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1. Introduction 

This chapter is devoted to a study of meson-nucleon scattering in chiral 
soliton models of the nucleon.“-” Of course, scattering processes can be ana- 
lyzed in several different energy regimes, each of which dictates its own set of 
appropriate approximations. The “soft-pion” limit, in particular, has been thor- 
oughly examined by Schnitzer.[‘] Instead, we shall be focusing our attention on 
the characteristic energy-range of the baryon resonances, typically 1.5-2.5 GeV. 
This is well beyond the point where current-algebra (i.e., soft-pion physics) is 
valid; nor is &CD, which becomes tractable only when the momentum transfer 
is large, of any use. Thus it is especially interesting to see what insights emerge 
in this regime from skyrmion physics. 

The meson-skyrmion system has been explored in a variety of interest- 
ing ways. “-‘I The particular approach that I shall follow was developed in 
collaboration with Marek Karliner and Michael Peskin at SLAC,“-la’ and in- 
dependently by the group at Siegen University;‘“-‘“’ the prospective worker in 
the field is referred inevitably to the original references for full details. 

The object of our investigations will be effective Lagrangians (Skyrme’s 
included) of the form 

The leading term is the usual 2-flavor or S-flavor nonlinear sigma model, depend- 
- - ing on whether U E SU(2) or U E SU(3). The dots stand for higher-derivative 
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terms, which are not usually exploited in traditional soft-pion physics, but are 
needed to stabilize a soliton. The standard identification of the pion field in (1) 

,5- in-the baryon-number-Osector of the 2-flavor theory is via: 

U(z) =exp($?(z).f.?). (4 

Thus the pions can be thought of as “small fluctuations” about the trivial vac- 
uum U(z) G  1. 

It is a straightforward procedure to introduce additional fields into (1) in 
such a way as to preserve chiral invariance. “” In particular, the traditional (i.e., 
post-Skyrme but pre-Witten) approach to studying the coupling of pions to the 
nucleon isodoublet N is to set 

f7T L,N = 16 Tr (d,UdPUt) + m( i-f Dp - m) N + gADPji. mf’yPy5 N. (3) - 

Here D is the covariant derivative appropriate to the nonlinear sigma model with 
variables in the manifold 

SW)L x SW)I? 

SU(2)iso*pin ’ 

From this Lagrangian, all soft-pion theorems pertaining to the TN interaction, 
such as Weinberg’s calculation of the S-wave scattering lengths,[“’ can be de- 
rived. 

_ 

It is the moral of this chapter that, insofar as the rrN system is concerned, 
the purely mesonic Lagrangian (1) contains at least as much information as does 

f3)! Not only does (1) properly encompass soft-pion physics, as Schnitzer has 
shown,“’ but in addition-well beyond the soft-pion regime-it yields surpris- 
ingly accurate predictions concerning the spectrum of nucleon and A resonances 
and the qualitative behavior of the large majority of TN partial-wave amplitudes. 

I will be reporting two different kinds of results. Model-dependent results 
depend on the particular form of the omitted terms indicated by dots in our 
starting Lagrangian, Eq. (1); in this review, the focus will be on the Skyrme 

_Y_ 
- ._ bc Lagrangian in both its 2- and 3-flavor versions. Model-independent results, in L.. 

contrast, are insensitive to the details of the Lagrangian; they thus serve as 
- - direct tests of both the treatment of the nucleon as a “hedgehog” soliton and of 

the l/N expansion. The emphasis throughout will be on a detailed comparison 
with experiment. 

2 



The organization is as follows:t Section 2 spells out our various approx- 
imations, all of which fall under the rubric of “large N.” Section 3 develops 

,-- the groupYtheoretic formalism for TN scattering for any model in which the 
nucleon is regarded as a -“hedgehog” soliton in the field of pions. It turns out . 
that this formalism implies the existence of energy-independent linear relations 
for the TN -+ rrN and TN + TA partial-wave amplitudes; these relations are 
tested on the experimental scattering data in Section 4. 

Section 5 applies the formalism of Section 3 to the particular case of the 
Skyrme Lagrangian. The spectrum of nucleon and A ‘resonances of the model 
is calculated from a phase-shift analysis; the masses obtained turn out to be 
accurate on the average to 8% of their experimental values up to 3 GeV. For most 
channels, the model reproduces many significant features of the experimental 
TN --$ rrN and TN ---f 7rA Argand diagrams correctly, although there are severe 
discrepancies in some of the low partial waves. 

In Section 6 we discuss a strikingly consistent pattern, which we have 
dubbed the “big-small-small-big” pattern, characterizing the four independent 
TN -+ TN amplitudes for each value of pion angular momentum in both the 
Skyrme model and in Nature. It is shown that the chiral soliton approach 
provides a natural framework for understanding this effect. 

Finally, Sections 7-9 discuss two orthogonal extensions of the formalism, 
first to the case in which the incoming and/or outgoing meson has spin, and 
then to the case of three light flavors. This enables us to broaden the scope 
of our study to include a host of experimentally-measured processes such as 
rN-+pN and??N+7rC, with a reasonable degree of success. 

2. Large N 

Most of the approximations we will make relate in one way or another 
to the large-N expansion, which many consider the raison-d’gtre of skyrmion 
physics. In general, the results presented in the forthcoming Sections will only 
be valid to leading order in l/N. 

Our major approximation will be that of deriving the meson-nucleon am- 
plitudes from the lowest-order meson propagator in the (appropriately rotated) 
soliton background, ignoring all loop contributions to the two-point function. 
Loop diagrams necessarily contain 3-meson, 4-meson or higher-order vertices 

- ._ bcI which are damped by increasingly higher powers of j;’ N N-i. Consequently, -_ 

t The material in Sections 2-4 is largely drawn from Ref. 8; Section 5, from Refs. 7 and 13; 
Section 7, from Refs. 8 and 13; Section 7, from Ref. 10; Section 8, from Refs. 11-13; and 
Section 9, from Refs. 12 and 13. 
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all loop contributions to the propagator are suppressed by at least one power of 
N and can therefore be disregarded in our lowest-order treatment. The result- 

4 ,?- ing Euler-Lagrange equations of motion for the meson field will be linear (in . . _ 
agreement with Witten’s result obtained from counting quark-gluon diagrams 

. in large-N QCD”” ). 

Another limitation of our lowest-order large-N analysis is that it is ap- 
propriate only to 2-body scattering. Multiple pion production, for instance, is 
formally suppressed by powers of l/fi;“” nevertheless, in Nature it becomes 
the dominant feature of TN collisions at high energies. 

The fact that the bare meson propagator has enough structure to lead 
to nontrivial scattering is noteworthy and deserves some comment. On the 
one hand, this should be expected from the soliton picture, since meson-soliton 
scattering normally appears at zeroth order in a weak-coupling expansion. 1181 

On the other hand, this fact implies that, in large N, baryon resonances are not 
at all the counterparts of excited mesons. As is well known, “” the widths of 
all excited mesons vanish like N-l as N + 00. Among the baryons found in 
Nature, however, only the nucleon and A (and perhaps a handful of others: see 
Section 5) appear as sharply defined states in this limit. Higher-mass baryons 
cannot be identified with narrow states; they appear only as resonances above 
threshold in the various channels of pion-nucleon scattering. The widths of these 
baryons are determined by the motion of the meson-nucleon phase shifts in the 
relevant partial waves; since the equations that determine these phase shifts 
have a definite, finite large-N limit, both the widths and the excitation energies 
of these resonances will be of order No. 

:.- . 
This picture contrasts sharply with the quark model description of baryon 

resonances. One may think of the quark model as representing the leading term 
in a nonrelativistic approximation to the baryon and meson states. In this 

- limit, unlike that of large N, the baryon resonances appear as eigenstates of a 
Hamiltonian and hence are stable to lowest order. 

Our second approximation will consist of ignoring the rotation of the soli- 
ton during the scattering process. As explained by Adkins, Nappi and Witten,lal 
nuclkons and A’s correspond in the chiral soliton models to rotating hedgehog 
solitons of angular momentum J2 = s(s+ l), with s = $ and s = i, respectively 
(Fig. 1). The nucleon-A mass difference is then simply due to the rotational & 

_T_ kinetic energy term J2/21, where I denotes the moment of inertia of the soliton. 
-Since I N N this :mass splitting is a l/N effect. (For example, in the Skyrme 

model,131 
- - 

fir s(s + 1) 106 mN,A Z 36.5---t 2I , I g - 
e e3fT’ (4 
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where, in the large-N limit, e - N-a and fn - Nf in order that the Skyrme 
Lagrangian scale like N.) The rotational frequency of the soliton is then given 
by w = -JjJ, which likewise vanishes like l/N for large N, thereby justifying 
our approximation in this-limit. 

5-85 5395Al 

Fig. 1. A rotating hedgehog. 

: - . 
This argument might not appear particularly compelling when applied to 

the real world, where N = 3. However one can reverse the above relations and 
solve for w in terms of V&N and ma; the result is w = iJ(?‘T2A -mN). The ratio of 
the time it takes a meson of velocity 21 to cross the charge radius R of a nucleon to 
the period of rotation of the nucleon viewed as a soliton is then (u/c)-‘(wR/2~) 
72 &(u/c)-1, while the corresponding ratio in the case of the A is roughly 

~(u/c)-l. Th us, for example, our approximation appears to be a reasonable 
one for TN + TN so long as u/c k: 1, whereas for TN + XA it is somewhat 
more severe. IVote that this approximation breaks down near threshold, where 
u/c -+ 0. In this regime, it is Schnitzer’s “soft-pion” approach, instead, that 
becomes appropriate. “I 

_=_ 

Finally, we will ignore both the deformation and the recoil of the soliton. 
This, too, can be formally justified for large N, since in this limit the baryon 

- (which is made of :N quarks) is much more massive than the meson (which can 
always be thought of as a quark-antiquark pair). 

In sum, our various approximations pick out an intermediate energy regime 
which is, on the one hand, sufficiently past the soft-pion limit that’we can neglect 
the rotation of the skyrmion during the scattering process, and on the other 
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hand, low enough that we can ignore both baryon recoil and multiple meson 
prqduction. Admittedly, it is not clear a priori that such a regime exists! But i ,;’ luckily judging from the results, it not only exists, but in fact seems to encompass 

. practically the entire energy range of the baryon resonances. 

