
SLAC - PUB - 3942 

i ,=-- April 1986 
(4 . 

CIRCULAR MACHINE DESIGN TECHNIQUES AND TOOLS* 

Roger V. Servranckx 
University of Saskatchewan 

Saskatoon, Saskatchewan, Canada S7N-OWO 

and 
- 

Karl L. Brown 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

-- 

This report is based on a series of two lectures on Charged Particle Op- 
tics presented by the first author at the SLAC Accelerator Physics Summer 
School in July 1985 and on presentations made by both authors at the Sec- 
ond International Conference on Charged Particle Optics in Albuquerque, 

-New Mexico, May 19-23, 1986. 

Presented at the Second International Conference on Charged Optics, 
Aibiquerque, New Mexico, May 19-23, 1986 

c; 
-1. 

----rcc ;. 

* Work supported in part by the Department of Energy, contract DEAC03-76SF00515 
and by the National Sciences and Engineering Research Council of Canada. 



,=-- I. Summary and Introduction 

This report attempts to outline some of the basic optics principles in- 
.volved in the design of circular machines such as Alternating Gradient Syn- 
chrotrons, Storage and Collision Rings, and Pulse Stretcher Rings. It is 
a collection of notes and comments gathered over several years by the au- 
thors from the publications of, and conversations with, many experts in the 
Accelerator Design field. The information and the references provided are 
representative but not exhaustive of the wealth of information available. 

The primary intent of the report is to give novices a starting point in their 
design efforts. It is assumed that the choice of the basic parameters needed 
for the physics goals of the machines have been specified before this exercise 
begins, although in practice it is recognized that several design iterations are 
usually necessary before a final machine design is formulated. 

We first define the typical problems facing a designer and then review 
the main references and computational tools that are presently available to 
tackle the problems. 

.- - - 

Chapter three identifies some problems met in accelerator design. Chap- 
ter four provides the basic mathematical formulae needed for the under- 
standing of the following chapters. Chapter five gives a short presentation of 
some basic optical modules used in design. Chapters six and seven present 
solutions to some first-order and second-order problems respectively . 

Y - 

2. The Design of Circular Machines 

In this chapter we define the principal problems facing the designer and 
introduce the tools that are available to solve these problems. However, 
before delving into the description of these problems , we first present a 

----rcc general schematic: structure, characteristic of a typical circular machine. 

- - Figure 1 shows such a schematic structure. The dashed line sketches 
the beam envelope and the full line sketches the dispersion function (the 7 
function: the trajectory followed by an off-momentum reference particle). 
For simplicity we represent the machine (or perhaps a section of a machine) 
on a straight line instead of on a curve. 
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Figure 1. Schematic Structure of a Circular Machine 

The central part of the machine, containing most of the bending dipole 
magnets, is designed to keep the size of the beam as constant as possible. 
The dipole and quadrupole components in this section generate a dispersion 
(q function) of the beam which is also more or less held constant. 

Some parts of the machine may need to be dispersion free. To achieve 
this, the central section is surrounded by two special sections which suppress 
the dispersion. In the literature, these are called ‘dispersion suppressors’. 

- 

: - . 

The dispersion free zones can be used for a variety of functions, for ex- 
ample, to tune the machine or to locate the RF Cavities. These sections can 
also be beam spin manipulators or beam diagnostic sections, etc. 

The two end sections, shown in figure 1 are transformers (magnifying or 
demagnifying sections) which change the transverse size of the beam from 
its ‘normal size’ in the main bending regions to the required size at some 
particular point (an interaction point, a light source point, etc.). 

2.1 THE BASIC PROBLEMS 
-- - 

First we shall talk of the ‘optics’ order of the problem. The order is 
related to the particular coordinate system chosen to describe the particle 
motion. For our purposes we choose the coordinate system adopted in the 
TRANSPORT formalism.“’ This definition of order can also be found in 
other references. I21 I31 

Zero-Order Optics. 
_T. We define zeroth-order optics as that which specifies the coordinates of 

--- the reference trajectory in a machme. The physical layout of a -machine must 

- - guarantee closure and continuity of the tangent along the reference trajectory. 
Thus the problem of zeroth-order optics is a problem in geometry. It is, 
nevertheless, very important to the success of a machine and is intimately 
tied to the surveying tolerances needed in positioning of all of the magnets 
in the machine lattice. 

