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ABSTRACT 

We study a dynamical breakdown of the flavor symmetry in the presence 
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1. Introduction -- 

Understanding of dynamical breakdown of the flavor along with the chiral 

symmetry breaking is an important question. Solution to this problem may 

provide at least a partial answer to -the fermion mass hierarchy problem, which 

until now still remains an important open question. 

In vector-like theories strong statements [l, 21 have been made about the 

dynamical breakdown of the flavor symmetry. Vector-like theories are CP con- 

serving gauge theories with no interaction between scalars and fermions. First 

Coleman and Witten [l] h s owed that in NC + 00 chromodynamics the chiral 

symmetry of Nf flavors U(Nf)L x U(Nf)R must be broken down to the diagonal 

U(Nf)L+R, i.e., if chiral symmetry is broken it is broken in such a way as to 

preserve the flavor symmetry. This claim has been generalized to any vector- 

like theory by Vafa and Witten [2]. They proved that in a vector-like theory 

dynamical breakdown of the flavor symmetry cannot take place. 

The Vafa-Witten constraint is very restrictive because aesthetic arguments 

almost force us to assume that the flavor symmetries should be broken sponta- 

neously. Theories [3, 4] b ased on underlying composite field dynamics in general 

therefore face a stumbling block of the Vafa-Witten constraint. Namely a vector- 

like theory as a primordial preonic force is ruled out. 

However, this constraint need not apply to the case where there is an in- 

teraction between fermions and scalars. It is therefore important to study such 

theories, because they may shed a new light on the spontaneous (dynamical) 

breakdown of the flavor symmetry. An obvious aesthetically appealing exten- 

%n of the vector-like theories [4], is to the super-symmetric vector-like theories, 

because in such theories scalars emerge in a natural and compelling manner. 
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It has been shown [S] that the Vafa-Witten constraint does not apply to the 

supersymmetric version of the vector-like theories. 

Spontaneous breakdown of the flavor symmetry has also b_een studied [6] in 

a particular model with scalar fields @,b(a, b = 1, 2, . . . , Nf) and chiral fermions 
LR $4’ 

(a = 1, 2, . . . , Nf) which interact via the universal Yukawa interaction: 

Nr 
ty = h c @ ,b $,L@  + kc. (1) 

4, b=l 

On the other hand the self-interaction of @&,‘s is governed by the most general 

renormalizable Higgs potential: 

which respects the global SU(Nf)L x sU(Nf)R x IF symmetry of the theory. 

Nonzero vacuum expectation values (VEV’s) of <P&‘s induce masses for fermions. 

It has been shown [6] that there are two such minima of the potential. The first 

one preserves the flavor symmetry: 

w= (34 

with 

mus, the breaking pattern is SU(Nf)r, x SU(Nf)R x IF + SU(Nf)L + R x 

U(l)F. 
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The other solution breaks the flavor symmetry spontaneously: 

P> = 

with 

0 

0 

-. . 

0 

K 

-m2 d- .-2(X1 +L,, (44 

1 -m$, Xl +X2, --Xl 
> 

)0 w 
Thus, the flavor symmetry SU(Nf)L x sU(Nf)R x IF can be sponta- 

neously broken down to SU(Nf - 1)~ x SU(Nf - 1)~ x U(~)F so that only a 

fermion of one flavor acquires a mass while others still remain massless.n1 All 

the other possibilities turn out to be a saddle point. 

This is an interesting observation which explicitly shows that the flavor sym- 

metry can be broken spontaneously via the Higgs-type mechanism. However, one 

does not get a handle on the question of which vacuum is preferable. In principle, 

parameters of the Higgs potential are free; their value could possibly emerge from 

an underlying dynamics which is responsible for the formation of scalar fields. 

. In this paper we would like to concentrate on another aspect of the flavor 

symmetry breaking: the dynamical breakdown of the flavor symmetry in a vector- 

like theory and the Yukawa-type interaction (1) between scalars and fermions. We 

would like to see whether there is an indication that condensates ( $f T# ) # 0 

which break flavor symmetry dynamically can be formed. 