In the next four Sections, we shall specialize to the processes TN + TN 
and TN + nA . These are the easiest meson-baryon processes to analyze in 
the chiral soliton approach. And fortunately, the experimental situation in both 
cases is excellent. Thus they constitute particularly rigorous proving-grounds 
for skyrmion physics. 

3. Outline of Formalism 

We begin our analysis of TN scattering from Skyrme’s assumption that 
the solit,ons associated with the Lagrangian (1) have the hedgehog form: 

Uo(Z) = exp(iF(r)? . Z). (5) 

When F(r) tends to 0 as r -+ 00 and to z as t + 0, this defines a configura- 
tion with topological charge equal to unity-a skyrmion. This configuration is 
maximally symmetric in the sense that, although it is not invariant with respect 
to isospin or spatial rotations separately, it is invariant under a combination of 
space and isospace rotations. We shall refer to (5) as a hedgehog skyrmion in 
its canonical (i.e., unrotated) orientation (Fig. 2). 

- 

5-86 5395A2 

Fig. 2. An unrqtated hedgehog. 
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Of course, U, as it stands is not a suitable candidate for a nucleon or A; 
this is because physical baryons are characterized by definite values of spin and 

i ” isospin indfiidually. One obtains a state with the correct quantum numbers by 
introducing “collective coordinates” A(t) E SU(2), which rotate the skyrmion 

. as in Eq. (12) below, and by assigning the baryon an appropriately chosen wave- 
function x(A).* Nevertheless, for convenience, let us forget about the collective 
coordinate structure of the nucleon for the moment, and concentrate instead on 
the simplified problem of a pion scattering from an unrotated skyrmion. 

In analogy to Eq. (2), we can represent pion fields in the baryon-number-l 
sector of the theory as “small fluctuations” about the classical soliton by letting 

F(r)i: + F(r)3 + fa(i, t) (6) 7r 
in the exponent of (5). Plugging this “new improved” U(z) into Eq. (1) and 
expanding about the skyrmion in powers of the pion field yields an action of the 
form: 

S=-/dfm,+/ d4mri*(&&) + O(r3/fT), (7) 

where m, is the mass of the soliton and i and j are isospin indices. 2 is accord- 
ingly a 3 x 3 matrix of differential operators formed from various products of 
di, a;, ii, 6ij and cijk. That is, 

- 

_ 

Zij = Gl(r)Gij + G~(r)JijaF + G3(r)iifjaf + G4(r) ?ja, + GS(r)+iaj + me* (8) 

with the Gk’s being, in general, horrible, model-dependent functions of the soli- 
ton profile F( ) r and its derivatives. We note that, with no loss of generality, 2 
can be chosen uniquely to be self-adjoint. As discussed in Section 2, we shall 
henceforth neglect all 0 (~~/f~) t erms in keeping with our lowest-order approach. 

Complicated though 2 may be, it respects the “hybrid” symmetry 

K z I(pion) + L(pion). (9) 

Explicitly, 

_Y_ ( 
-iCij~r'dj6~c + i6k.c 

> ha - L -iCijkrlajSba - iEkba = 0. 
- L- ,) 

- ;.s- Consequently 2 preserves the subspaces of pion states of definite K2 and K,. 

* I shall assume familiarity with the method of collective coordinates; see Ref. 3 for details. 
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This peculiar symmetry property of 2, which follows purely from the 
hedgehog form of the skyrmion, greatly simplifies the otherwise formidable task 

” of constructing the propagator 

. (7r’(x’)7rqx))o 
of the pion field in the skyrmion background. (The “noughtn on the propagator 
serves to remind us that the skyrmion is in its canonical orientation, Eq. (5).) 
The smart thing to do, of course, is to project the pion onto a complete set of 
states of definite K2 and KZ. This is best accomplished as follows: First, the 
initial and final pion fields are expanded in spherical harmonics ILM > and 
IL’M’ >, respectively. Orbital angular momentum is then added to the pions’ 
isospin to form states IK2KZL > and IK’2JCLL’ >. The K-symmetry of 2 then 
guarantees that K2 = Kf2 and KZ = PC:, In equations: 

(7rm(2,t’)T”*(z,t)), = c Y-‘&--qY~M(n)x 
LML’M’ 

(11) 

c (KK&lMn) (L’lM’mlKK,) TKL’L(tt; r’t’) 
KK, 

Here, the quantity TKLlL .is the “reduced” amplitude characterizing the 
scattering process; it carries all the detailed model-independent dynamical infor- 

:.- . mation contained in our starting effective Lagrangian, Eq. (1). For each value 
of K, TK can be thought of as a unitary 3 x 3 matrix, with “row” and “column” 
indices L’ and L ranging from K - 1 to K + 1. Parity requires that TKL’L = 0 
when IL - L’I = 1. Furthermore, by time-reversal invariance and unitarity, TK 
can be shown to be symmetric:“-” 

TKL’L = TKLL’. 

Apart from these constraints, TK must be determined by a detailed, model- 
dependent phase-shift analysis, as illustrated in Section 5 below for the special 
case of the Skyrme model. 

For future reference, we should note that not all pion fluctuations of the G 
_Y. form (6) should be identified with bona fide mesonic degrees of freedom. In - 

particular, we can‘find ii’s that serve only to rotate or translate the skyrmion, 
4 a* and which should therefore be viewed as baryonic degrees of freedom. Since 

such fluctuations do not change the energy of the system, they occur at zero 
frequency (w = 0). It turns out that: 
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(i) the rotational zero-modes manifest themselves as threshold poles in 
” the reduced amplitude 7111, and 

(;z) the translational zero-modes show up as threshold poles in Tr,-,c, 722, . 
and T&X. 
We shall make use of these facts in Sections 4 and 5. 

So far, we have focused, not on physical xN or XA processes per se, 
but rather on the simplified problem of a pion scattering from an unrotated 
hedgehog. Physical scattering requires that we restore the skyrmion’s collective 
coordinates. As an intermediate step in this direction, it is straightforward to 
generalize Eq. (11) to the case when the pion scatters, not from UO, but rather 
from a “tilted” skyrmion UA, defined by* 

U, = h(A)UoD$A)-’ = exp{iF(r)(D’(A)F) * i?}. (12) 

Pion fluctuations can be naturally incorporated into VA by letting 

F(r)D’(A)i: -+ F(r)D1 (A)F + f-if(iY,t) 
IT 

as before.’ This results in 

: ‘- . (13) 

It is now a simple matter to express the Green’s functions for the physical 
processes TN + rrN , ~FN + TA and 7rA + rrA . As discussed in Section 2, we 
Shall assume that the scattering event happens quickly enough that the baryon 
does not rotate appreciably in the interim. This is equivalent to saying that 
the pion only sees a fixed value of the baryon’s collective coordinate A in the 
process. Of course, we are doing quantum mechanics, so we ultimately have to 
perform a superposition over all possible A’s, weighted by the initial and final 
baryon wavefunctions * x&, (A) and &(A), respectively. Thus the physical 

- 

* Here,- D)(A) and D’(A) p re resenfthe spin-i and spin-l representations of the SU(2) 
collective coordinate A. - a* 

t For calculating on-shell amplitudes, this parametrization of the meson fields is equivalent 
to the one advocated by Schnitzer. “’ 

* Here s is the spin of the baryon, i.e., h 1 for nucleons and s for A’s; s, and i, are the 
z-components of the baryon’s spin and isospin, respectively. 

. 

- 
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Green’s functions are given by 

;“ . . _ 

. 

= 
physical 

dA &(A)* (~%j)~ xi”,,,(A) 

SW) 

It turns out that the A-integration in Eq. (!4) can be carried out in closed 
form, thanks to the convenient expression for the nucleon and A wavefunctions $ 

X:,,,(A) = fd= (TV+) . 
sz1. (15) 

and to the identities 
- 

W4ds2(& = c D '(A)cl.+c,b+d x 
i 

< sl%acI~, a + c, ~1s~ > < i, b + d,s1s21S1S2bd > 
(16) 

and 

J dA DS1(A)abDS2(A)id = 2s2r- 1 hwa~be&zd- 
1 

(17) 

This eliminates all explicit dependence on the collective coordinates. 

Thanks to Eqs. (ll)-(17), we have succeeded in constructing an explicit 
(if somewhat unwieldy) expression for < 7rri7rj >physical in terms of (i) spherical 

harmonics, (ii) reduced amplitudes 7K,51,5, and (ii;) a large number of Clebsch- 
Gordan coefficients. Fortunately, this expression greatly simplifies if one projects 
(more Clebsches!) th e initial and final pion-baryon states onto states of definite 
total isospin and angular momentum I11,JJ,) and I1’1LJ’Jl). (f and Twill of 
course turn out to be conserved in the scattering process.) For, as we shall see in 
a moment, the Clebsches then collapse neatly into a product of two 6j symbols 
and four Kronecker 6’s. Our final formula can be stated in the most compact way 
if, in addition, we restrict the incoming and outgoing pions to orbital angular 

- - $ Note that these wavefunctions are really only appropriate for baryons at rest; however, 
as we have discussed in Section 2, we plan in any event to neglect the baryon’s recoil 
in the scattering process. eb in Eq. (15) d enotes the antisymmetric tensor in the spin-s 
representation. 
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momenta L and L’, respectively. The resulting pion Green’s functions, which 
we label TLL~~~I~J (rt; r’t’), are then given by:h 

* ,*-. . . _ 

. TLL’~~~I.J (rt; r’t’) = ~II~~~,~~~JJ~~~,.r~ x 

c(-1)“-‘&as + 1)(2s’ + 1)(2K + 1) 
K 

{ GlfLI;T1} {T-t} * TKL’L(rt;r’t’)- 

This is the main result of this Section. 

Note that conservation of total isospin and angular momentum has man- 
ifested itself in the Kronecker 6’s. The appearance of 6j-symbols in this expres- 
sion is also quite natural, since, as indicated in Fig. 3, the problem in both the 
entering and the exiting rrN or rrA channels is characterized by six intertwined 
angular momenta. Each face of the tetrahedron can be read as a triangle in- 
equality among the quantities that enter into Eq. (18); together, the “entering” 
and “exiting” tetrahedra thus furnish seven independent triangle inequalities 
(since the (KI.7) f ace is common to both). It nevertheless turns out that (18) 
imposes no unphysical selection rules on the scattering-,process, in other words, 
nothing apart from the usual conservation of isospin, angular momentum, and 
parity. In particular, the quantum number K, which is conserved when a pion s. 
scatters from an unrotated hedgehog, is no longer conserved in scattering from 
a rotating skyrmion such as a nucleon or A. 