C 
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L  First-O rde r  O p tics 

T h e  f i rst-order o p tics p r o b l e m s  const i tute th e  b e g i n n i n g  o f a  m a c h i n e  
latt ice des ign . O n e  o f th o s e  p r o b l e m s  is th e  sta b l e  g u i d a n c e  o f th e  b e a m  
as  it m a k e s  m a n y  revo lu t ions a r o u n d  th e  m a c h i n e . Bes ides  d e te rm in ing  th e  
condi t ions wh ich  p rov ide  f i rst-order stabil i ty, it a lso  involves d e te rm in ing  
th e  p r o p e r  tu n e s  to  avo id  r e s o n a n c e  b l o w - u p  o f th e  c i rculat ing b e a m . O th e r  
p r o b l e m s  a r e  re la ted  to  m e e tin g  th e  n e e d s  fo r  th e  spec ia l  a c h r o m a tic a n d  
col l is ion reg ions,  a n d  satisfying th e  condi t ions r e q u i r e d  fo r  spec ia l  fu n c tio n s  
o f th e  p l a n n e d  m a c h i n e  (as  fo r  e x a m p l e  c o n trol l ing th e  m a g n itu d e  o f th e  
d ispers ion  fu n c tio n  in  col l is ion r ings  a n d  synchro t ron rad ia tio n  sources) .  

S e c o n d - O r d e r  O p tics 

Fo r  a  very w ide  r a n g e  o f th e  cho ice  o f th e  m a c h i n e  p a r a m e ters, th e  p a r ti- 
c le m o tio n , w h e n  restr icted to  f i rst-order, is th e o r e tical ly sta b l e  to  al l  a m p li- 
tu d e s . T h e  Dynamic  A p e r tu r e , d e fin e d  as  th e  m a x i m u m  a m p litu d e  fo r  wh ich  
th e  p a r ticles r e m a i n  sta b l e , is a  p r o b l e m  th a t first a p p e a r s  in  s e c o n d - o r d e r  
o p tics. In  s o m e  mach ines  (e .g . th o s e  us ing  r e s o n a n t extract ion) th e  second-  
o r d e r  b e h a v i o u r  is intr insic to  th e  fu n c tio n s  to  b e  ach ieved  as  o p p o s e d  to  
b e i n g  just a  p e r tu r b a tio n  to  th e  des i red  f i rst-order fu n c tio n s . 

.- -  -  

O p tics o rders  g r e a te r  th a n  2  

O p tics o f o r d e r  g r e a te r  th a n  2  is r e q u i r e d  in  th e  stu d y  o f g e n e r a l  stabil i ty, 
th e  d e te r m i n a tio n  o f b e a m  sizes, th e  analys is  o f m a c h i n e  sensitivity to  errors,  
a n d  to  c o h e r e n t a n d  i n c o h e r e n t p e r tu r b a tio n s . 

2 .2  S O M E  M A T H E M A T ICAL  T O O L S  A V A IL A B L E  

In  th is  sect ion w e  rev iew s o m e  o f th e  m o r e  c o m m o n  m a th e m a tica l  too ls  
u s e d  by  m a c h i n e  des igners  a n d  m a k e  s o m e  c o m m e n ts o n  the i r  re lat ive u tility. 

T h e  First-O rde r  M a trix Forma l i sm 

T h e  l inear  m o tio n  o f p a r ticles in  a  c i rcular  m a c h i n e  is m o s t easi ly  d e -  
scr ibed by  a  m a trix formal ism.  This  fo rma l i sm is a  direct  c o n s e q u e n c e  o f th e  
th e o r y  o f s e c o n d  o r d e r  l inear  di f ferent ial  e q u a tio n s . T h e - first r e fe r e n c e  fo r  

.-- 
- - -  th e  basics is th a t p rov ided  by  C o u r a n t a n d  S n y d e r 1 3 ] in  the i r  classic p a p e r  L - -  

in  1 9 5 8 . A  m o r e  r e c e n t p r e s e n ta tio n  o f l inear  o p tics isg iven’by  B r o w n  a n d  
-  -  Servranckx  in  re fe r e n c e . 1 2 ’ 

S e c o n d - O r d e r  M a trix Forma l i sm 

A  w o r d  o f c a u tio n  is n e e d e d  h e r e . S e c o n d  O rde r  in  th is  c o n text app l ies  to  
th e  level  o f a p p r o x i m a tio n  with wh ich  th e  di f ferent ial  e q u a tio n s  o f m o tio n  a r e  

4  



,=-- sdlved,.and must not be confused with the order -of the differential equations 
of motion which is always 2. . 

Matrix theory is basically a tool applicable to studying linear phenomena 
-(meaning Linear Differential Equations). K.L. Brown introduced a notational 
technique that used the matrix formalism for the description of second and 
higher order approximations to the solutions of the differential equations of 
motion.“’ From this the TRANSPORT program was evolved and the most 
recent versions of TRANSPORT have now been extended to include third 
order optics. This will be reported on in this conference by David C. Carey.“’ 

Hamiltonian Approach 

Readers familiar with the work of Courant and Snyder and of Brown, 
know that the tools described in the two previous sections apply best to the 
description of the motion in individual magnetic elements. The Hamilto- 
nian approach to study circular machines tends to concentrate on the global 
behaviour of the machine. Two referencesIG1 [‘I to the Hamiltonian meth- 
ods are provided for the reader in the reference section of this paper as an 
introduction to the subject. 

