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ABSTRACT 

We analyze the possibility of superstring compactification on Calabi-Yau 

manifolds in the light of recent work by Grisaru, van de Ven and Zanon, and 

by Freeman and Pope. It is shown that despite the appearance of non-zero 

P-function at the four loop order, we can construct a conformally invariant su- 

persymmetric a-model on a Calabi-Yau manifold. The background metric is 

not Ricci flat, but is related to the Ricci flat metric through a (non-local) field 

redefinition. 
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It has long been conjectured that N = 2 supersymmetric a-models formulated 

on Ricci flat Kahler manifolds (otherwise known as Calabi-Yau manifolds) have 

vanishing P-function to all orders in the perturbation theory i1-31 Recent work by 

Alvarez-Gaume, Coleman and Ginsparg I31 seemed to prove this result. Recently, 

however, there has been an explicit computation of the four loop p-function 141 

showing-that this may not be the case. Similar result has been obtained by general 

analysis of the possible counterterms PI , as well as computation of the effective 

action in the string theory [%71 , invoking the conjectured relationship between 

the a-model p-function and the equations of motion in the string theory (8-141 . 

We shall show that despite the apparent non-zero contribution to the four 

loop p-function, the theory can be made to have a vanishing p-function to all 

orders in the perturbation theory by suitably defining the procedure for sub- 

tracting the ultraviolet divergences in the theory. We begin by showing how the 

procedure for subtracting the ultraviolet divergences in the theory affects the 

computation of the P-function. Consider, for example, the N=l supersymmet- 

ric a-model formulated on Ricci-flat manifolds. This has been shown to have 

vanishing p-function to three loop order WI . The lagrangian is given by, 

/ 
d2Ed0d#Gij(Q)DOiDiPi 

where @ ‘( E,O,#) are two dimensional superfields, Gij is the background metric 

and D and b are supercovariant derivatives. At each order in the perturbation 

theory the subtraction of ultraviolet divergences leaves us with the freedom of 

adding a finite local counterterm to the action. In particular, let us adopt a 

subtraction scheme which differs from the analysis of Refs.[2,4] by the addition 

of a finite local counterterm to the lagrangian at two loop order. We take the 

counterterm to have the form, 
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where Tij is any tensor. A specific example is, 

Tij = RimnpRjmnP (3) 

,- - -. 

where R is. the Riemann tensor constructed out of the metric Gij. With this 

new subtraction procedure, the three loop P-function of the theory will no longer 

vanish for Ricci flat manifolds. The easiest way to see this is to note that the 

addition of the above counterterm is equivalent to modifying action (1) by the 

replacement Gij -+ Gij + Tij. Since the one loop p-function is given by the Ricci 

tensor, the new p-function will be given by the Ricci tensor calculated with the 

metric Gij + Tij. This is given by, 

Rij (G) + ~ (Tij;m m + Tm,;ij - Tim;j m - Tjm;i “) (4 

to linear order in T. The second term in (4) gives a three loop contribution to 

the P-function if we take Tij to be of the form (3). 

Thus we see that the criterion for the vanishing of the P-functions in a theory 

depends on how we subtract the ultraviolet divergences in the theory. As we have 

seen, a different procedure for subtracting the ultraviolet divergences corresponds 

to a field redefinition of the metric, the above result simply reflects the fact that 

the equation for the vanishing of the P-function takes a different form under a 

redefinition of the coupling constants of the theory. We shall now show that for 

N=2 supersymmetric sigma models formulated on Ricci-flat Kahler manifolds, it 

is always possible to choose a subtraction procedure which makes the p-function 

vanish to all orders in the perturbation theory. Put in another way, we shall show 

that although for a given subtraction procedure, the p-function does not vanish 

for a Ricci flat metric, it is always possible to choose a metric on the Calabi-Yau 

manifold for which the total P-function is zero. This metric is related to the Ricci 

flat metric through a (non-local) field redefinition. 
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The action for the N=2 supersymmetric a-model is given by, 

d2td2Bd28K(0, 6) (5) 

where Cp’ and gi are N=2 superfields;and K is the KaklerpoteStial of the target 

manifold. Since it is always possible to carry out the computation in the N=2 

superfield formulation, all the ultraviolet divergent terms have the form of Es.(S) 

and their effect may be summarized in a single P-function ,f3~.* Let us define, 

Gin = LJiE$K(@, G) (6) 

as the metric on the Kahler manifold. The one loop contribution to ,6K is then 

given by (l-4] 

c TthG (7) 

where c is a numerical constant. Let us denote the contribution to /?K from two 

and higher loop graphs as A/?K. As was pointed out before, APK will depend on 

the procedure of subtracting the ultraviolet divergences, but once we choose a 

certain scheme, there is a unique expression for APK. We now prove the following 

lemma: 