- 

_Tz_ 
- ._ - 

Fig. 3 (from Ref. 8). Relation of 
the six coupled angular momenta - 
in either the initial or the final state 
of pion-skyrmion scattering. 

- - 

h Explicit formulas for the group-theoretic coefficients in Eq. (18) relevant to TN + TN and 
TN -+ AA are presented in Appendix B of Ref. 8. 
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Note that all the model dependence in (18) arising from the details of the 
Lagrangian (1) is subsumed in the reduced amplitudes TKLIL; the Gj-symbols, 
in-contrast, follow purely from the assumed hedgehog nature of the chiral soli- 
ton. Equation (18) is thus analogous to the Wigner-Eckart theorem in that a 
large number of physical matrix elements (the T’s) are expressed in terms of 
a substantially smaller set of reduced matrix elements (the 7~‘s) weighted by 
appropriate group-theoretical coefficients. One can carry the analogy further by 
finding those special linear combinations (analogous to the Gell-Mann-Okubo 
formula) for which the model-dependent right-hand side of (18) cancels out; the 
net result will be a set of energy-independent linear relations between physical 
scattering amplitudes that serve as a test of the applicability of skyrmion physics 
to the real world. This program is carried out in Section 4. Alternatively, one 
can calculate the TK’s numerically in the framework of a specific model such as 
Skyrme’s, reconstruct the complete partial-wave S-matrix, and then compare 
with experiment; this is the approach of Section 5. 

- 

4. Model-independent linear relations for TN + TN and TN + TA 

In this Section we apply Eq. (18) d irectly to the experimental TN + TN 
and TN -+ XA partial-wave amplitudes. Consider the elastic case first. In the 
notation of Eq. (18), th is corresponds to the physical amplitude TLLi ilJ, which 

22 

we shall henceforth express more descriptively as* TiyyN. 

.- - . 

Let us pause to see why, on general grounds, model-independent rela- 
tions between the T’s can be expected to emerge from the chiral soliton frame- 
work. For each value of pion angular momentum L, there are four independent 
rrN + rrN amplitudes, corresponding to total isospin I = {i, g} and total an- 
gular momentum J = L 41 f. With the help of (18), these four T’s can be 
expressed as linear combinations of only three reduced amplitudes TKLL, with 

-K = {L - 1, L, L + 1). Specifically, using explicit formulae for 6j symbols,+ one 
finds: 

_?z_ 

- ._ - 

yhhN 2L-1 L+1 
L$L-4 = - * TL-l,LL + - - 

3L 3L TLLL, 

T ANTN L 2L+3 
Li,L+i = - * TLLL + - - 

3L+3 3L+3 IL+l,LLy - 

L.. 

(194 

(196) L 

- i..-- * In order to facilitate comparison to experiment, we will present all our results in terms of 
T-matrix elements. The T-matrix is related to the S-matrix via T = (S - 1)/2i, where 1 

is the identity operator on the Hilbert space (which vanishes for inelastic scattering). 
t See Appendix B of Ref. 8. 
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T nNnN 
L$L+$ = 

+ 

We are thus assured of the existence of at least one nontrivial linear relation 
between the T’s for each value of L for which the (model-dependent) right-hand 
sides of (19) cancel out. 

(2L - w - 1) TLml 2L - 1 . 
6L(2L + 1) ’ 

LL + -. 
6L 

TLLL 

.2L+3 
-. C+I,LL, 4L+2 

2L - 1 
m * TL-1,LL + z . TLLL 

(~+2)(2L+3) 
(6L + 6)(2L + 1) ’ 7L+1’LL’ 

(194 

(194 

As it turns out, there are two such relations for each L, which we can 
use (for example) to solve for the isospin-g amplitudes in terms of the isospin-i 
amplitudes. One easily finds: 

- 

~?rhhrN L-l 3L+3 
L;,L-; = G  

. y&N 
L’ L-l -t - - 

yrh%N 
2’ 2 4L+2 L&L-t; 

and 

T xNvrN 3L 
L$,L+i = - * -. 

4L+2 (2Ob) 
Similar relations can be derived for TN + 7rA . In this case we can have 

either L = L’ or L = L’ & 2 consistent with angular momentum conservation. 
For L = L’ we find:* 

T aNrA 
LLZ,L-; = 

4(L - 1) sNrA 
&fj(2L + 1) - TLLfJ-b 

+&/v. T$;+; 

(21a) - 

and-likewise 

T nNlrA 3 
LL$L+$ =- 2L+1 

L(2L + 3)(2L - ‘1 . ryh’nA 
lO(L + 1) LLr L-f _ 2’ 

(21b) L 

- 
- - 

* We are rewriting T,,,; )I J as TlT,:$. 
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while for L = L' f 2 we obtain the simple proportionality relations 

Finally, for each L, one can derive an additional independent linear relation 
which serves to relate rrN t rrN to rrN + rrA : 

yrNsN 
* Li,L-+ 

TnNrA 
LL;,L+i’ (23) 

We turn now to an examination of how well these relations are obeyed in 
Nature. 

Confronting Experiment: TN --+ TN 

Elastic TN scattering in the resonance region has been the subject of 
thorough experimental investigation. Our analysis in this Section relies on the 
data compilation of HZjhler, et al.,“‘] in which a complete partial-wave analysis -- 
of elastic TN scattering is presented for center-of-mass energies W up to 4.5 GeV. 
For elastic scattering the relevant linear relations are given by Eq. (20), which 
expresses the two isospin-$ amplitudes as linear combinations of the two isospin- 
f amplitudes with the same L. We now examine the experimental validity of 
these relations. 

In Fig. 4, we display the experimental isospin-% TN scattering amplitudes 
for L 2 7 juxtaposed with those particular linear combinations of isospin-i 
amplitudes to which they are predicted to correspond; these are indicated by 
solid and dashed lines, respectively.’ The closeness of these comparisons can be 

%onsidered a model-independent test, not only of the chiral-soliton description 
of baryons, but also of the extent to which a lowest-order analysis in the l/N 
expansion can be trusted to give a reasonable description of Nature. 

The most striking feature of the graphs taken as a whole is the substantial 
qualitative agreement that one finds between “theory” and experiment, particu- 
larly for L 2 3 (F-waves and higher). On a quantitative level, it turns out that, 
with few exceptions, the actual I = i resonances are typically more massive by 

-- - 150-300-MeV than predicted by the superposed I = f amplitudes. This system- 
atic splitting is presumably caused by the same rotational energy contribution 

$ TN channels are labeled L~I,QJ, where L is the pion’s orbital angular momentum (L = 
S, P, D, F, . ..). and I and J denote the total isospin and angular momentum of the TN 
system. 

- 
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that is responsible for the nucleon-A mass difference; since this is a l/N effect, 
it does not, indeed cannot, emerge in our lowest-order analysis. In contrast, it is 

c .-- apparent on the whole that the shapes of the resonances are correctly predicted 
by Eq. (20), and that the form of the backgrounds are reproduced quite satis- . 
factorily. The correlation between the detailed structure of the F’7 resonance 
and the corresponding linear combination $.F’is + AFir is particularly remark- 
able. Note that the background contributions tend to be given correctly even 
in those low-L channels such as P33 for which the structure of the resonances is 
not reproduced well. 

Having noted the generally high degree of agreement, it is of course im- 
portant to confront the disappointing results in the Ssr, P33 and 035 channels. 
It turns out that the poor agreement in these channels is not,necessarily fatal 
to the chiral soliton program. To see this, note that in each case the discrepan- 
cies are clearly the greatest near threshold. Now, it is a property of all chiral 
soliton models in which the soliton is of the hedgehog form that the threshold 
behavior of the S-, P- and D-wave amplitudes (and only these amplitudes) is 
extremely sensitive to small perturbations. (This point will be argued in Sec- 
tion 5.) The upshot is that it is completely unrealistic”to expect a lowest-order 
calculation in l/N such as ours to yield good agreement near threshold for the 
S-, P- and D-wave amplitudes. We find it encouraging that these are the only 
partial waves which are in serious disaccord with Eq. (20) at low energies, and 
furthermore, that at higher energies (albeit still in the resonance region) the 
agreement markedly improves. 

- 

: - . . . 
Before leaving the discussion of discrepancies in the low-lying partial 

waves, we should address the subject of the apparent violation of Weinberg’s 
well-known calculation”” of the S-wave scattering-lengths* a1=; and aI=?. 

2 2 

The prediction is 

aI=; = -2aI=; = 
mrrmN -. 

d; m,+mN’ 

which, in particular, correctly implies that the isospin-$ and isospin-% S-wave 
amplitudes should exhibit attractive and repulsive behavior, respectively, near 
threshold. In contrast, the chiral-soliton prediction emerging from Eq. (20b) is 
that these amplitudes should be identically equal to one another: 

a+ = aI,;. (25) ; 

This should seem all the more puzzling in light of Schnitzer’s result’J’2’1 that 
- - 

* Recall that the S-wave T-matrix is related to the scattering length a ‘near threshold via 
T = h(exp(2iak) - l), where k is the pion momentum. 
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chiral soliton models must necessarily obey all soft-pion theorems, of which 
Weinberg’s is a notable example. 

i ,c- 
Actually, there is no contradiction. To see this, recall that the equality 

. of the amplitudes implied by (20b) is only valid to order No. But the right- 
hand side of Eq. (24) is manifestly of order l/N. Thus Eqs. (24) and (25) 
are both trivially satisfied to order No: to this order, aI=1 = af,g = O! A 
nontrivial consistency check of Weinberg’s theorem, then, m&t await a higher- 
order calculation. 

Confronting Experiment: ?rN --) IDA 

We turn next to an examination of TN + TA , drawing from the recent 
partial-wave analysis of Manley et 01.‘~~’ The data presented there are restricted 
to W < 2 GeV and L 2 3. 

We begin by looking at processes in which the pion jumps two units of 
angular momentum. From Eq. (22) we predict simple proportionality relations 
between partial-wave amplitudes:’ 

SDll = -xfib DS13 = -hi% SD31 = &i6. DS33 (264 

and 

FP15 = -x&-b FP35. (26b) 

These relations are checked in Fig. 5. For the SD and DS waves, the agree- 
ment is not impressive. The relative signs of the four amplitudes are predicted 
correctly, but there is no evidence for the factor of fl which connects the first 
and second pairs of terms in Eq. (26a). One should note that these channels 
all couple to the translation zero-modes. For the FP waves, which do not, the 
agreement is quite satisfactory, modulo the customary 150-200 MeV energy shift 
between the isospin-i and the isospin-$ amplitudes. 