Lie Algebraic Formalism 

.- ‘- - 

The general Hamiltonian formulation which describes the motion of 
charged particles satisfies a complex mathematical condition called the sym- 
plectic condition. This mathematical structure leads to the introduction of 
an Operator Algebra named after Sophus Lie. This Lie Algebra has now 
been introduced as a practical tool for the study of machine theory by the 
work of A. Dragt Is1 and his collaborators. One of the great successes of 
this approach is its more compact description of higher order effects and the 

potential of deriving general theorems in third- and higher order optics as 
guidelines to optical solutions of complex problems. 

- 

2 .-3 COMPUTATIONAL TOOLS 

We provide here a list of some of the more commonly used computer 
programs available to the designer. The list is not exhaustive and does not, 

_T. for example, contain programs recently developed to simulate Beam-Beam 
-- and Space Charge effects. ‘- 

e 

- - 
AGS “I A General Design Program 
BBI”“’ For Studying Bunched Beam Instabilities 
COMFORT’“’ A First Order Machine Control Program 
DIMAD [la1 A General Design Program 
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r . . HARMON”” A Program for Harmonic Analysis Studies 
MADi”] 

. A General Design Program 
MARYLIE [“I A General Design Program 
PATRICIA[‘“’ A General Design Program 
PETROC [“I A General Design Program 
SYNCH”” A General Design Program 
TRANSPORT”’ A General Design Program 
TURTLE [lo1 A General Tracking Program 

The following comments are intended to help the novice in the choice 
of the appropriate programs to use for designing each aspect of a circular 
machine. Some programs cover a wide range of tasks while others are spe- 
cialized to accomplish specific ones. Our classification does not reflect all 
of the capabilities of a given program as we do not have extensive experi- 
ence with every program listed. The comments pertain to the version of 
the programs generally available to the public. Some programs are presently 
undergoing major revisions and almost all of them are in a continuous evolu- 
tionary development. The best advice we can give is to contact the authors 

- 

to obtain more accurate and detailed information about the current status 
and capabilities of their particular computer program. 

.- - . International Standard Input Format 

-- 

_v. 

In 1984, a group of program authors and users met at SLAC to dis- 
cuss the possibility of defining a Standard Input Format. The result was 
the introduction of an input format following closely that of the program 
MAD.“” 

The following programs are now fully compatible with the International 
Standard Input Format: DIMAD, HARMON, MAD, TRANSPORT and 
TURTLE. Work is also in progress to make PATRICIA and MARYLIE com- 
patible. Hopefully others will follow in this international effort to standardize 
the input format. We consider this to be very high priority item because of 
the potential to save time and avoid mistakes. 

- .- - Matrix Analysis : ;. 

- --r- Given the first and second order matrix representing a closed machine, 
one can derive most of the fundamental properties of the particle motion 
around the machine : for example, the tunes, chromaticities, beta functions, 
and dispersion function values at the closing point (end point of the matrix) 
of the machine. 

6 



- ,=-- All of-the programs listed above, with the exception of BBI, HARMON, 

. and TURTLE, have some form of matrix analysis capabilities. 

AGS,. COMFORT, PATRICIA, PETROC, and SYNCH do this analysis 
to first order. DIMAD, MAD, and MARYLIE do the analysis to second 
order, and TRANSPORT to third order. 

Some versions of MARYLIE can treat higher order for special systems. 

Some programs (AGS and PATRICIA) treat off-momentum analysis in 
an exact way even though the study is limited to first order matrices. How- 
ever AGS and PATRICIA cannot correctly simulate combined function mag- 
nets which have dipole, quadrupole, and sextupole components present in 
the same element. 

Tracking Analysis 

DIMAD, MAD, MARYLIE, PATRICIA, and TURTLE all have options 
to study particle motion by tracking particles through the individual ele- 
ments defining a machine. This enables one to analyse the effects of higher- 
order optics coupling terms between distinct elements. The analysis provided 
varies greatly from program to program and the interested reader is invited 
to consult the respective users’ guides to determine the advantages and dis- 
advantages of each program. 

PATRICIA treats the elements in the ‘kick’ approximation and conse- 

.- ‘- - quently provides symplectic tracking. 

DIMAD, MAD, and MARYLIE also provide a general tracking mode 
in which the transforms are symplectic to the order of the approximation. 
They each provide a slightly slower tracking option which is symplectic to 
all orders. 

Misalignment Errors 

DIMAD, PETROC, TRANSPORT, and TURTLE can impose misalign- 
ment and field errors on the elements and thus provide information about the 
behaviour of machines with errors. DIMAD and PETROC also offer orbit 
correction schemes and a varying degree of machine behaviour analyses with 
errors and corrections present. 