For any Calabi-Yau manifold with Ricci flat metric ail and the corresponding 

Kahler potential I?, there exists a Kahler potential, 

K(@,@ = ii(@,6) - 6K(%@ (8) 

such that, 

PK = c TrhG + APK = c Tr.ha& (9) 

* In order that the theory is conformally invariant, it is not necessary for @K to vanish, it is 
enough that the &function for the metriCm&a$K vanishes. 
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So that a;ajpK vanishes. Here, 

Gij = d&K = eij - 6Gij 

- Proof: -Es.(g) may be written as, 

APK = -c Tr .&a(1 - &l6G) 

which may be written as, 

(10) 

01) 

(12) 

G”?dil$bK = c-‘APK - 2 kTr((&lbG)n) 
n=2 

(13) 
co1 

=C -‘A,L?k + (c-‘APK - c-‘A@k) - C ;TY((G-‘GG)~) 
n=2 

where Ap, is obtained from AUK by replacing K by K everywhere in the ex- 

pression for the latter. This equation may be solved iteratively for 6K. To lowest 

order the right hand side may be replaced by cm1A/3k. (Since K = k to lowest 

order, A/?k - AD, is of higher order). The left hand side is just the Laplacian 

acting on 6K, and hence the above equation always has a solution in a local 

coordinate patch. This may be seen by repeated application of the Hodge de- 

composition theorem on A/?k. This value of 6K may then be substituted on the 

right hand side of (13) to get iterative solutions for 6K. 

In order to show that Gi; calculated this way is an admissible metric on the 

Calabi-Yau manifold, we must show that the metric is globally defined, i.e. when 

we calculate Gij in two different coordinate patches, they are related to each 

other in the overlapping region by the standard transformation law, 

G,!;(z’, a’) = E&G&, Z) (14 

In order to prove the above result we have to assume a specific property of A/?k, 

namely, that it is a globally defined scalar field on the manifold. This is certainly 
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the case for the four loop contribution to Apk calculated in Refs.[4-61, where it 

turns out to be the Euler density. More generally, because of general covariance, 

the P-function (pc)i~ = aia;pk for the metric always has a covariant form, and 

so is a globally defined tensor on the manifold. This does not, by itself, imply that 

/3~ should be a globally defined scalar field. The simplest example is the one loop 

contribution to the p-function, Eq.(7) d oes not transform like a scalar field when 

we move from one coordinate patch to another, although the corresponding pe:, 

which is proportional to the Ricci tensor, does transform like a tensor. We shall 

now sketch a proof showing that this is not the case for higher order contribution 

In order that a,ajApK is a globally defined tensor for any Kahler manifold 

with Kahler potential K, Ahp~ must differ on two different coordinate patches 

by a function of the form f(z) + g(-) z w h ere f and g are holomorphic and an- 

tiholomorphic functions of the coordinates respectively. From the analysis of 

Ref.4 it is clear that A/~K can be expressed as a product of terms of the form 

di, ...aina~l...3~mK with the various lower indices contracted with each other by 

the inverse metric Gij. Under a change in the coordinate system from (z, Z) to 

(Z’, Z’) ai, us. a?,K transforms into G...y$ a&...af K, plus terms involving m arzli 
azil...azi, or its complex conjugate (r 2 2). We shall call the first term the homo- 

geneous term, the other terms, which represent the fact that ai, . ..r3jm K does not 

transform like a tensor, will be called the inhomogeneous terms. In the trans- 

formation law of A/3,, the homogeneous terms cancel due to the fact that all 

the lower indices are contracted with upper indices. The contribution from the 

inhomogeneous terms contain at least one factor of ,,,“l:f.Ei, or its complex con- 

jugate (z 2 2). Since each term in the expression must contain equal number of 

upper and lower indices and since the terms mentioned above have more number 

of lower indices than upper indices, the final expression must contain factors of 

Gij. For a general Kahler potential, such an expression cannot be expressed as 

axrn of holomorphic and antiholomorphic functions. As a result, the only way 

this result can be compatible with our analysis before is that the contribution 
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from the inhomogeneous terms to APf( - AUK vanishes identically. This proves 

that AUK is a globally defined scalar field for any Kahler manifold with Kahler 

potential K. 