We turn next to processes for which the initial and final pion angular 
momenta are equal, In both the D- and F-waves, the partial-wave amplitudes 

..- _T_ for only three out of the four possible channels could be resolved from the data 
- - ,-in the analysis of Ref. 22. These-triplets of amplitudes-are predicted to obey 

- 

t The notation is LLh, 2‘J, with L and L’ the incoming and outgoing pion angular momenta, 
respectively. Unfortunately, Ref. 22 does not present amplitudes for the two PF channels. 
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Fig. 5 (from Ref. 8). nN + nA processes in which the 
pion jumps two units of angular momentum: (a) Test 
of Eq. (26a) by comparison of the various SD and DS 
IAN + 7rA partial-wave amplitudes. The upper graph 
plots SD11 against -fi. DSl3; the lower graph plots 
SD31 against - fi * D&3. (b) Test of Eq. (26b) by 
comparison of FPl5 to -m s FP35. In each case, the 
first-named amplitude is represented by the solid curve. 
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FF37 = - 

6d 
. FFk, + - ,” ;sFF~~. 

J (274 
G ” 

. 
In Fig. ‘6 Ge have displayed the experimental 0033 and FF37 amplitudes (in- 
dicated by solid lines) juxtaposed with the appropriate linear combinations dic- 
tated by (27) (dotted lines). Although in the first instance (where again there is 
mixing with the translational mode) the shape of the Argand plot is reasonably 
rendered, the predicted curve is obviously too big by roughly a factor, of four. 
In the second case, however, as for F-waves in general, the agreement is quite 
respectable. 
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Fig. 6 (from Ref. 8). rrN ---f 7rA processes in which the 
initial and final pion angular momenta are equal. The 
DD33 and FF37 amplitudes (solid lines) are juxtaposed 
with the linear combinations to which they are predicted 
to correspond via Eq. (27) (dotted lines). _ ; 

_T_ 
- .- - 

Unfortunately, out of the four possible PP processes, only PPll and PP33 
- - were considered by Manley, et al., to be adequately determined by the data. 

This makes it impossible for us to test the validity of Eq. (21) for this case. If, 
however, we assume the PPl3 amplitude to be small, Eq. (21b) suggests that 

20 



the P&r and PPs3 amplitudes will have the same sign; this is indeed what is 

i ” observed experimentally. We turn, finally, to Eq. (23), which links the processes 
TN + 7jN *and rrN + TA . The relations can be expressed as: 

. 

$(Pll - P13) = t * PP33 - f * P&1; 

-@13 - 033) = -& - 0013 + g - DDls; 

-$(&s - F17) = ; - FF35 + 

(284 

Pb) 

(284 
The left- and right-hand sides of these equations, corresponding to rrN -+ rrN 
and TN + XA , are compared in Fig. 7; they are indicated by solid and dotted 
lines, respectively. Once again, although the sizes of the amplitudes are not in 
especially close agreement, the signs are correctly given and the general shapes 
are similar. 

All in all, we can conclude that the limited TN + 7rA data, while not as . . 
compelling as TN + TN’ , is certainly consistent with the elegant interpretation 
of the baryon as a soliton in the field of pions. 

5: The Baryon Spectrum of the Skyrme Model 

In this Section we shall apply the formalism developed in Section 3 to the 
particular case of the Skyrme Lagrangian:“] 

L: = g Tr i3,U&Ut + & Tr[(a,U)Ut, (a,U)Ut12. (29) 

Here frr is the pion decay constant (186 MeV in the real world) and e is a new, 
dimensionless coupling constant peculiar to the model; our approach will be to 
treat both as adjustable parameters, in order to see how close we can get to 
reproducing the observed baryon mass spectrum. The “small parameter” l/N 
enters the Lagrangian through fX and e, which behave like Ni and N-4 in the 

_Y_ large-N limit, respectively. 
- -- To study this model, one need not be motivated by the belief that it is in 

a a* any way “fundamental” (i.e., derivable from &CD). Rather, it is instructive to 
see how well the actual spectrum of nucleon and A resonances can be fit starting 
from a simple, tractable model that contains no explicit quark or baryon fields 
and only two adjustable parameters. Pleasingly, the spectrum that emerges 

. 
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is, on the whole, in good agreement with the real world for energies up to 
3 GeV. This is all the more surprising given the rather drastic nature of our 

a ,c-. approximations, such as completely neglecting baryon recoil (cf. Section 2). 

. As always, we shall focus on the hedgehog solution 

,yo = ,iF(r);o’, (30) 

where F(r) solves a (hopefully familiar) variational equation. If we plug this 
ansatz into (29) and look at small fluctuations about the soliton 

F(r)? + F(r)P+ +,t) (31) 
7r 

we obtain an expression such as Eq. (7), with 2 a complicated 3 x 3 matrix of 
second-order linear differential operators. 

As discussed in Section 3, we can make substantial progress by expanding 
the pion field in eigenstates of K2 and KZ. Explicitly, this is accomplished by 
plugging 

into (7); here IIfKZ are the so-called “vector spherical harmonics,” defined by: 

nKK, = 
L 

tLIKz - l,ljK, &) YL,&-1 (n) 
(~1mw&)YL,K,(f-Q (33) 

@lKz + 1, -l/&K,) YL,K,+$) 

_Tz.  Parity precludes the $0’~ from mixing with the $Q-‘s; $+ and r+!~- can mix in this 
- ._ e model, however, as they do in Nature, where jumps of two units of pion angular 

momentum are allowed in the process rrN -+ TA . - - 
It turns out that the integration over solid angles in Eq. (7) can be 

performed in closed form, thanks to some standard identities for differentiating 

- 
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spherical harmonics. We are left with an expression for the action of the form 

c ” -S = .? dt mg + c 
J 

r2d,$oKKz* (r, &C5+FKz (r, t) 
K,K, / 

. 

Note that the ZK’s, complicated though they be, are now second-order linear 
differential operators in r and L alone. We will refer to the 2 x 2 matrix of 
operators here as gK and the 2component column-vector of wavefunctions as 
QK . 

The determination of the reduced amplitudes TKL’L now proceeds in a 
completely straightforward manner, exactly as in ordinary potential scattering. 
The “normal-mode” equations to be solved are 

and 

CK [QfK(r)eiWt] = 0 (35b) 

for all w; here we are assuming that 2 and fi have been chosen with care to be 
self-adjoint. 

Let us consider Eq. (35a) first, It suffices to consider the radial wave- 
functions that are well behaved at the origin and to integrate out past the point 
where the skyrmion profile F( r is negligible. In this regime the theory is one ) 
of free pions, so @OK can be fit to* A(w)j~(~r) + B(u)~K(u~). ?-KKK can then 
be extracted by rewriting this as 

constant x [hk - @TKKK(w) + l)h;] (36) 

yielding 

T”KK(w) = -k [(B + iA)-‘(I3 - iA) + I.] . (37) 4 

- ._ say^ The ‘2 x 2’:case (35b) proceeds analogously. Near the origin for each 
K 2 1 there are two independent regular solutions KPf and \kF , which behave - i-S-- 

* We follow Messiah”31 in our definitions of the spherical Bessel functions. 
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asymptotically as 

&” N 
Ai(w)j~-l (UT) + &(‘+K-1 (“‘r) 

-ci(‘-‘)iK+l (at) - Di(‘+K+l (UT) > 

i = 1,2. (38) 

If we work in the convenient basis in which the incoming’pions are in pure 
(K - l)-waves or (K + l)-waves of orbital angular momentum, we find: 

TK,K-l,K-1 TK,K-l,K+l 

TK,K+l,K-1 TK,K+l,K+l > 

1 =-- 
2i [( Bl + iA Dl + iC1 B1 --iAl D1 -iC1 

> 1 
+1. 

B2 + iA D2 + iC2 B2 - iA2 D2 - iC2 

The detaiIs of this procedure, including explicit expressions for the un- 
wieldy differential operators involved, can be found in Refs. 7 and 14. As an 
illustration of the numerical results, Fig. 8 depicts the five reduced amplitudes 
that contribute to physical G-wave scattering. Note that 7544 is almost com- 
pletely negligible compared with 7 344 and 7444; we will make crucial use of this 
observation in Section 6. 
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Confronting Experiment: ?rN + xN 

,%-’ So far we have discussed the (linearized) equations of motion for pions 
moving in a fixed external skyrmion background. To relate this to physical TN . 
scattering requires the use of Eqs. (18)-(19). The resulting Argand plots for 
TN --+ rrN are presented in Fig. 9, together with the corresponding experimen- 
tal results as drawn from Refs. 20 and 24. For future reference, Fig. 9 also 
presents the amplitudes that emerge from the 3-flavor Skyrme model, which is 
taken up in Sections 8-9. 

The overall degree of agreement with experiment evident in Fig. 9 is 
remarkable. The F waves are especially well reproduced by the model-these 
are the first channels that do not mix with the skyrmion’s zero-modes. Much 
of the disagreement in the higher waves can obviously be accounted for by the 
fact that our simplistic formalism does not allow for the wide variety of inelastic 
processes .that occur in the real world; consequently our Argand plots stick too 
closely to the rim of the unitarity circle, and are simply much too large. Ideally 
one should allow for multiple pion production, other mesons and/or strangeness. 

Particularly striking is the pattern of size alternation displayed by the 
experimental amplitudes and by their Skyrme-model counterparts for each value 
of L. For example, in the F waves, the Fl5 and F37 amplitudes movemuch more 
vigorously through the unitarity circle than do the Fl7 and F35. We shall return 
to this “big-small-small-big” pattern in Section 6, where we shall see that it 
finds a natural explanation in the framework of skyrmion physics. 