_Tz. 
--- Special Analysis : ;. 

HARMON and PATRICIA provide useful harmonic analysis of the ma- 
chine structure. HARMON uses the harmonic analysis to optimise the sex- 
tupole distribution so as to reduce the effect of ‘user selected’ resonances. 

BBI is a special program providing insight into coherent and incoherent 
bunched beam interactions with the environment (the vacuum chamber) and 

- 
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i ,--- between adjacent bunches. 

3. Typical Problems in Accelerator Design 

In this chapter we list some of the more common problems faced by the 
machine designer 

3.1 GLOBAL VALUE PROBLEMS 

These problems affect the control of parameters which are characteristic 
of the complete closed circular machine. 

1) Tune adjustment in both transverse directions. 

2) Chromaticity adjustments in both transverse directions. 

3) Control of momentum compaction. 

3.2 LOCAL VALUE PROBLEMS 

1) Control and adjustment of the chromatic dispersion. 

2) Control and adjustment of beta function values and their chromatic 
dependence. 

.- - . 
3) Special function adjustment : extraction schemes like &resonance and 

&-resonance schemes, cooling schemes, spin polarisation modification 
and preservation. 

4. Basic Mathematical Formulae 

In this chapter we present simple basic formulae useful for a first draft 
of a design. More detailed and complete formulae may be found in 
references. “11 Ia1 [221 

4.1 ZEROTH-ORDER COORDINATES 

_P. To determine the correct layout and closure conditions of a machine one 
- 

needs to define two coordinate systems : X, Y, 2 is the set of absolute coordi- 
- - nates to which all points are referred, and x, y, z is a set of local coordinates 

attached to each element of the machine. The local coordinate system is 
attached to the nominal reference orbit of the machine. The nominal ref- 
erence orbit is the trajectory followed by an ideal particle having the ideal 
momentum. 

- 
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Figure 2. Reference Coordinate Systems 

Figure 2 illustrates these two coordinate systems. 0 is the center of 
curvature of the trajectory followed by the nominal reference particle. To 
keep track of the possible space rotation of the plane of the trajectory one 
needs to define the local reference system by its three unit vectors &,?i,,~,. 
The layout of a machine is then completely determined by the coordinates 
X, Y, 2 of the point P and the components of the three unit vectors ii,, $,, ?iz 
given at the entrance and exit of every element of the machine. ~~ is the 
unit vector tangent to the trajectory, iiz is the unit vector perpendicular to 
the trajectory situated in the plane of the trajectory and E’, completes the 

.- ‘- - right-handed set of unit vectors. 

-- 

_v. 

- 

Ficrure 3. Coordinate Transformation in an Element 

- 

Figure 3 illustrates the relationship between the entrance and exit local 
coordinate systems in any element. Let 

9 



r X . . -. 

. v= Y 

0 

and U = (&,~~,;lt~) 

z 

Then the following formulae apply : 

1) For a straight element (no curvature) 

(4.1) 

(4.2) 
where vi, v, are the absolute coordinate vectors at the entrance and exit 
points respectively, vl is the length vector of the straight element, Ui, U, ;’ , 
are the matrices of the unit vectors at entrance and exit points and R is the - 
matrix representing a possible rotation around the longitudinal axis. 

2) For a curved element 

With the notation indicated in figure 3 we have 

v, =vi+T and U, = R,lRRIUi 

-- 

: - - 

where T is the chord vector spanning the element, RI is a rotation around 
the entrance longitudinal axis describing bending elements which bend the 
beam out of the reference horizontal plane. and where R is a rotation of 
angle 9 around the y axis. 

With these basic equations one can keep track of the closure of the ba- 
sic reference orbit. Programs that have a layout display capability (e.g: 

!t’RANSPORT, MAD, DIMAD etc.) list a complete table of coordinates and 
orientation angles of the local coordinate system. This table is essential to 
surveyors and design engineers during the construction phase. 

4.2 FIRST-ORDER FORMULAE 

In the local coordinate system a particle can be adequately represented _v. 
- -- - by the vector : : ;. 

- - 
v = (5, z’, y, y’, -ct, 6) (4.4 

where 6 is defined as : 6 = 9 and p is the momentum of the particle and 
po is the reference momentum (momentum of the ideal particle). 

10 



r To..firqt order this vector will vary linearly through any given element 
and also through any section of the full machine. . 

iT() = Mi7i where M is a 6 x 6 matrix P-5) 

and ??i and ~0 represent the vector u at the entrance and exit of an element. 
M is called the transfer matrix of the element. 

Restricting the motion to one plane with dispersion one obtains : 

;i? = (x,x’, 6) and (4.6) 

We have adopted the notation of reference.“’ c and s are the cosine- and 
sine-like functions, d is the dispersion term. c’, s’ and d’ are the derivatives 
of these functions with respect to the longitudinal coordinate. 