Jl In an attempt [6] t o reproduce a realistic fermion mass matrix for the case of four flavors, 
the soft symmetry breaking terms were introduced in the Higgs potential. These terms 
broke SU(4),5 x sum x U(~)F down- to SV(2)FP x SU(2)FP x U(~)F and allow for 
realistic fermionic masses and mixing angles. 
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We employ the formalism of Cornwall, Jackiw and Tomboulis [7] which allows 

one to write an effective potential (free energy) for the two body condensates in 

the presence of all the interactions of the theory. We are aware of the conceptual 

problems of this formalism [8, 91: the solution for the t-wo-body condensates is 

not stationary and its noninteracting part is not bound from below [9]. The 

formalism has also a limited use because the two body condensates are treated 

non-perturbatively, while the vertex corrections are treated order by order in 

the coupling constant expansion. However, this method has proven useful in 

studying chiral symmetry breaking; it gave an indication for the existence of 

chirally unstable vacua at the one-loop level in a vector-like theory. Also, in the 

NC --) 00 limit it showed that flavor symmetry cannot be broken. 

Our approach is therefore the following: we shall study the form of the ef- 

fective potential for the two-body condensates ( $t $k ) which arise when in 

addition to the gauge interaction there is also the Yukawa-type interaction (1). 

We would like to see whether there is an indication for dynamical breakdown of 

flavor in this case. We shall come to certain conclusions by studying the symme- 

try structure and the sign in front of certain terms in the effective potential.n2 

The paper is organized as follows: For the sake of completeness, we present 

the formalism for the two body condensates and discuss the results obtained in 

the vector-like theories in Sect. 2. In Sect. 3 we specify the particle content and 

the type of the theory we shall study. In Sect. 4 we evaluate the effective potential; 

we concentrate on the proper renormalization procedure and show that physical 

112 Note that signs and symmetry structure of particular terms in the effective potential are 
fixed, unlike in the Higgs potential where they can assume any sign. 
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conclusions remain the same in both cases, i.e., in the case of the renormalizable 

theory as well as in an effective theory with the cut-off parameter. Also the large 

Nf limit is mentioned. Conclusions are given in Sect. 5. 

2. Formalism 
/- - -. 

In this Section, we recapitulate the formalism for the case of a vector-like 

theory, developed in Ref. [7] and is pedagogically very nicely presented in Ref. [8] 

One would like to evaluate the free energy for the non-local two-body operator 

for the fermionic fields: 

(?+$d(y)b)K = exd-iP(z - Y)]sab(P) 

with 

(5) 

(6) 
For the sake of simplified notation, the vector notations for the space-time indices 

is suppressed. Also the equations are written in Euclidean space. The non-local 

source K(z, y) is chosen so that the operator S:(p) corresponds to ‘the physical 

(nontrivial) propagator of the theory with &,(p2) denoting the dynamically in- 

duced fermionic mass matrix element for flavors a, b. The free energy (effective 

potential) I’ as a function of S assumes the following functional form: 

I? = -trhS-’ + tr[S-‘- a]S - (diagrams) (7) 

ITere the integration over momenta is implied and trace implies the trace over the 

flavor and space time indices. The term (diagrams’) includes all the two-particle 
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irreducible vacuum diagrams presented on Fig. 1.n3 The free energy I? gives the 

proper equation of motion, i.e., by taking a stationary point of the functional 

derivative of T with respect to S, one recovers the gap-equation [lo]: 

- 
6r 
6s- - -S-l+ .p + (diagrams’)‘= 6 s (8) 

The term (diagrams’) is presented on Fig. 2. 

The method takes into account corrections to the mass C(p”) of the fermionic 

propagator to all orders while the corrections to the couplihg constant renormal- 

ization are taken perturbatively order by order in the coupling constant expan- 

sion. Thus, any truncation in the coupling constant expansion is inconsistent. 