: - . . . We should, however, squarely confront the Skyrme model’s failures; these 
lie in the S- and P-waves. Indeed one’s natural inclination is to turn first to 
the P33 channel, where in one of the cleanest examples of elastic scattering in 
Nature the A manifests itself dramatically as a full rotation around the unitarity 
circle. Instead, one finds in the Skyrme model initial repulsive (i.e., clockwise) 
behavior. A similar sad story is to be found in the Prr channel; this is where 
the second-lightest resonance, the “Roper” at 1440 MeV, appears in Nature. 
Interestingly, the poor performance of the Skyrme model in the P-wave sector 
was first noticed by Skyrme himself: 

The P-wave meson-particle interaction [is] repulsive on the aver- 
age. There is no indication of the strong attraction observed in 

-3. the pion-nucleon resonant state, but this would hardly be expected 
- in a static classical treatment where the rotational splitting of the 

particle states has been ignored.12’ - :.a-- 

Yet these failures are not necessarily fatal for the model. For, despite the 
large discrepancies, one can argue that l/N perturbations in the P-wave sector 
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c ,c- 

. 

Y 

of the theory can cause enormous effects in the corresponding Argand plots 
which could easily produce the observed real-world behavior for the amplitudes. 

To see this, note that the physical P-wave amplitudes (Prr and Pss es- 
pecially) all contain contributions from the reduced amplitude Trrr, as is ap- 
parent from (19). This is the channel to which the rotational zero-modes of 
the skyrmion couple at threshold (see Section 3). As a result, in the model, 
the S-matrix has a pole and a zero that have coalesced at the origin of the 
energy-plane for all four P-wave channels of zN scattering. Now, one can eas- 
ily envision effects which perturb these poles and zeroes away from the origin; 
certainly the quantization of the collective coordinates, which involves the next 
order in the l/N expansion, is one such effect. Consequently some of these poles 
might end up in the fourth quadrant, slightly below the positive real axis (Fig. 
lOa), while others might be pushed into the second quadrant (Fig. lob). (These 
are quadrants of the ‘second sheet.‘) 

1 

5.8‘ RE T RE T SZ~SA), 

Fig. 10 (from Ref. 7). Possible movement due 
_=. to l/N corrections of the poles and zeroes of the 

- S-matrix in the complex energy-plane, and the 
resulting effects on the amplitude near thresh- 

- - 

- 
old. Poles are denoted by a cross and zeroes by 
a circle. 
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If this scenario actually takes place in the real world, what would we 
actually observe? The channels in which the poles have been perturbed into the 
fourth qua’drant would contain clear P-wave resonances lying reasonably close to 
threshold: suggestively, the resonances our model lacks to lowest order, namely 
the A(1232) and the N(1440), are in fact the two lowest-lying excitations in zN 
scattering. In contrast, the channels in which the poles have been pushed into 
the second quadrant would be characterized by precisely the kind of repulsive 
behavior at low energies that one finds in the Pr3 and Psr amplitudes. Thus 
our scenario gives at least a consistent interpretation of the real-world P-wave 
amplitudes near threshold. 

In a sense we already know that the A pole must be pushed into the 
fourth quadrant by such higher-order corrections. This is evident in Eq. (4), 
according to which the nucleon-A mass-difference is proportional to e3 jr and 
hence of order l/N. In contrast, the typical excitation energies obtained in the 
leading-order phase-shift analysis of this Section are measured in units of e jr 
which is of order No. Thus it would actually have been inconsistent for the A 
to have appeared as a resonance above threshold in our lowest-order calculation, 
since, to this order, the nucleon and A are degenerate. 

- 

Before leaving the P-waves, we ought to point out that the Prs and Psi 
amplitudes are already given quite nicely. Indeed, the standard lore is that 
the repulsive regions of Argand diagrams are very difficult to concoct in quark 
models of resonances, and so we consider it especially satisfactory to find such 
behavior emerging automatically from such a simple model. 

We turn next to the S-wave channels, where the model fails to reproduce 
the observed initial repulsive behavior of the amplitude in the Ssr channel. But 
the S-waves couple to the translational modes of the soliton, as discussed in 
Section 3. Thus just as for the P-waves one can argue that a small perturbation 
of the form depicted in Fig. lob could readily induce the desired behavior. 

&deed, we saw explicitly in Section 4 that the repulsive threshold behavior of 
the Ssr amplitude is a l/N effect (cf. Eq. (24)). 

In sum, although we initially set out to explain the severe discrepancies 
between the Skyrme model and experiment in the lower partial waves, we have 
actually accomplished much more: we have outlined a framework according to 
which the real-world -behavior of the S- and P-wave amplitudes near thresh- 
old can be understood as arising from higher-order corrections in an underlying 

-chiral-soliton model such as Skyrme’s. In particular, repulsive behavior near 
threshold arises in this picture from S-matrix poles that have been perturbed 
from the origin into the first or second quadrant, while strong low-lying reso- 
nances arise from poles perturbed into the fourth quadrant. 

Returning to the Skyrme model, we can, of course, extract resonance 

C 
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masses in a straightforward manner from the partial-wave phase-shifts. These 
masses will be functions of the adjustable parameters e and jr, which can then be 
optimi~ed~+s-&vis experiment according to several different prescriptions. Our 
preferred approach has been to perform a least-squares fit to the experimental 
masses, with all resonances, including the nucleon and A, weighted equally. 
The resulting mass spectrum is presented in Fig. 11. The optimal values for the 
Skyrme parameters calculated in this manner turn out to be {e = 4.79, jr = 150 
MeV}. An alternative prescription adopted by Adkins, Nappi and Witten’ is 
to choose e and jr in such a way as to fix just the proton and the A masses to 
their experimental values, but this yields a much poorer fit to the spectrum as a 
whole. (This is not too surprising since specifying the nucleon-A mass-difference 
involves a fine-tuning to order l/N.) Pl easingly, the values given above for e and 
jr greatly improve many of the static properties of the model as well compared 
with Adkins, Nappi and Witten,* at the expense of allowing a proton mass 
of 1190 MeV. In light of our earlier discussion, we have chosen in Fig. 11 to 
compare our lowest-lying 0 (No) excitations in the PI~ and P33 channels, not 
with the Roper and the A, which are only split from the nucleon in 0 (l/N), 
but rather with the next-higher resonances in those channels, which lie at 1700 
and 1600 MeV, respectively;+ our “prediction” in Fig. 11 for WLA (as for mN) 
merely come from Eq. (4). 

It is interesting that, even in those channels where the amplitudes are not 
reproduced very well, the model accurately predicts the resonance masses. In 
fact, most of the masses are given to within 6% of their quoted values. This 
holds all the way up to 3 GeV, which is surprising for a “low-energy” theory. 

Confronting Experiment: TN --f TA 

We can also use Eq. (18) t o obtain Skyrme-model amplitudes for the 
process ~TN ---t ?rA . Figure 12 displays the experimental TN + 7rA curves, 

drawn from Ref. 22, compared with both the 2- and 3-flavor Skyrme-model 
predictions. As in the elastic case, the agreement is surprisingly good. In fact, 
there is 100%. accord in the signs of the ?rN + 7rA amplitudes-a significant 
improvement over SU(6).‘221 The correctly-rendered minus-sign in the 0013 
channel is especially gratifying, in view of the fact that all other PP, DD and 
FF graphs lie in the upper-half plane. It is also noteworthy that, in both the 
model and experiment, the FFr5 amplitudes circle around much more than the 
F&5 and FFs7 curves. 

- L- 

* See Table II of Ref. 7. 
t Interestingly, the most recent partial-wave analysis “” finds no evidence for the N(l700), 

but instead finds a state at roughly 1500 MeV-in much closer agreement with the Skyrme- 
model prediction. 
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Fig. 11 (from Ref. 13). Spectrum of N and A resonances: Skyrme model 2rs. 
experiment. The experimental masses (indicated by dots) and uncertainties are 
taken from Ref. 24, except for the N(1882) Frs and the four I- and K-wave 
states, which are taken from Ref. 20. The Skyrme-model predictions of Refs. 
7 and 12 are indicated by crosses. In general, the 2- and 3-flavor predictions 
are identical; the exceptions are the N(1882) Frs and the A(2350) F37, which 
only exist in the 3-flavor Skyrme model.“21 Resonances have been assigned stars 
in accord with the Particle Data Group, ranging from four stars for the best 
established down-to one star for the least well established states. The most 

. 1251‘ recent analysis finds no evidence for the N(1700) Prr, but instead finds a 
state near 1500 MeV. Also shown are the four observed 3- or 4-star resonances 
which have no Skyrme-model counterparts in our analysis, namely the N(1650) 
Srr, the N(1440) Pri, the N(1675) 013, and the A(l890) Ssr. The Skyrme- 
model values for rnnr and ?nA are obtained from Eq. (9) of Ref. 3, using our 
“best fit” parameters {e = 4.79, jr = 150MeV). 
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Fig. 12 (from Ref. 13). TN -+ TA : comparison between the 2- and the S-flavor C 
_?z_ Skyrme models and the experimental solution of Ref. 22. Channels are labeled 

-- 7y LL’,I,,J, with E and L’ the incoming and outgoing pion angular momenta, 
respectively. 3-flavor Skyrme model results are depicted by solid lines, 2-flavor 
results by dotted lines. An asterisk denotes amplitudes which were found to be 
small and/or poorly determined by the available data, and were therefore not 
included in the experimental solution. Note change of scale for Skyrme-model 
plots with L’ = L 31 2. 
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6. The Big-Small-Small-Big Pattern 

- c r In. th.is Section, we examine more closely the big-small-small-big pattern 
displayed by the elastic TN partial-wave amplitudes in both the Skyrme model . 
and experiment. Specifically, for each value of L, the excursion of the amplitude 
into the unitarity circle is nearly always much larger for the (I, J) = (i, L - f) 
or (i,L+ 4) channels than for (i, L + 4) or (i, L - 3). (The glaring exception 
is the 035 curve.) 

Y 

Clearly, this pattern of size alternation is consistent with the model inde- 
pendent Eqs. (20~) and (20b), since, in these equations, the (g , L - i) and 
(g, L + 4) amplitudes are linked by large coefficients to the (4, L + i) and 
($,L - f) am i u pl t d es, respectively. But of course, the reversed pattern, with 
the two “small” and two “big” channels interchanged, would have been equally 
consistent. For a more compelling argument, one must necessarily go beyond 
the purely group-theoretic reasoning that led to (20) and add a single plausible 
dynamical assumption. 