When M describes stable motion (abs(trace(M)) < 2) then it can be 
written as : 

.- - - 

cosj.4 + asinj.4 Psinp d 

M= -y sin p cosp - crsinp d’ (4.7) 
0 0 1 

with the condition : [MI = 1, from which we obtain : 

py - Q2 = 1 (4.8) 

The parameters p, p, 7 and o defined here for a full machine can be defined 
as h>cal parameters at every point around the machine (see for example 
referenceL2’ ). With this d fi ‘t’ e m ion the particle motion (restricted to one 
transverse plane is described by : 

x(s) = &iqqcos(P(s) + 4) (4.9) 

c 

- P where E is the emittance parameter and (b the initial phase. 
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: - 

-- 

r The fundamental relation between p and /3 is : 

(4.10) 

The variable s is the longitudinal coordinate measured along the reference 
orbit. The global tune of the closed machine (of length L) is defined by : 

The strength of a magnetic mutipole element is defined by : 

(4.12) 

where Bp is the particle rigidity, Be is the magnetic induction at the pole 
tip of the multipole magnet, a is the radial aperture of the multipole. 

With this definition the tune is also given by the integral: 

L 

u=- 4', Pw‘h b&J 
J 
0 

and the variation of the tune with momentum (with 6) is : 

- 
- = ---& 1 [K&) - 2K27?(41 da dv 
d6 

0 

(4.13) 

(4.14) 

The above formulae are the basic minimum needed for machine design. For 
more detail the reader should consult the references. 1221 1211 121 For formulae 
involving second order properties the reader is well to look up the tables I, ,^, 
II and III of reference. “’ .?m. 
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-. 5. Building Blocks for Machine Design 

. In this chapter we introduce the reader to basic optics building blocks 
that can be used to formulate an initial machine design. We give only the 
elementary properties of these blocks and their transfer matrices only in one 
transverse plane. 

Although standard building blocks (modules) may not be the final answer 
to a particular design, they allow one to quickly get an ‘existence proof’ that 
a design is possible and to make cost estimates for such a design, Refining 
the design for cost and physics optimization can come later. 

5.1 DRIFTS OR FIELD FREE SPACES 

In field free spaces, the slope of particles remains constant and the trans- 
verse coordinate is proportional to the distance travelled L. So the transfer 
matrix is : 

M= (5.1) 

: - - 

Y 

5.2 QUADRUPOLES IN THE THIN LENS APPROXIMATION 

In quadrupoles, the transverse coordinate is constant and the slope vari- 
ation is proportional to the strength of the quadrupole (the reciprocal of the 
focal length f). It s matrix, in the thin lens approximation is 

- 

M= 

1 0 0' 

-1 1 0 
f 

0 01 

(5.2) 

C 
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,=- 5.3 -.DPOLES IN THE THIN LENS APPROXIMATION 
. 

A wedge dipole with a bending angle cz and radius of curvature p has the 
following matrix for the motion in its bending plane : 

M= 

1 0 0 

sin (Y 
-- 1 since 

P 

0 0 1 

(54 

If the deflection angle (Y is small and the radius of curvature is much greater 
than 1 , the matrix can be further approximated as: 

5.4 THE FODO ARRAY WITHOUT DIPOLES 
.- '- . 

The simplest and most common stable building block used in circular 
machine design is the FODO array. Figure 4 illustrates its symmetric setup 
with equal focusing strengths in both planes. More information can be found 
in references. 1211231 

- 

.T .  

--- 

f  f f 
4-86 5396A4 - 

Figure 4. Symmetric Setup of the FODO Array. 

- 

Using the transfer matrices defined in the previous sections, we obtain, 
after matrix multiplication, the following transfer matrix for the FODO array 
(from the middle of the first focusing quadrupole to the middle of the second 
focusing quadrupole) : 

14 



M= 

L2 l-- 
2f2 

2L(1+ 5, 0 

0 0 1 

(5.5) 

The phase advance per cell p, derived by comparing the above equation with 
equation (4.7), is: 

L2 
cosp= l-- 

( > 

L 

2f2 
or sin !f = - 

0 2 2f 
(5.6) 

- 

similarly, the beta function value at entrance and exit is : 

1 + sin( $) 
P = 2L sinp (5.7) 

The ratio of the maximum and minimum values for beta (occuring at the 
center of the focusing and defocusing quadrupole positions) is : 

.- .- . P m ax 1 + sin($) 
- = 1 - sin(;) P min 

5.5 THE FODO ARRAY WITH BENDING DIPOLES Y - 

_I- 

--- 

f a f a f 
4-86 5396A5 

Figure 5. Symmetric Setup-of the FODO Array with Dipoles 

(5.8) 

