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Abstract 

Several laser plasma accelerator schemes are reviewed, with emphasis on the Pl,asma Beat Wave Accelerator (PBWA). 
Theory indicates that a very high acceleration gradient, of order 1 GeV/m, can exist in the plasma wave driven by the 
beating lasers. Experimental results obtained on the PBWA experiment at UCLA confirms this. Parameters related to the 
PBWA as an accelerator system are derived, among them issues concerning the efficiency and the laser power and energy 
requirements are detailly discussed. 

1. Introduction 

The acceleration gradient attainable from the currently existing high energy accelerators is around 20 MeV/m. To 
extend the present technology to future ultra-high energy accelerators, the sizes are nwesari]y be enormous. In recent years, 
various novel ideas on future accelerators have been proposed,‘12 among them plasma accelerators3 promise to provide very 
high gradients. 

Plasmas are known to exhibit oscillations where electrons and ions execute periodic motions. For fu]]y ionized p&ma 
with density no particles per cm3 for each spices, a density perturbation nl due to charge separation during oscillation 
would provide an instantaneous longitudinal electrostatic field 2, i.e. V . ,?? m  k,E w 4xen1, where k, = wp/c is the plasma 
wave number. Since the maximal possible density perturbation is nfn” a no, the maximal acceleration gradient provided 
by the .?? field is eEmax - 47rc2n0/(wp/c) - 6 eV/cm. For a laboratory plasma of density no = 1018 cmm3, we have 
eEmax w 100 GeV/m. This is more than 3 orders of magnitude better than that of the conventional accelerators. 

For an effective acceleration of relativistic particles, it is necessary that the plasma wave phase velocity be close to c, the 
speed of a high energy injected electron beam. To achieve such a plasma oscillation several ideas employing lasers have been 
suggested. The Plasma Beat Wave Accelerator (PBWA)’ uses two laser beams beating at the plasma frequency wpr while 
the Plasma Grating Accelerator5 side-injects a polarized laser beam on a plasma where static ion ripples are prepared by an 
acoustic wave. Other concepts like the Plasma Fiber Accelerator’ and the ‘Surfatronn7 are variants of the PBWA aiming at 
improving its deficiency in different ways. TheJe are various other proposals on laser plasma accelerators,‘?’ but we are not 
covering them here. 

In this paper we review primarily the concept of PBWA. Other laser plasma accelerator schemes mentioned above will 
only be discussed auxiliary to the PBWA. Our approach, which follows closely to Refs. 8 and 9, is to consider the PBWA as 
a system, and to look for a self-consistent set of parameters such that the system is operative. This serves as a guidance for 
laboratory test of principle experiments, and for the discussion on various laser requirements. 

2. Physical Mechanism8 of Plasma Wave Generation 

2.1 The Ponderomotive Force in a Plasma 

It is well known that a plane electromagnetic wave cannot cause any net drift of a charged particle along its direction of 
propagation. An originally stationary charged particle experiencing such a EM wave would execute a %gure 8” closed orbit 
motion. Consider now two beating EM waves. In this situation the amplitudes of the EM fields vary along the direction 
of propagation. Accordingly the force due to the magnetic field does not balance to that due to the electric field, and the 
charged particle would drift in the longitudinal direction. This net force is called the ponderomotive force. 

A plasma can be driven resonantly by the beating lasers through the ponderomotive force if the frequency and wave 
number differences beiween the two lasers match with those of the plasma wave, i.e. wp = w1 - w2 and k, = kl - kz, where 
wi Bnd k, are the frequency and wave number of the two lasers, and wp the plasma frequency, wp f [4xe*no/m]1/2. The force 
that excites the plasma is most easily calculated from a Hamiltonian which has been averaged over the fast oscillations of the 
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laser frequency. This leaves only the beating effect of the two laser frequencies. Assuming that the difference in frequency 
between the two laser lines is much smaller than the laser frequency, the averaged Hamiltonian can be written as 

(ff) = g + Eg [l + cos(kpz - wpt)] ( 

where we have dropped the index on laser frequencies on w. The last term is the ponderomotive potential due to a beating 
laser with a finite cross section. 