To this end, let us return to Eq. (19), in which the physical TN + TN 
amplitudes for each L are expressed as linear combinations of the reduced am- 
plitudes 7KLL with K = L - 1, L, L + 1. Now, in the specific case of the Skyrme 
model, it turns out that TL+~,LL is essentially negligible compared to TL-~,LL 
and TLLL, as was illustrated in Fig. 8 for the case of the G-waves. Certainly it 
is plausible to assume that this continues to be true for the (unknown) optimal 
two-flavor effective Lagrangian of Nature, &t. Accordingly, let us make the 
dynamical assumption that 

TLSl,LL = 0 (40) 

in Eq. (19). The pattern of alternating size then emerges as an automatic con- 
sequence of the group theory: it is simply due to the relatively small coefficients 
multiplying ~L-~,LL and TLLL in (19b) and (19c) compared to (19a) and (19d)! 
A further prediction of these expressions is that, of the two “big” amplitudes, 
T$lfL should dominate T$LyL since the coefficients in the first case are a 

2’ 2 2’ 

little bigger- and, with the single ixception of the problematic P-waves, this is 
also apparent in Fig. 9. 

- 

In short, the big-small-small-big pattern finds a natural explanation in the 
_T_ chiral-soliton framework, uiz., that the reduced amplitude 7~+r,~,5 is negligible 

- - -compared to 7~-r$~ and TLLL, both for the Skyrme model and for &,t. 

; 

Fortunately, we have the means of testing whether this dynamical assump- 
tion is a valid approximation for &,t. For, with TL+~,LL set to zero, Eq. (18) 
can be shown to imply an additional model-independent linear relation between 
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+ (1OL + 11) 
(41) 

Figure 13 tests this relation as applied to the experimental ~FN 4 AN “O’ 
and rrN --f nA “” P-, D- and F-wave amplitudes. It should be noted that 
the agreement in the signs of the amplitudes evident in Fig. 13 is in itself 
a nontrivial result. For the P and F waves, the relation appears rather well 
satisfied. In particular, it works roughly as well as Eq. (23) (see Fig. 7), 
which likewise relates rrN t TN and TN --t TA , but was derived withor~t the 
additional dynamical approximations (40). Unlike Eq. (23), however, there is 
poor agreement evident in Fig. 13 in the D waves-which is consistent with 
the fact that the big-small-small-big pattern itself does not work well for the D 
waves (cf. Fig. 9.) 

Our conclusion, suggested by the big-small-small-big pattern and rein- 
forced by Fig. 13, is that the dynamical assumption (40) is (with the probable 
exception of the D waves) a valid approximation for f&t. 

. 
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Fig. 13 (from Ref. 13). Test of Eq. (41). The left-hand side of (41), which refers 
torN-+rrN, and the right-hand side of (41), which refers to ?rN + nh , are 
depicted by solid and dashed lines, respectively. 

L 

_Y. 7. - Skyrmiops and Vector Mesons L- 

The notable success of the Skyrme model in describing both static and 
dynamic properties of baryons has lent credence to the chiral soliton picture of 
the nucleon. Of course, if this picture is at all sensible, we ought to expect that 
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the more realistic the theory of mesons that we start with, the more accurate 
our predictions of baryonic properties will be. In constructing a realistic theory, ,; the most important modification to consider is the incorporation of additional 
low-lying mesons into the-effective Lagrangian. 

Work along these lines is just beginning. In the “w-stabilized” Skyrme 
model of Adkins and Nappi,‘261’ one introduces a coupling w&Y between the w 
meson and the topological current of the theory. This coupling, which accounts 
for the decay w + 37r, turns out to be sufficient to guarantee a stable soliton. 
Pieasingly, the static properties of the nucleon in this model constitute an im- 
provement over the unadulterated Skyrme model. One can likewise construct 
stable solitons when the Lagrangian includes p-mesons, although the static prop- 
erties of this model are as yet undetermined.“” A recent model incorporating 
w, p and Al mesons seems especially promising.‘28’ 

In this Section we generalize the zN scattering formalism presented in 
Section 3 to the case when the skyrmion is coupled to an arbitrary number of 
different species of mesons. The processes we will focus on will be of the type 

- 

where 4 and $ stand for generic mesons of arbitrary spin, isospin and parity,* 
and B and B’ denote either a nucleon or a A. The treatment will be on a 
general level; we will not specify a Lagrangian. Nevertheless, as we shall see, 
the formalism implies the existence of nontrivial model-independent linear re- 

:-- . lations between these partial-wave scattering amplitudes, analogous to those of 
Section 4. 

Our fundamental assumption will be that the effective meson theory ad- 
mits a soliton solution which is a singlet under the simultaneous action I + J of 

isospin and angular momentum. Such is the case in the usual Skyrme model, 
where the skyrmion is a hedgehog configuration (Eq. (5)). This can be thought 
of. as the pion field’s having acquired a spatially varying vacuum expectation 
value 

< ma(z) >= +F(r)e,. (42) 

_-_ In a more general Lagrangian, there is no reason for the skyrmion to 
- - - confine itself entirely to the pion field. For example, in t-he model of Adkins and 

Nappi,I’6’181 the (non-propagating) time component of the w likewise acquires a 
- - 

* In fact, they need not be mesons at all, but might, for instance, represent a quark inter- 
acting with a skyrmion in a “hybrid” model of quarks and pions. 
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VEV: 

r 
C We >= G(r) 5 < Wi(Z) >= 0. 

Similarly, in p-stabilized models,‘2”2”1 the p field is characterized by 

(43) 

< p;(z) >= 0, < p:(Z) >= Cij,jljH(r)/r . (44) 

Note that Eqs. (43) and (44) also satisfy the fundamental assumption stated 
above. 

Equations (42)-(44) g eneralize what in Section 3 we referred to as a 
skyrmion in its canonical (i.e., unrotated) orientation. Of course, just as in 
the usual Skyrme model, one can use isospin invariance to construct a family of 
degenerate soliton solutions by rotating the canonical configuration through an 
angle A E SU(2): 

- 

(45) 

Nevertheless, let us forget for the moment about the existence of these de- 
generate configurations, and focus exclusively on the soliton in its canonical 
orientation. 

We are thus (temporarily) interested in studying the two-point function 
< @df >0 representing the simplified process 

where U stands for “unrotated skyrmion.” The upper and lower indices on c$f 
and $g denote isospin and spin, respectively; the mesons will be assumed to be 

- in representations Id,, of isospin and S+,$ of spin. The nought on the propagator 
will remind us (as in Section 3) that the skyrmion is in its canonical orientation. 

The key to our results is the observation that the vectorial sum 

K=Sd+L+I+ (46) 

of the meson’s angular momentum and isospin will be conserved in such a pro- 
; 

_e. cess. This conservation law, which is a direct consequence of our fundamental - 
- - assumption, is the appropriate generalization of Eq. (9). As in Section 3, we 

- - can make the most of this symmetry by expanding the meson field in eigenstates 
of K2 and K,, as follows: First, 4 and II, are expanded in spherical harmonics 
ILM > and 1 L’M’ >, respectively. Orbital angular momentum is then added 
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to isospin to form states lfi2i7,L2 
K’ = L’ + 1,~. This hybrid angular 

c r spin to..for-m states IK2K,K2L2 > 

> and IK’2R~L’2 >, where K = L + 14 and 
momentum is, in turn, added to the meson’s 
and IK2K,K’2L’2 >. We thus have: 

. 
< ?q(+$f(~) >o= c YL’M’(f-qY&(fq 

LML’M’ 

X c < L’I&’ >< gILI+ > c < K’StiIK >< KII&, > 
jiE*iG: h-K, 

x 7Kji&LL’ 7 
(47) 

where 7 is the reduced amplitude for the process &CJ -+ $X7, and < K/L14 > MN 
is shorthand for the Clebsch < KK,LI+jLI$Ma >, etc. This is the appropriate 
analog of Eq. (11). 

It is easy to generalize this formula to the case when the skyrmion, instead 
of being in its canonical orientation, has been rotated through an angle A, as in. 
Eq. (45). By isospin invariance, the 2-point function simply becomes 

- 

generalizing Eq. (13). Physical C#JB - t,bB’ scattering then requires that we 
fold in the initial and final baryon wavefunctions, exactly as in Eq. (14). 

To compare with experiment, some further massaging is in order. We first 
restrict the incoming and outgoing mesons to orbital angular momenta L and 
L’, respectively. The initial and final meson-baryon systems are then projected 
onto states 11 tot totzJ~otJtotrStot > and II’ I’ J’ J’ S’ > of definite total I tot tot.2 tot tot2 tot 
isospin, angular momentum, and spin. Altogether, this projection leaves us with 
an expression for the propagator involving a product of 14 Clebs-ches! Fortu- 

nately, upon summation, our expression simplifies enormously, and we find: 

Here 17 and q’ are group-theoretic coefficients characterizing the entering and 
exiting channels, respectively; they are given in terms of 9j’-symbols by: L 

-1. 
- L- 
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and 

r 

. q’= [i2K + 1)(2x’+- 1)(2R’+ 1)(2S;,, + l)]+ 

L’ I$) k’ 

st’ot R’ qb 
J I K 

. (Sob) 

Note that conservation of isospin and angular momentum has emerged in the 
Kronecker-G’s of Eq. (49). 

Equations (49) and (50) are the desired generalization of Eq. (18) to 
the case when the initial and/or final meson has arbitrary spin and isospin. 
Reassuringly, if one plugs S4 = S$ = 0 and I4 = I$ = 1 (i.e., the quantum 
numbers of the pion) into (SO), then the Sj-symbols collapse into Gj-symbols, 
and we recover Eq. (18). In the remainder of this Section, we shall concentrate 
on the model-independent predictions implied by Eq. (49) for the processes 
TN -+ pN and zN -+ wN. 

Let us denote the independent amplitudes for xN -+ pN by the nota- 

tion T~~~~o,,Jt,.,,S,..,* When L’ = L f 2, Eq. (49) can be shown to imply a 
simple proportionality between the isospin-$ and the corresponding isospin-$ 
amplitudes: 

T sNpN 1 nNpN 
L,L+L,;,L+;,; = -5TL,L+2,;,L+;,; ; 

TnNpN 1 aNpN 
L,L-2 3 L-1 2 = -pL,L4,+,&;,; - 

92, 232 

(51) 

Similarly, for the more complicated case where L’ = L, Eq. (49) im- 
plies that the four independent isospin-i amplitudes for each value of L can be 

:p’ ressed as linear combinations of the four isospin-i amplitudes. We find: ex 

T nNpN 
LLf,L-;,f 

T nNpN 
LL&L+;,; 1 =--- 

Tz;i"L-,.+ 4L -I- 2 

-a2 -82 -p7 --a-‘/926 

-02 -82 G/3-‘7 

a6 

-Pr I37 -2 a-‘P76 

-a6 a6 a/3-‘76 2 1 
T %NpN 

LL&,L-),f 

TEi;+ 4.4 

T nNpN 
L&&L- #,) 

T nNpN 
LL),L+Q*) 1 (52) 

T nNpN 
LL;,L+;,; - 

- Figure 14 illustrates Eqs. ,-(51) and (52) as applied to. the experimental 
partial-wave xN + pN amplitudes, drawn from Ref. 22. The channels depicted 

- -c are, unfortunately, the only ones for which sufficient experimental information 
is currently available for comparison. One should bear in mind that the curves 
do not represent the data directly, but result from a delicate, model-dependent 
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. 