Using the Hodge decomposition theorem we may now express Apk as 
r- - -. 

- -- cmlApk = a0 + 6ar (15) 

where ao is a globally defined harmonic zero form, al is a globally defined one form 

and 6 is the adjoint of the exterior derivative d. Using the Hodge decomposition 

theorem again on al we may write, 

al = bl + dbo + 6b2 (16) 

where bl is a harmonic one form, and bo and b2 are two globally defined zero and 

two forms respectively. Substituting (16) in (15) and using the fact that, 

ij2b2 = lib0 = 6bl = dbl = 0, 

we get, 

c-‘Ap, = ao + (6d + db)bo = a + ebo (17) 

where e is the Laplacian operator on the Calabi-Yau manifold. To lowest order 

Eq.(13) may then be written as, 

(18) 

Since the only harmonic zero form in a connected manifold is a constant function, 

a0 in Eq.(18) is just a constant. A solution to Eq.(18) is then given by, 

6K=t$?+b0 (19) 

since, 

in a manifold of complex dimension N. 
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Thus, 

is a globally defined tensor, since bo is a globally defined scalar field and m is a 

constant. Thus Gi3? is also a globally .defined tensor. ‘- - m 

Substituting the value of 6Gi~ given in (21) we may show that the right 

hand side of Eq.(13) is a globally defined scalar field. We may then repeat 

the arguments presented above to show that the next order contribution to 6G 

obtained by solving Eq.(13) is a globally defined tensor field. 

Thus our analysis shows that given a Calabi-Yau manifold, we can always 

construct a conformally invariant o-model. The metric of the o-model is not the 

Ricci flat metric, but is related to it by a non-local field redefinition. The new 

metric is a globally defined tensor on the manifold, and hence is a valid choice of 

the metric. 

Our result may be viewed in a somewhat different way by writing Es.(S) as, 

/ 
I?(@, 6)d26d2Gd2cf - 

/ 
6K(@, 6)d2tld2#d2t (22) 

In the above equation we may interprete k as the background Kahler potential 

and 6K as the finite local counterterms added in higher orders in the a-model 

perturbation theory. In this particular renormalization scheme, the N=2 super- 

symmetric non-linear a-model, formulated on Ricci flat Kahler manifolds, gives 

us a vanishing ,&function to all orders in the perturbation theory. As we shall see, 

this particular way of interpreting our result may be useful for some application 

to the superstring theory. 

Finally we discuss the implication of our result for the superstring theory. 

For convenience, we start from a specific renormalization scheme in which the 

calculated &function of the o-model is identical to the equation of motion of the 

metric derived from the string effective action, which in turn is calculated from 
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the scattering amplitude involving the massless particles in the string theory. 

We call this metric the physical metric. Since the scattering amplitude remains 

unchanged under a local redefinition of the metric, PI this prescription defines the 

physical metric only up to a local field redefinition (which does not involve the 

inverse of the Laplacian operator). But this is enough fo? ourXscussion.* Our 

result tellsus that given a Calabi-Yau manifold, we can always find a background 

vacuum expectation value of the physical metric which will satisfy the equations 

of motion of the string theory. This background metric is obtained by solving 

Eq.(13) with the AD K calculated in this particular renormalization scheme. 

For some purposes (e.g. the study of the four dimensional effective field 

theory obtained after compactification) we do not need to know what the physical 

metric looks like in terms of the Ricci flat metric. In that case it may be useful to 

use the modified renormalization scheme that we have proposed to analyze the 

system. We take the Calabi-Yau metric as the background metric, and add finite 

local counterterms in each order in the perturbation theory in order to have a 

vanishing p-function. The result is a two dimensional conformally invariant field 

theory. We may then calculate the particle spectrum and the interaction in the 

effective four dimensional theory by identifying operators of conformal dimension 

(1,l) as vertex operators P51 and calculating their correlation functions in the two 

dimensional conformal field theory obtained this way. In this scheme we say that 

N=2 non-linear a-models, formulated on Ricci flat manifolds, have vanishing 

,&function to all orders in the perturbation theory. It is in this scheme that 

Witten’s general argument 1161 showing the vanishing of the P-function on Ricci 

flat Kahler manifolds works. This argument was based on a study of the effective 

four dimensional field theory, and does not specify the renormalization scheme 

in which the proof should work. 

,* A specific example of such a renormalization scheme is the calculation by Grisaru et. al., 
the p-function calculated by them agrees with the string S-matrix calculation, and hence 
in their renormalization scheme the background metric can be identified with the physical 
metric. 
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