Assume that the radial dependence of the ponderomotive potential is given by 

1 2 r2 
E:(r) = 2E,2 

K2(kpa) lo(kpr) + - - - - - 
2 (k,a)2 2a2 

r<a 

h(kpa) h(kpr) r>a 
(2) 

where K, and 1, are modified Bessel functions. This radial profile is parabolic near the origin but falls off exponentially for 
r > a. It is chosen to yield a simple parabolic dependence in the ponderomotive force expression below and to simplify the 
discussions on the transverse behaviors of the PBWA in the following sections. 

To use the above results we need the divergence of the force due to the Hamiltonian in Eq. (1). This is given by 

V * F = 4re2nl + c’&(r) + e’Bl(r) cos(k,z - wpt) , (3) 

where nl is the plasma density perturbation and 

Be(r) = 
Wkpa) lo(kpr) - & 

r<a 
r<a 

P 3 El(r) = . (4) 

0 r>a r>a 

2.2 The Plasma Response to the Beating Lasers 

To find the plasma response to the ponderomotive force and the electric field associated with the plasma wave, we work 
with the linearized, nonrelativistic fluid equations in a plasma, 

an1 Z+nO(V.Cl)=O , $= gi+p 
m  m’ 

and solve for the perturbed plasma density nl. il is the electric field due to nl and F’ is the ponderomotive force. 

The plasma is supposed to be so underdense that wp < w1 x w2 s w. Therefore the phase velocity of the plasma wave is 
matched to the “phase velocity” of the beat pattern. This is the group velocity of EM waves in a plasma, 

plama = “p _ dw = 
VP k, - dk 

Solving for Eq. (5) with V . & = 4nen1, we find 

a2nl 
atz + win1 = -2 [Be(r) + El(r) cos(kpz - wpt)] . 

(6) 

If the laser pulse begins at kpz - wpt = 0 and the plasma is unperturbed ahead of it, the solution of the above equation is 

nl(r,z,f) = - 4n Be(r) [l - cos(kpr - wpt)] - s (kpz - wpt) sin(kpr - wpt) . (8) 

The expression has two distinct terms. The first term is due to the shock excitation of the plasma by the front of the laser 
pulse, while the second term is due to the resonant driving of the plasma by the beating lasers. Since we would like to have 
the second term bLild up over many cycles, the second term will be much larger than the first term. In addition, in an actual 
device the laser pulse would turn on more gradually thus reducing the shock excitation. For these reasons we will neglect 
the first term in Eq. (8) in the following analysis. 
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In this treatment the plasma perturbation grows linearly in time during which the laser pulse extents (see Fig. 1). Beyond 
the linear regime the growth saturates due to various effects. One effect is the relativistic frequency detuning’O where the 
plasma frequency shifts to wp/r 3/2 when the electrons in the plasma becomes relativistic. In this case the laser drive is off 
resonance, and the perturbation saturates at a maximum value nTU, 

($.!-),,,,,a,io” = [y- (ST&) (c!2)]1’3 I [y- ala2]“3 . 

Another degradation comes from strong couplings between the primary beat wave and the larger k secondary electrostatic 
modes.” It is found experimentally that this effect saturates the beat wave amplitude well below that expected from rel- 
ativistic detuning. In this paper we consider modest oi’s such that various nonlinear effects can be neglected. For a laser 
pulse duration T the maximum perturbation is therefore (from Eq. (8)) 

n;““(r) = s (I- $) r<a . (10) 

The longitudinal and transverse electric fields for r < a can be found by solving the Poisson’s equation, V’C$~ = -4nenr, 
and are given bya 

K2(kp~)IO(kpl)+~(l-~)-~}cos(JipZ--wpt) , 

& = -wr$za { Kz(kpa) Il(kpr) - A} sin(kpz - wpt) . 
P 

For reasons which we will discuss later. the transverse size of the driven beam must be somewhat smaller than the transverse 
size of the laser beams. In addition if k,a >> 1, then the fields in Eq. (11) takes the following form: 

cos(kpz - wpt) 

r, z wprkpeEi r 
4wZm k,a2 

sin(kpz 
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. Fig. 1. Analytic and numerical calculations of the 
plasma beat wave growth in time. 
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Fig. 2. The longitudinal and transverse com- 
ponents of the plasma wave driven by a beating 
laser. 
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We see that, characteristically in the plasma wave there is a longitudinal force e& that either accelerates or decelerates 
the driven bunch of electrons, and there is a transverse force ef, shifted in phase which either focuses or defocuses the driven 
bunch (see Fig. 2). From Fig. 2 it is clear that we have both acceleration and focusing over l/4 of the plasma wavelength. 