- 

l-86 5320Al 

_=_ 
- Fig. 14 (from Ref. 10). Comparison of experi- 

m&M isospin-g--7rN + pN amplitudbs (left- 
- a...- hand column) with the appropriate multiple of 

the experimental isospin-k amplitudes (right- 
hand column) to which they should correspond 
to leading order in l/N. 
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analysis of the X~TN final state. As such, they should not be taken as definitive.* 
Xlthou.gh,the shapes of the curves in the left- and right-hand columns are not in 

particularly good correspondence, the agreement in the signs of the appreciably- 
coupled resonances (i.e., whether the curve lies in the upper or lower half of 
the circle at a resonance energy) is completely nontrivial. This in itself can 
be regarded as quite promising-especially when contrasted to the fact that 
SU(6) (in both its “unbroken” and “l-broken” versions) makes several incorrect 
(r.elative) sign predictions for the resonances shown.[221 

Of course, Eq. (49) implies similar model-independent linear relations 
that are straightforward to derive for such experimentally accessible processes 
asrrN--+pA,rrN-+fN, and TN + wN . For example, in the latter case, one 
can show: 

= -. yNwN 
LLq,L+;,q * 

- 

When reliable experimental low-energy partial-wave data for such processes be- 
come available, they will constitute further important tests of the chiral solitdn 
approach to hadron physics. 

8. Formalism for 3-Flavor Scattering 

In this Section we extend the formalism for TN and rrA scattering pre- 
sented in Section 3 to the case of three light flavors. This will enable us to study 
processes of the form 

~#JB --+ qi’B’, 

1+ where #I and c$’ are pseudoscalar-octet mesons and B and B’ are z 3-t octet or z 
decuplet baryons. We shall work in the limit of esact SU(3)a,,,; the opposite 
limit, corresponding to V&K >> m,, has been studied in Ref. 6. The development 
in this Section closely parallels that of the 2-flavor case, presented in Section 3. G 

_e. We shall again be focusing ,on Lagrangians such as Eq. (1) where now - 
- -U is an element of SU(3). I n addition, the action must-be augmented by the 

* In particular, the large “tail” on the SD 31 curve actually exceeds the unitarity bounds 
imposed by the elastic partial-wave amplitudes (cf. Fig. 3 of Ref. 22); similarly for the 
FP35. 
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addition of the Wess-Zumino term 

i .-- 

. 

_. iN -- 
240~~ / 

d5Zcijkzm Tr(Uta;UUtdjUUYakUUtaluutamu) (54 

which correctly reproduces the flavor-current anomalies of the strong interac- 
tions; here the integration is over the manifold S3 x D2 whose boundary is 
compactified space-time S3 x S1.[“” 

As in the case of 2-flavor scattering, the key assumption is that the La- 
grangian admits a hedgehog soliton solution Uo that lives in the conventional 
su(2) ieospin subgroup of SU(3), viz : 

with Xa, a = 1, . . . . 8, the Gell-Mann matrices. We shall refer to UO as a 3-flavor 
skyrmion in its canonical orientation. * 

Of course, other orientations of the skyrmion are possible. In fact, by 

- 

virtue of the assumed SUM,,,, invariance of the Lagrangian, one can construct 
a family of degenerate solitons simply by taking 

UA = AUoA-‘, A E SU(3). (56) 

: -‘- - 

However, as before, it is convenient to forget at first about the existence of these 
degenerate configurations, and concentrate on the simplified problem of mesons 
scattering from Uo. ‘This entails letting 

UO --+ exp 
I 

iF(r) 5 i;v + $ -& cfQa 
i=l A Cl=1 1 

(57) - 

and expanding the Lagrangian to quadratic order in the 4’s. In particular, the 
Wess-Zumino term makes a contribution 

d4zF;2;F(1 - cos F)(K-It+ + ?k”) 

-1. to the quadratic action.+ 
- L- 

* The results of this Section would be unaffected if the r] field had a radially-dependent - <..e- expectation-value as well, although this is not the case for the particular example of 
Skyrme’s Lagrangian. 

t This contrasts with the baryon-number-zerosector of the theory, in which the Wess-Zumino 
term first contributes to five-meson processes. ‘30’3’1 
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What will the resulting quadratic Lagrangian look like? Thanks to the 
hedgehog structure of the skyrmion, it will consist of a sum of terms in which all 

,K-’ is&pin and. spatial indices have been contracted together in all possible ways to 
. form singlets under the “hybrid” angular momentum K, which is the vectorial 

sum of isospin and angular momentum. Also, since the skyrmion (55) commutes 
with X8, the Lagrangian will embody hypercharge conservation. Consequently, 
kaons will be coupled only to kaons, and antikaons to antikaons. There will be 
r1r7~ and r/q couplings as well, but rrrn terms are forbidden by G-parity. In other 
words, the T-matrix Tba characterizing the process 

4” + canonical skyrmion 4 c$* + canonical skyrmion, 

which is a priori an 8 x 8 matrix in the flavor-space of pseudoscalar-octet mesons, 
actually block-diagonalizes into a 3 x 3, a 1 x 1, and two 2 x 2 pieces, corresponding 
to 7~, q, K and K scattering, respectively. 

We have not yet made full use of the K symmetry of the canonical 
skyrmion. To do so, we first expand 4” and 4* in spherical harmonics YLM 
and YL~MJ, with primes as always denoting final-state quantities. These orbital 
angular momenta arc, in turn, added to the mesons’ isospin 1’ and Ib by famil- 
iar Clebsch-Gordanry to form states IK2K,L2P2 > and IK’2KLL’21b2 >. The 
K symmetry of the canonically-oriented skyrmion then implies K2 = K’2 and 
K, = Ki; likewise, thanks to the block-diagonal nature of T*‘, we must have 
la = I*. In contrast, L and L’ will not necessarily be equal, but can differ by 
two. Scattering in these K-channels will then be described by the reduced am- 
plitudes TiIL”yLl, where {I,Y} runs over the values {l,O}, {O,O}, and {i,fl}. 
In equations, the T-matrix will thus be given by: 

Y 

< q+(z’)jL’M >< LM~cy(z) > 
LML’M’ 

x c < L’IbMtIb .IKK, >< KK,ILI’MI,a > 7i;;a) 
KKz 

where {la, I$Ya} and {Ib, It,Y”} are the SU(3) quantum numbers of the in- 
coming and outgoing meson, respectively. 

This formula is easily generalized to account for the scattering of a meson, 
not from a canonically-oriented skyrmion Uo, but rather from a rotated skyrmion 
VA as defined by Eq. (56). The prescription is simply - 

- 

with Dc8)(A) th e adjoint representation of A. Armed with Eqs. (59) and (60), 
we are finally prepared to tackle the scattering of a meson off a physical baryon, 
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which, as in the 2-flavor case, is characterized by a superposition of UA’s for 
” all values&-of A E SU(3), weighted by appropriately-constructed wavefunctions 

x(A). The physical T-matrix is then given by: . 

J 
dA xL,,~(A) C Dc8)(A)bd TdC Pc8)(A)LaXinitial(A) * (61) 

fw3) 
cd 

The final ingredient that we need is an explicit expression for the baryon 
wavefunctions x(A) d escribing a baryon with spin, isospin and hypercharge 
quantum numbers {s, sZ, i, i,, Y}. Unfortunately, the 3-flavor wavefunctions 
given by Guadagnini,1311 which are often used in the literature, are characterized 
by nonstandard transformation properties under isospin and angular momen- 
tum. The correct wavefunctions are, instead, 

where Q: = {s,-sZ, I}, /? = {i,i=,Y} and R denotes the SU(3)fi,,,, representa- 
tion of the baryon.* 

As in the Z-flavor case,“’ the integration over A can be carried out in closed 
form, thanks to some standard identities. The resulting expression simplifies 
greatly if, in addition, we project the initial and final meson-baryon systems 
onto states of definite total angular momentum J and J’, and total SU(3)n,,0, 
defined by quantum numberst {I&, 7, Itot, Iztot, YtOt}. (The latter projection 
is accomplished with the help of an SU(3) Clebsch-Gordan coefficient 

-- which can be factored conveniently into the product - 

(ili2izliz211totIztot) - 
Rl R2 

ilY1 i2Y2 

of an SU(2) Clebsch-Gordan coefficient with a so-called isoscalar factor.‘S31 ) We 

* See, for example, Manohar. “” The fact that the “left-handed hypercharge” is unity is a ~ 
nontrivial quantization condition arising from consideration of the Wess-Zumino term. Is” _P_ 

-- - Our normalization in (62) is such. that JsUtsI dA = 27?. -_ _ 
t Here --y is a largely redundant index whose only real purpose is to distinguish between 

degenerate representations that can occur in the product of two SU(3) representations, 
as for example the Say,,, and 8antisynl in 8 x 8.‘531 As can be seen in Eq. (3), it is not in 
general conserved, even for exact SU(3)fl,,,,. To understand this, one need only consider 
the nonvanishing SaIltisym - Ssym coupling Tr({B, @}[B, a]) between the baryon octet B 
and the meson octet, @. 
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find, after some massaging: 

. 