Consider a FODO array in which each drift now contains a dipole magnet 
as illustrated in figure 5. If the focusing effect of the dipole magnets is 
neglected and if the bending angle cy, of each dipole magnet, is small, the 
transfer matrix of the FODO cell now becomes: 

15 



,?.- . . - 

M= 

L2 1~-- 
2f2 

2L(1+ 5, L2 
2aL + a- 

2f 

-&l-g) 1-g &-‘L-- CYL2 

2f 4f2 
0 0 1 I (5-g) 

The matched dispersion characterised by the vector (7, q’, 1) is defined by 
the eigenvector equation: 

rl rl 
M 7’ = rf 0 0 1 1 

The solution of which, for figure 5 is : 

(5.10) 

q = aL(4f + f 
L) 

and Q’ = 0 (5.11) 

It is worth noting here that the eta-vector (r], q’, 1) is an eigenvector of the 
Matrix M with eigenvalue 1. Observe that its third coordinate (arbitrarily 
chosen) is 1. Since M is a 3 x 3 matrix, it has three eigenvalues and eigen- 
vectors. M being the matrix of a stable motion, the other two eigenvalues 
are imaginary and the third coordinate of the corresponding eigenvectors is 
zero. For more detail see reference. [31 

- Written in terms of the phase advance, p, the matched dispersion is equal 
to : 

(5.12) 

This last formula.shows that q is a decreasing function .of the cell phase 
.r. advance p. Practically this decrease is not very significant above 135 degrees 

-_ -- of phase advance; L. 
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c ,c- . 6. Some First-Order Problems and Their Solution 
. 

In this chapter we analyse three representative first-order design prob- 
lems and present typical approaches to their solutions. These solutions are 
not unique, sometimes higher-order considerations will point to different ap- 
proaches. The three problems considered are the creation of achromatic 
transport sections, matching 7 function values and matching beta function 
values, all of which are fundamentally important to circular machine design. 

As is seen from  the matrix for a FODO array, dipoles always introduce 
dispersion. However, some sections of the machine perform  better if they 
are dispersion free, such as : the interaction regions, the RF station sections, 
and the injection and extraction regions. 

6.1 FIRST-ORDER ACHROMATIC SECTIONS 

For both linear and higher order optics reasons, we have found it useful 
to incorporate achromatic modules as building blocks in circular machine 
designs. 

A General Theorem for a First-order Achromatic Module 

Consider a cell C whose 3 x 3 matrix is: 

R=(; ;) w=(;,) (64 

where M  is the 2 x 2 tranfer matrix and w is the dispersion vector. 

A lattice of n identical repetitive cells is achromatic to first order if and 
only if 

Mn=I 

or 

‘Each cell has is achromatic, or z = i, 
_z_ 

- Proof The matrix 2’ of the set of n cells is : 

Mn 
T=Rn= 

Mn-lj-jy+Mn-2~+...+jjJ 

0 1 

- 

I (6.2) 

The dispersion vector of this matrix can be written : 
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,c- 

. 
;i = (Mn - I)(M - I)% (6.3) 

and so 2 will be zero if either GJ is zero or if Mn - I is zero. 

Application of First-order Achromatic Module 

Straight sections (containing no dipoles) are achromatic to first-order 
and are (on their own) dispersion free. If straight sections are joined by 
achromatic curved sections then the dispersion function will remain zero 
in the straight sections and dispersion is confined internally to the curved 
sections. Any change in the quadrupole settings of the straight sections will 
have no effecl on the dispersion function (to first order). - 

6.2 7 SUPPRESSION OR TJ MATCHING 

Consider an achromatic curved sections made of 2n identical cells C as 
described in the previous section. Suppose that the cells C are symmetric 
FODO cells as shown in figure 4. 

The dispersion function variation along the achromat is illustrated in 
figure 6 . Note that the maximum dispersion occurs at the midpoint and 
that the dispersion function is not repetitive from cell to cell and so is not 
equal to the matched dispersion of the cell as defined in the FODO array 
section. 

_e_ 

4-86 539GAG 

Figure 6: Dispersion Function in an Achromat of-4 Cells 

L-- 
In some applications it is important to match the dispersion to the cell 

- - in order to reduce the average value of the dispersion function. 

We will now show how this can also be achieve in a modular way. 

Consider the curved achromatic section described earlier. The 3 x 3 
transfer matrix of the first half of the section is : 
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. 
M= ;i= (64 

where I is the 2 x 2 unity matrix and 2 is a two component vector. 

Straightforward matrix multiplication shows that the matrix M has the 
following eigenvector : 

because the following identity is verified : 

(6.5) 
- 

From this expression, and using the eigenvector equation (5.10) defining the 
q function, we obtain the following relation between 7 and the dispersion at 
the mid-point: 

u 
- 

P-7) 
Note: this theorem is valid even if the cells are not symmetric. The only 
condition needed is that there exists a ‘mid’ point where the transfer matrix 
from the origin is -I. 