2.3 The Plasma Grating Scheme 

As mentioned in the Introduction, there are generically two types of laser plasma accelerators. The PBWA represents the 
type where the laser beam (or beams) travels collinearly with the accelerated electron bunch. The other type, represented by 
the Plasma Grating Accelerator,s 
in the plasma (see Fig. 3), n(z) = 

employs side-injected laser which is polarized along the direction of a static density ripple 
no + nr (2) = no + 6n sin k,z, where k, is the wave number of the density ripple. Such a 

ripple might be produced by an ion acoustic wave or by ionizing a grating. The laser field wiggles the electrons in the ripple 
by an amount 62 = (eEo/mwZ) cos wet, while the ions are too massive to respond. This produces a longitudinal electric field 
disturbance given by the Poisson equation: 

a& an 1 
- = 4dn = 4ne z 6.z 1! 3 2 Eok, cm k,z coswot 
a2 ~0’ no 

. (13) 

co 
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Fig. 3. Density oscillation in the plasma grating accelerator. 

3. Acceleration in Plasma Waves 

In this section we consider the PBWA as an accelerating system and discuss some dynamic aspects of an accelerated 
electron bunch. The basic layout for PBWA is shown in Fig. 4. In order to make optimum use of the laser beam it is 
necessary to match the Rayleigh length R to the acceleration section. Here we choose the section length L to be twice of 
R. This in turn determines the diffraction limited spot size, a 2 = RX/n = LX/2x. On the other hand, a relativistic electron 
beam is much less divergent, and is given by a radius b. According to Eq. (12) th e acceleration gradient efz has a parabolic 
dependence on r, which induces an energy spread among particles at different radii after being accelerated for some distance. 
For high energy physics purposes, the final energy spread has to be limited to a small percentage. This can be insured if 
b < a. The accelerated beam is injected behind the laser beams at a proper phase such that it is both accelerated and 
focused (cl. Fig. 2). 

\ 
Accelerated / Plasma / -lCTl- 

4 RE e- Beam Column Laser Pulse 53!12All 

Fig. 4. A schematic layout of the PBWA. 

3.1 The Betatron Oscillation 

While accelerating, the driven beam will in general slip over the phase of the plasma wave. If this phase slippage is slow, 
then we can calculate the transverse focusing effects as if the beam were at a fixed phase on the wave. 

The differential equation governing the transverse “betatronn oscillations of a highly relativistic particle is 

d=r f, 
a=es ’ . (14) 
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where 7mc3 is the particle’s instantaneous relativistic mass. For amall radius from Eq. (12), we have 

Ft _ = w,rc’Ej isin 4 
dz’ 4~m1c1w1a2 1 r ’ (15) 

where 4 is the phase along the plasma wave that the driven beam locates. Identifying the coeiBcient of r above with p-a 
yields the beta function: 

B= 
4~m’eaw2a2 “’ 

wprc2Ei sin 4 1 ’ 06) 

3.2 Phase Slippage 

Since the driven beam velocity is approximately e, whereas the plasma phase velocity is c(1 - w~/w’)~/~ < c, the driven 
beam will slip along the plasma wave. From Eq. (6) the phase rlippage in distance L is 6 = (wl/w2)kpL/2. For a given phase 
slippage the plasma frequency is therefore determined by 

(17) 

On the other hand, the driven beam sees a varying ef, along L due to the phase slippage 6. The averaged value of efz is 
related to the ideal value by a form factor sin6/6: ~ 

where Q is the fraction of the plasma density which is perturbed, i.e. nl = ano. Maximizing efr, we find that 6 2 5~116. 

