTITY 

Consider the diagrams in figure 3. The graphs (a), (b), and (c) give the three 

respective expressions: 

x (Y~~jA-I&,lY~t)) 3 
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co 
cpv 3 C( 

y;-qj+ly{-"1) l 

j=l p(-il 
3 

x (Y~“~A-,l,~,~Y(B)) 3 

In analogy with the previous case, one can show that 

D(-l)v(upy + f&p] = 0 

D(-l)v[bp, + q/p] = 0 

D(-lybyp + cpv] = 0 

These three equations imply that the one loop results of the next section are 

gauge invariant. 

5.3 FERMION- HIGGS Y UKAWA COUPLINGS 

The simplest one loop diagram changing M2 chirality is shown in figure 4. 

I have now put the fermions in an isospin t multiplet. The external massless 

fermions are now in a triplet. The couplings I need are 

The explicit calculation of the one loop diagrams is straightforward but te- 

dious. See figure 5. Since the fermions have half integer charge and integer angu- 

lar momenta the gauge bosons have integer charge and integer angular momenta. 
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The external zero modes have J = 1 and will be labeled by their z-component of 

angular momenta mE = 0, fl. 1 leave the internal fermion angular momenta at 

J and let the boson momenta vary over J, J f 1. For simplicity, I will completely 

ignore the two tachyonic gauge bosons at I = 0. 

The outgoing and incoming vertices are related 

(g+)out = (S+)in (-1)2’+1 

where 1 is the boson momenta. Although the process reverses charge, it conserves 

the z-component of angular momenta. Also since the incoming and outgoing 

flavor states have the same sign of the z-angular momenta the g vertices will 

not induce m E factors on the propagators but the M vertices will. All annoying 

factors of (-l)m cancel. 

The diagrams for ?nE = fl , as are all diagrams with the opposite external z 

angular momenta, are equal by the reversal of the sign the bottom row of the 3-j 

symbols. Coincidentally, for the case at hand, they equal the W&E = 0 diagrams 

because the sums over internal m make the squared 3j symbols coming from the 

conservation of isospin equal. Diagrams with different magnitudes of external z- 

angular momenta are generally not equal for a higher charged background (more 

families). 

Keeping these facts in mind, let’s now calculate the diagrams with an internal 

fermion insertion. The insertion itself on these diagrams with two M vertices 

gives zero. It is 
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So consider the graphs with two g vertices. The insertion is 

M4+ = %l(++Wl / d2nYd;2~2YoJdfl = $I(~+(~)~~J,J,~M~M~ 

If p is the external Minkowski momentum, figure 5(a) for ?nE = 0 ,Z = j,is 

M(p,Z = J,mE = 0) = 

For m,q = fl 

M(p,Z = J, mE = *l) = 

All of three of these terms equal 

At p=O, this is 

This expression is finite. 



Similarly,the graph in figure 5(b) for 1 = J + I, mE = 0, is 

M(p,z = J + 1, mE = 0) = 

~$l(~+(z)~13 / $2 2 5 j dz(k2 + ~(1 + 1) +;f;(;p?) + (2J + l)+ 
J=l m=-J 0 

x{(;: “-:’ :> (;I, _“, ;)Yx~2J+wJ+3) 

For mE = fl 

M(p,Z = J + 1,mE = fl) = 

xt(; ,_:l :) (1 mmJml +(2J+wJ+3) 

At p=O, all of three of these terms equal 

= ~~~(“+b~)~3 gcJ + 2){ J( J +'3) _ 1 - J( J1+ 1)’ 
J=l 

Also for part (c) of figure 5 with Z = J - 1, ?-r&E = 0, 

M(p,Z=J-l,mE=O) = 
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4(k2 - p2) 
(/P + Z(Z + 1) + p2x(l - x) - (2J + 1)~:)~ 

x{(; ‘Ill :> (; “_5,’ ;)12x (25+1)(25-l) 

For mE = fl 

M(p,Z=.J-l,mEfl)= 

4(k2 - p2) 
(k2 + Z(Z + 1) + p2x(l - x) - (2J + 1)x)4 

x(;: ,_1, :) (; _“,-‘, ~)YxPJ+lH2J-l~ 

At p=O, all three of these terms equal 

=-$~l(~+(.))1s~~~jd.o(k2+ J(J+;2;p;$-x)-x)4 
J=l o 

Putting all of these contributions together and summing for the first few 

hundred J gives a mass for each fermion of 

Mas.~(~~~,) = ‘2 M(p = O,l,mE = (0, fl) = 
l=J-1 

(5.1) 

for zzlrn gauge boson loops. 

31 



There are two other generic graphs (figure 6) to this order. They are similar 

in structure to the self energy diagrams I considered earlier in this chapter. Both 

sets of graphs with two g vertices and two M have factors of 

-=[ l w 1 
p2 + 2 $ + i75a + $ - i75a 

I 

from the internal fermion propagator attached to the Higgs insertion. Thus they 

are zero at zero external momenta and (5.1) is the total mass correction for each 

massless fermion in the triplet. 

6. Conclusions 

I have presented a formalism for calculating loop corrections in two generic 

dimenionally reduced theories with non-trivial vector potential vacuum expecta- 

tion values before reduction. These techniques may be useful in any Kaluza-Klein 

theory where the holonomy group of the extra dimensions can contain SU(2) or 

SO(3) monopoles in a subgroup with the corresponding gauge group in Mn. 

In these theories, it should be possible to calculate the mass splitting between 

families. For example, with a fermion monopole background of charge 4, one 

should find four pairs of particles with four distinct masses, corresponding to 

mE = f7/2, f5/2, f3/2, &l/2 w h en coupled to a pseudoscalar Higgs. 
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FIGURE CAPTIONS 

1. Diagrams for the Ward identity of chapter four 

2. Self energy diagrams for a z = +f background 

3. Diagrams for the Ward identity of chapter five 

4. A correction to the fermion-Higgs Yukawa couplings 

5. Three specific corrections for each of the three incoming massless fermions 

6. Two more sets of fermion-Higgs coupling corrections 
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