Dispersion . 
Function 

4-86 53!lfiA7 

Figure 7. Simple Eta Matching of Achromatic Sections 

C 
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,=- Conclusion : If the above achromatic section is preceded by a half achro- 
. mat with half strength dipoles , then the dispersion function will be matched 

in the cells of the main achromat as shown in figure 7. 

A V A V A V 
* T-7 m m 

V aI A ” Q2 A Vaha 

A V 
A V A V 

c1 l-7 m rl 

” al A “2V A Va A a 
4-86 5396A8 

Figure 8. Alternate Eta Matching of Achromatic Sections 

This result is valid only to the approximations made in the FODO section: 
i.e. the bending angle c~ is small and the focusing properties of the dipole 
magnets could be neglected. When these approximations cannot be made, 
the previous result only provides an approximate solution to the 7 matching 
problem. However this solution can be refined with computer fitting. 

Clearly it may not be desirable, for budgetary reasons and sometimes for 
physics reasons, to have the four cells of the q matching section occupied 
by half strength magnets. It is also possible to design matching units with 
two unoccupied cells and two cells with dipoles. Such a case is illlustrated in 
figure 8. 

A more detailed analysis of alternate dispersion matching systems can 
be found in reference. “” 

_v. 
6.3 --- BETA MATCHING AND I&EAM TRANSFORMERS 

- 

- - In most modern circular machines there is the need to manipulate the 
size of the beam. Generally this beam size manipulation or ‘beta-matching’ 
can be achieved by the use of transformers. We illustrate here the use of one 
such transformer : the half wave length telescopic system. For more details 
on transformers the reader should consult references. 1231 121 

20 



I- (FI + F2) -4 

FI 
4-86 

F2 
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Figure 9. Schematic Layout of a Telescope 

The principle of the telescopic system is illustrated, in one dimension, in 
figure 9, where Fl and F2 are the focal lengths of the lenses. The transfer 
matrix is simply : 

- 

R= (6.8) 

F2 which shows that the system has a magnification M equal to --. 
Fl 

- 
- 

X 

fl f2 f3 f4 

4-86 5396AlO 

Figure 10. A Two Dimensional Telescopic Transformer 
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c ,c- A practical modu le for a  two dimensional telescopic transformer is shown 
. in figure 10. 

Each lens in figure 9  has become a  doublet in figure 10. They could also 
have been replaced by a  triplet or any other equivalent modu le, The choice 
of the parameters li and f; is determined by computer fitting to obtain the 
following transfer matrix : 

0  
1  -- 

M , ’ ’ 

R= 

0  0  -My 0  

1  0  0  0  -- 
MY , : 

-Mz 0  0  0  ’ 

(6.9) 
- 

Extensive use of telescopic systems is made in the Arcs and the F inal Focus 
System of the SLC projecti251 at SLAC. 

7. Some Second-Order Problems and Their Solution 

In this chapter we present three second-order problems and their solution: 
the principle of chromatic corrections, a  method of control of higher order 
aberrations, the construction of a  second order achromat. 

7.1 PRINCIPLE OF CHROMATIC CORRECTIONS 
- 

Consider, as indicated in figure 11, the simplified motion of a  particle in 
a  cell with a  phase advance of 27r. 

4-86 5396A11 

Figure 11. Principle of Chromatic Correction 
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i - The solid lines represent the reference orbit and the trajectory of one 

. particle having the reference momentum (6 = y = 0). Let us assume 
moreover that this cell is within a module where the 7 function is matched. 
We show, again in simplified form, the reference orbit of momentum 6 as a 
straight line displaced from the reference orbit of momentum 0 by the amount 
76. The following formula show the variation of the quadrupole strengths 
with momentum : 

Kl = KlO - KlO6 (74 

As a consequence, particles with positive momentum will have a longer period 
of oscillation. The trajectory of such a particle is indicated by the line - . -. 

Suppose we introduce sextupole magnets and, for simplification, we place 
them at the quadrupole locations. Let us denote by x the transverse coordi- 
nate. The normalised field of the sextupoles and its local gradient are given 
by : 

B 
- = K2x2 
BP 

and G2 = 2K2x (74 

So the local gradient, introduce’d by these sextupoles, around the 0 momen- 
tum reference orbit is zero and around the reference orbit for momentum 6 
is : 

G2 = 2K2q6 (7.3) 

-If this added gradient cancels exactly the term K& of Kl then the off 
momentum particle will follow a trajectory having the same period as that 
of the reference momentum. This is indicated by the dashed line. 