From the above discussion we see that in PBWA the phase slippage is a non-negligible effect that influence the performance 
of the scheme. To avoid a large 6, two ideas have been introduced. The Surfatron’ employes a transverse external magnetic 
field which forces the accelerated particles to “surf” around plasma waves. With proper arrangements, the beam could in 
principle lock into a fixed phase. The Plasma Fiber Accelerator,s on the other hand, tries to increase the phase velocity 
of the beat wave to near c. This is achieved by creating a duct structure in the plasma, in which the density is low inside 
and high outside such that the EM wave is evanescent, enabling the plasma beat wave phase velocity to be equal to any 
prescribed velocity within the channel. 

4.1 The Transverse Size 

4. The Laser Requirements 

At the’beginning of the previous section we defined our system with a diffraction limited laser spot size at the waist, 
a2 = RX/r = LX/27r. In terms of a chosen phase slippage 6 and eliminating the section length L, we can verify that 

Notice that the effect of Rayleigh diffraction diminishes when the laser beam reaches the threshold power,12 

Wcz~110m.2(~)2(~)’ . 
w9 w9 

When above the threshold, the laser beam would exhibit relativistic self-focusing effect during propagation through a 
plasma. This occurs because the electrons near laser beam axis ue the ones b&g driven the hardest, which acquire higher 
relativistic masses and therefore result in hiiher 1-r group velocities (et. Eq. (6)). From Computer rimulationls it is found 
that the lwr beam will focus down to a radiue w c/w9 asymptotically. One obvious merit for employing the relativistic 
self-focusing effect in PBWA is to extend the Rayleigh length substantially. But there are shortcomings. It is not clear 
whether a system can be properly arranged such that only seIf-focusing, and no filamentation occurs to the laser beam. In 
addition, the strong radial gradient of a focused beam provides a ponderomotive force which blows plasma out of the channel 
in a time as fast as one ion plasma period, necessitating the use of laser pulses shorter than this. In turn this invokes a 
stringent constraint on the necessary laser power. To avoid these subtleties we still confine ourselves in a Rayleigh diffraction 
dominated regime for the remaining discussions. 



4.2 The Laser Energy 

The laser beam power for the beam profile given in Eq. (2) is W  = (xa*/Z)E~c/&r. If we aSsume that we have a laser 
pulse length r, the energy necessary to drive the plasma to nr = ano is” 

(21) 

4.3 The Efficiency 

The overall efficiency of the PBWA can be divided into three parts. The first part is the efficiency of conversion of ‘wall 
plug” energy to laser energy, which will not be discussed here. The second efficiency is the conversion of laser energy to 
plasma energy. The third efficiency is that for conversion of the plasma energy to the driven electron beam. 

The energy stored in the plasma can be easily derived by multiplying the energy density by the volume: P.E. = 
(fj/87r)(na2/2)L. Substituting from Eqs. (17) and (lQ), and using the relation efz = amcw,,, we find 

P.E. a6 
t)1=ig=: * (22) 

Take 6 z 5x/16, and Q = 0.25, which is approximately the saturation value,” nr = 0.06. If laser pump depletion is included 
in the analysis, this number will be reduced slightly. 

The third efficiency is that from the plasma to the driven bunch. The total acceleration gradient experienced by a bunch 
with Nr particles in a plasma wave is 

N2 
- 4e2 bz . 

The second “beam loading” term is due to the plasma wake induced by the trailing bunch. The efficiency is given by the 
total energy gained of the bunch divided by the plasma energy, 

rl,=N2GL(z $ L)-’ . 

This efficiency is maximized when N2 = (sin 6/6)f,b2/8e, and the value is given by 

(24) 

(25) 

For example if we restrict the induced energy spread to l%, then T$” = 0.02. 

We see that both efficiencies ~1 and ~2 are quite low. There are, however, possible ways to improve them. TO improve 
nr one possibility is to reuse the laser beam, which is not been pump depleted too much, after a suitable amplification. This 
would yield a very high repetition rate. 