: -‘- 

.5- -T({EsRRt,ty~t~t~~t,tYt,tJ} --+ {~‘s’R’Rl,tr’r,bt~~t,tYt~tJ’}) = 

(-1)5)-8 ddim R . dim R’ 
dim Rtot 

c c E(2i + 1)(X + 1) 
{IY} i K 

The long string of Kronecker 6’s expresses the reassuring fact that total angular 
momentum and S U ( 3)aavor are conserved in the scattering process. The index 
K assumes integral values when {IY} = (1,O) or {O,O} and odd-half-integral 
values when {IY} = {i, &l}, while the index i assumes odd-half-integral and 
integral values, respectively, in these cases. In addition, these sums are con- 
strained by the various triangle inequalities implicit in the two Sj symbols (cf. 
Fig. 3), as a consequence of which we find the following contributing reduced 
amplitudes for physical processes: 

cbB --f &B’ with L’ = L: 

the eight reduced amplitudes { 7”ifiL, 72-f}, ?“if}, 722:‘,,, 7::;-;:} 
2’ 2’ 

all contribute; 

q5B --t #B’ with L’ = L k 2: 

- only 7222, K = (L + L’)/2, contributes. 

Of course, for most physical processes, one is interested in a superposition 
of pure SU(3)a,,,, representations. As an illustration, consider the case 
KN + ?rC in the isospin-1 channel. With the help of the table of isoscalar 
factors given in Ref. 33, the initial and final states can be written as 

a AC and 
. 

out < xq = -A- 
6 

<ml+-& <10[+%t4 1 
3 

antieym * 
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The amplitude for this process is thus given by 

r dlt Y \kl~ >in= 
-- 

y; <lOJlO> -; <lO~lO > 
. 

- -!- < 8antiaymIbym > + 5 < 8antieymI8antisym > . 
& 

Each term in this expression can, in turn, be expressed in terms of reduced 
amplitudes using Eq. (63). 

Note that the derivation of (63) is independent of the particular La- 
grangian that we started from, apart from the requirement that it admit a 
hedgehog soliton as in Eq. (55). 

It is important to check whether the generally successful model- 
independent relations for TN -+ TN and rrN + 7rA analyzed in Section 4 sur- 
vive the incorporation of strangeness. A priori, there is no cause for optimism 
on this score, for the following reason. In the a-flavor approach, the four physi- 
cal TN amplitudes for each L > 0 (i.e.,.7 = L & i and I = 8, i) are expressed 
through Eq. (19) as superpositions of only three reduced amplitudes. Conse- 
quently, at least one nontrivial relation between physical amplitudes is guaran- 
teed for each value of L (in fact, there turned out to be two). In contrast, in 
the S-flavor approach, these same four amplitudes are linear combinations of 
eight reduced amplitudes. It should therefore come as a surprise that all of the 
linear relations except for Eq. (23) survive virtually unscathed in the 3-Aavor 
formalism. The only modification consists of small correction terms in Eqs. (20) 
and (21) related to the presence of the Wess-Zumino term (see Section 7 of Ref. 
13 for details). 

L 0. The 3-Flavor Skyrme Model 

This Section applies Eq. (63) to the specific case of the 3-flavor Skyrme 
model, whose action is given by the sum of Eqs. (29) and (54), with U E SU(3). 
A comprehensive analysis of all TN, KN and 3fN processes in the S-flavor 
Skyrme model VS. experiment is to be found in Ref. 13; here we can give only 
a smattering of results. G 

-2. TN Scattering 
- L- 

Figures 9 and 12 given earlier in Section 5 display both the 2- and 3- 
a* - flavor Skyrme-model predictions for the nonstrange ‘processes rrN 4 rrN and 

- TN + 7rA , juxtaposed with experiment. In general, the 3-flavor graphs consti- 
tute an improvement over their 2-flavor counterparts. This is primarily a matter 
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of scale: the S-flavor formalism allows for inelastic channels such as KC which 
r are not present in the 2-flavor approach, and which consequently serve to shrink 

the size of the curves. 

Interestingly, the 3-flavor Skyrme model can be shown to contain sec- 
ondary resonances in the Fr5 and J’s7 channels that are in plausible correspon- 
dence with the tentatively observed states at 1882 and 2350 MeV,‘respectively.1’21 
Other than this, however, the 2- and 3-flavor Skyrme models yield virtually iden- 
tical spectra of nucleon and A resonances, summarized in Fig. 11. 

In general, there is reasonable agreement between the 3-flavor Skyrme 
model and experiment for TN processes involving’strangeness, wit., TN --t KC , 
~rN-tKA,and~rN-+~N. (It should be mentioned that the experimental 
situation here is much less reliable than for TN --+ rrN and ?rN ---) XA .) Figure 
15 presents the results for TN + KA . Here, the most noticeable feature of the 
model is the sign alternation characterizing the plots; this “down-up” pattern 
appears to be present in Nature as well, albeit in a less clearcut manner. Not 
surprisingly, there is poor agreement between the model and experiment in the 
S-wave channel, just as for rrN + IAN . 

KN Scattering 

One can also use the 3-flavor scattering formalism to study KN scattering. 
KN processes occupy a special role from the point of view of the quark model, 
since resonances in these channels (unlike ?i;N) cannot correspond to qqq, but 
rather qqqqq states. Not surprisingly, in Nature, the majority of amplitudes 
show no hint of a resonance, and are in fact repulsive (that is, curve clockwise). 
The existence of any such resonances is still an open question, with the most 
recent analyses favoring such a state in the 003 channel, and probably in several 
others as well. 

Figure 16 illustrates elastic KN scattering in the Skyrme model juxta- 
posed with the results of the two latest partial-wave analyses.‘S5’SG’ The overall 
degree of agreement between the model and experiment is poor. This should 
not come as a surprise, for the following reason. It turns out that the 3-flavor 
Skyrme model with N = 3 contains as rotational excitations of the canonical 
hedgehog soliton, Eq. (SS), an infinite tower of baryon multiplets beyond the 
usual spin-i octet and spin-i decuplet. 1311 This tower includes, in particular, a 

- spin-i n and spin-k and spin-$1-27’s. Each of these multiplets would natu- 
rally be expected to have excitations of higher angular momentum, just as the 
usual octet and decuplet have; such states would manifest themselves as reso- 
nances in KN scattering. In short, there is nothing exotic about KN processes 
in the Skyrme model; this is confirmed by the multitude of obviously resonant 
Skyrme-model amplitudes in Fig. 16. 
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It is instructive to consider an analogous situation involving the a-flavor 
Skyrme model. It is well known that this model contains states with I = J = 
1-3 5 7 
37 2,2Y2F’ that emerge as rotational excitations of the hedgehog.13’ The two 
lowest-lying multiplets are naturally identified with the nucleons and A’s, re- 
spectively, while the states with I = J 2 i are traditionally labeled “artifacts of 
the model” and swept under the rug. Thankfully, isospin conservation forbids 
these states from appearing in the s-channel of TN scattering, so that they do 
not really cause a problem.* However, one can consider the gedanken exper- 
iment of ,+A++ scattering, which is pure isospin-%. From the quark point of 
view, this is an exotic process just like KN scattering, and we would expect 
to see a high proportion of repulsive amplitudes. In contrast, in the skyrmion 
approach, there is nothing exotic about this channel, since isospin-% states exist; 
indeed, nearly all the Skyrme model graphs for .+A++ + z+Ai+ evince the 
usual resonant behavior. 

The moral is that the skyrmion approach can hardly be expected to yield 
accurate information about KN scattering, as these processes directly probe 
those states that one would prefer to dismiss as unphysical artifacts of the model. 
This having been said, it is interesting to speculate about whether those exotic 
states that do seem to be present in Nature reflect in any way the “skyrminess” 
of the nucleon. We offer the following cautious observations: 

.- - - 

1. Although the four P-wave Skyrme-model amplitudes appear to be re- 
pulsive, close inspection reveals.that the Par and Prs amplitudes actually curve 
anticlockwise before the cusps. Therefore, they might be interpreted as very 
weak resonances superimposed on a strongly repulsive background. It is in- 
teresting to note that these are the same two P-wave amplitudes that curve 
anticlockwise in Nature. 

2. The Do3 channel is the most prominent of the D-wave curves in the 
Skyrme model, and it is the most plausibly resonant D-wave channel in Nature 

-as well. 

3. Interestingly, there appears to be some unexpected resemblance in 
both the P- and D-wave sectors between the four KN + KN experimental 
amplitudes and their TN + rrN counterparts (compare “Experiment I” in Fig. 
16 to Fig. 9). In particular, in the P  waves, the first and fourth amplitudes for 
both processes curve anticlockwise, while the second and third curve clockwise. 
Likewise, the D waves are characterized by a pattern of “decreasingly resonant 

_T. 
- behavior” across the four graphs i_n each process. Consequently, it is conceivable 

that the same l/N corrections that are expected to improve the agreement in 
- a* 

- 

* Note that an isospin-% baryon B; can be produced in the Skyrme model in the process 
TN ---* ABP and is therefore required for unitarity. 
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these waves between the Skyrme model and experiment for rrN + TN will do 
likewise for KN -+ KN . 

41 Lastly, we have come to expect reasonable agreement between the 
Skyrme model and experiment in the F, G and H waves. It is unfortunate that 
the only such channels for which experimental KN + KN amplitudes have 
been presented, namely the Frs, G17 and Hlg, are predicted by the Skyrme 
model to be small and rather featureless (Fig. 16). A much more critical test of 
whether the model has anything relevant to say about KN scattering would be 
the appearance of resonances in the Fos, Go7 and Hog channels. An analysis of 
these channels can be expected in the not-too-distant future.* 

f?N Scattering 

: - . 

Finally, the Skyrme model gives mixed results in describing RN scatter- 
ing. On the level of individual graphs, the model works less well on the whole 
for EN than for TN scattering. Nevertheless, in certain important respects, the - 
agreement is quite pleasing. Most notably, for the processes 3;iN + KN and 
EN -+ TX , depicted in Figs. 17 and 18, respectively, the model successfully 
reproduces a pattern reminiscent of TN + TN that characterizes the four inde- 
pendent experimental amplitudes for each value of L: specifically, in the model ‘- 
as in Nature, the Per, 003, Fos and Go7 amplitudes travel significantly further 
through the unitarity circle than do their counterparts. Not surprisingly, this 
“big-small-small-small” pattern finds the same sort of natural group-theoretical 
explanation in the context of 3-flavor chiral soliton models as we invoked in 
Section 6 for the big-small-small-big pattern in 2-flavor models; the interested 
reader is referred to Section 6 of Ref. 13 for full details. 

All in all, despite areas of deep disagreement with experiment, such as 
“exotic” KN processes, and S- and P-wave scattering in general, we consider 
the overall degree of accord obtained from such a simple model as Skyrme’s to 
be powerful evidence for the validity of the chiral soliton approach to baryon 
physics. 

* R. A. Arndt, private communication. 
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