-The above considerations together with formula (4.13), show that the 
variation of the tune with momentum (also called chromaticity) satisfies the 
relation (4.14): 

L 
dv 
dS= 

-& 
s 

P@)[K&) - 2Kz(+i+)]da (74 

This procedure is universally used to correct the second order and some- 
times the higher order dependence of the tune on momentum. 
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1 ,c- 7.2 ..TYE -I PRINCIPLE 
. 

Consider, as schematically indicated in figure 12, two points A and B 
separated by a module with a transfer matrix equal to -1. A particle arriving 
at point A with coordinate zA and slope XL will be at B with coordinate and 
slope of equal value but opposite sign. Suppose at A we subject the particle 
to an angle kick K. Between A and B the trajectory is deformed as indicated 
by the dashed line. The angle difference between the full line and the dashed 
line at B is -K. If we impose to the particle at B a kick equal to K, the motion 
outside the interval AB is undisturbed. 

Figure 12. Illustration of the -I Principle 

An example of such a situation, for all particles, is the case where two 
sextupoles of equal strengths are placed at points A and B and the transfer 
matrix between both points is -1. 

The same compensation would be achieved with any pair of equal even 
order elements (eg: dipoles, decapoles etc.) 

- For elements with an odd symmetry (eg: quadrupoles, octupoles etc) 
in their transverse field, compensation is achieved if the strengths of the 
ele.ments are equal with opposite signs. 

If the transfer matrix between A and B is not -I , but has some magnifi- 
cation, and the phase shift is 180 degrees a generalized form of the -I principle 
applies. Pairs of elements can still be placed 180 degrees but the ratio of the 
kicks produced by the elements is equal to the magnification. 

- 

C 
_r. 

- -- - Any departure:of the magneticfields from the linear configuration creates 
geometric aberration. The above considerations show that the geometric 

_ - aberrations created by any even order non linear field distribution can be 
cancelled to second order if the perturbing fields of equal sign and value are 
placed -I apart. 
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i 7.3 _. THE SECOND ORDER ACHROMAT PRINCIPLE 

. 
Consider a first order achromat made of four cells, as illustrated in figure 

13. 

I Cell - 

I 

OF QD OF QD 
6-84 

I An 
SF BD SD 

A n 
I 

QF QD OF QD 
4809AlZ 

Figure 13. A Four-Cell Second-Order Achromat 

QF,QD are focusing and defocusing quadrupoles and BD are the bending 
dipoles. Second-order chromatic correction of this module can be achieved 
by placing sextupoles as indicated in figure 13. Because the sextupoles are 
placed exactly -1 apart their contribution to second-order geometric aberra- 
tions vanishes. If the strengths ,of the sextupoles SF and SD are adjusted 
to reduce one chromatic term in each plane to zero, then all second order 
chromatic terms vanish with the exception of the term describing the second 
order momentum dependence of the path length. More information on the 
Second Order Achromat can be found in references. ‘zG”a”‘2Q1 

In figure 14, we show a slightly modified version of the achromat. Notice 
that the sextupoles in each plane have been separated into families SFl, SF2 
and SDl, SD2 , each pair still being separated by a -1 unit. This module will 
be referred to as a pseudoachromat when the strengths of elements in family 
1 is different from the strengths of family 2. 

_r. ASFI BD SDlv 
--e n /\ nil- 

I 

- e  
CF QD OF QD OF QD OF QD 

4-86 5396A14 

Figure 14. The Pseudoachromat Unit 

- 
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.-- When. a pseudoachromat is inserted into a machine lattice, the strengths 
of the elements in families 1 and 2 can be adjusted independently to control . 
the chromatic parameters of the machine(eg: the momentum dependence 
of the tune of the machine and of the beta function at a chosen point). 
The pseudoachromat is no longer achromatic to second order but the terms 
describing the second order geometric aberrations still vanish. because of the 
pairing of the sextupoles. 

If one were using six 60-degree cells to build the pseudoachromat then 
three distinct sextupoles families are available in each transverse plane. In 
this case three distinct chromatic parameters could be controlled by the 
sextupole families. More detail about the use of the pseudo-achromat can be 
found in reference. I261 

- 

8. Conclusion 

In this report, we have outlined basic optics principles and have shown 
some applications to circular machine design. We have pointed to solutions 
using modular structure for the machine. These solutions must be considered 
to be a first step in the design process. Higher order effects, misalignement 
and field errors, collective effects will force revisions and modificatrions to 
the design. 

.- - . As an illustration of the usefulness of this approach, let us mention some 
existing designs, presently under construction or considered for construction, 
that have used one or more of the ideas presented in this paper : 

- 
SLC [251 SLAC 
LEP ‘301 CERN 
EROS 1311 SAL 
CEBAF ‘321 SURA 
PSR Ring[331 BATES 

Stanford 
Geneva 
Saskatoon 
Newport News 
MIT 

More detail about the use of these modules in the above projects can be 
found in reference. ‘341 _-. 

- -- - ; 
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