As for improving ~2, one may consider modifying the radial intensity profile of the laser beam such that it is essentially 
constant. In doing so, the radial dependence of tz would be much weaker, allowing for a much larger accelerated beam 
cross-section nb2 limited by a given induced final energy spread. A similar consideration was discussed in Ref. 9. 

5. Numerical Examples 

Now’we come to specific examples of the PBWA. As mentioned earlier, our guide is the self consistency among all relevant 
accelerator parameters within the scheme. Our approach is to choose a set of parameters that we 6x from the beginning. 
The remaining parameters can then be calculated in terms of those chosen ones using the formulss,derived previously. To 
make meaningful examples we employ only those lasers and electron beams that are presently available. Therefore we need 
to fix the laser frequency w by choosing a particular laser source. If we further fix the section length L, the phase slippage 
determines the plasma frequency wr. This means that fz is a derivable quantity. 

. 
TO keep the dimensions to a laboratory scale, we select the acceleration lengths to be 10 cm and 100 cm. These two 

lengths are then combined with two different laser frequencies, the Nd: Glass and the CO2 laser, to form four sets of sample 

6 



Table 1. Plasma Beat Wave Accelerator 

Chosen Parameters 
w [WC-‘] 

L I4 

6 [P,d] 
sin 616 

WP7 

Derived Parameters 
wp [lOI set-l] 
no [lot6 cmm3] 
CC!* [GeV/m] 

= ImA 
a/h 

P  IdGS m m ] 
N [lOlo] 

wr [Jl 

Nd: Glass 
10 

0.25 
5x116 
0.85 
1000 

Values 
1.78 x 1015 co2 1.78 x 10” 

100 10 100 
0.25 0.25 0.25 

5~116 5x116 5x116 
0.85 0.85 0.85 
1000 1000 1000 

2.65 1.23 
21.7 4.67 
9.38 4.36 
0.13 0.41 
1.82 2.70 
0.18 0.57 

1.9572 9.047j.z 
23.9 515.4 

.571 
1.00’ 
2.00 
0.41 
1.25 
0.57 

4.19?)2 
11.1 

.265 
0.22 
0.94 
1.30 
1.82 
1.80 

1.95q2 
239.2 

6. Experimental Progress 

The first experimental verification of the theoretical concepts that we described so far was performed at UCLA.” The 
9.6 pm and 10.6 pm lines of a CO2 laser were used to resonantly drive a plasma of density 10” cmd3. The conclusive 
evidence for the existence of high phase velocity plasma wave excited by the beating of the two laser lines comes from ruby 
laser Thomson scattering. The scattering angle is adjusted to k match to the fast plasma wave. By moving the fiber optics 
which collects the scattered light on a shot-to-shot basis, the k spectrum of the plasma wave has been obtained. Figure 5(a) 
shows that Ak = k,. In addition, Fig. 5(b) shows the frequency shift of the ruby light from the stray position to be exactly 
Ar; = wp. These measurements unambiguously identify the wave as being the plasma beat wave. 

From Ak and the plasma density perturbation measured, it was inferred that a longitudinal electric field between 1 GeV/m 
and 3 GeV/m was achieved. 

(b) 

0 0.2 0.4 0.6 0.8 

(a) 

Fig. 5. (a) The k spectrum, and (b) the frequency 
shift, from the UCLA experiment. 



7. Summary 

Substantially progress has been made on laser plasma accelerators in recent years. Among them the Plasma Beat Wave 
Accelerator is best developed. Theoretical and computational studies of the subject are now complemented by experimental 
results at UCLA. Other experimental efforts are also under way, for example, at Rutherford Appleton Laboratory, and at 
QuCbec, Canada. 

This paper analyzes the PBWA from a systematic view poi,nt. The parameters we derived are suitable for laboratory 
test-of-principle experiments, or one stage of a real world future accelerator. The consideration is to limit the plasma 
oscillation within the linear regime, and various nonlinear effects can be avoided. Under this condition it is found that the 
laser energetics requirements are high, but still within technological limits. 

However, for laser plasma accelerators to be successful candidates for a future accelerator, it is essential that the ‘wall 
plug” efficiency to produce the laser power be much improved. This, unfortunately, lies outside the scope of this paper. 
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