We are aware of this problem,n4 however, even the results of such an inconsistent 

expansion can shed a light on the nature of dynamically generated mass for the 

fermions. For example, by calculating the contribution to the effective potential 

due to the one gauge boson exchange one can argue that there is a tendency to 

destabilize the chirally symmetric vacuum when [8]: 

However, the value of g2 should be so large that the next correction proportional 

to g4 is as big as the previous one, thus putting the validity of the truncation in 

question. 

fl3 Calculations are performed in the Landau gauge, which in the case of U(1) gauge symme- 
try keeps the condensates ($(z)+&(y)) locally gauge invariant. Note, that in Landau gauge, 
corrections to the wave function renormalization are zero. Also, if one studies conden- 
sates ($(z)$(y)) which break global gauge invariance one should include the gauge boson 
propagators with the nonzero mass for the gauge bosons. However, this is not our case. 

A4 There is also a conceptual problem which arises because the condensate (5) is nonlocal in 
time, and thus the solution is not stationary. Also, the effective potential is not bound from 
below. This can be remedied [Q] by choosing a source local in time, but then the Lorentz 
covariance is sacrificed. 
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One can also obtain [ll] a qualitative form for C(p2) as a function of mo- 

mentum p (see Fig. 3): for nonzero C(p2) one can show that C(p2) + const. 

as p + 0 and C(p2) should falls-off faster than l/p2 as p + 00 in order for the 

solution to be consistent with the gap equation. r- - -. 

- Another interesting observation is that in the presence of the one gauge boson 

exchange I’ can be written as TrfF(CtC). H ere 23-f denotes a trace over the 

flavor indices and F is a general function of Etc. This implies that, if there is a 

minimum with one nonzero C, e.g., C,, = IC # 0, then all the other C’s should 

have the same value, i.e., Ebb = K with b = 1, 2, . . . , Nf.n5 In other words, if 

chiral symmetry is broken (K # 0) ‘t 1 is broken in a way as to preserve flavor. It6 

In the following chapters we shall see how the nature of the effective potential 

could be changed in the presence of the Yukawa-type interaction between scalars 

in fermions . 

3. The Model 

The theory we shall study is the one with chiral fermions 

+,“, @  (a, b = 1, . . . , Nf) and elementary scalar fields <p,b (a, b = 1, . . . , Nf) , 

in the presence of the gauge interactions with SU(N,) gauge group, Yukawa-type 

interactions (2) and scalar field self-interaction (3). These fields transform un- 

der the global flavor symmetry SU(Nf)L x su(Nf)R and the gauge symmetry 

fl5 Recall that in the Higgs potential (2) th e similar solution (3a) for the VEV of cf, can emerge 
when X2 c 0. Note also, that when X2 = 0, solution (3a) is the only allowed one, i.e., 
solution (4a) does not exist. 

fl6 Note that in the limit IV, -+ 00 and g21Vf = const. certain graphs of Fig. (1) are absent and 

r can be again written as TrfF(CtC), even when all the diagrams are included. This is 
the essential argument in the proof of flavor preserving solution in NC -+ 00 case presented 
in Ref. (I]. 



SU(N,) in the following way: n7 

tiL - (Nf, 1, Nc) (10) 
r- - -- 

tiR - (1, Nf, Nc) (11) 

(12) 
The choice of the particle content and the interactions is an aesthetically appeal- 

ing minimal extension of the vector-like theory. 

The interactions respect the global flavor symmetry. The gauge interactions 

are included because they are a source of the chiral symmetry breaking, while 

Yukawa-type interactions may be a source of the flavor symmetry breaking. The 

chosen representation is quite general. A choice for a more complicated repre- 

sentation of @LB R under SU(N,) add s only to a technically more complicated 

calculation. The case when Q is not a singlet under SU(N,) is not interesting 

for our particular choice because one would like to preserve the gauge symmetry. 

This cannot be achieved if @ is not a singlet under SU(N,). As we shall show 

once b?wnY)) is nonzero the (4) is also necessarily nonzero, and SU(N,) is 

dynamically broken. 

Also, had ip been a singlet under the global-flavor group the effective potential 

could again have been written as 23-f F(CtC) with F being a general function 

of EtE and flavor symmetry cannot be broken dynamically. 

fl7 When the global flavor symmetry is dynamically broken one encounters Goldstone bosons. 
However, in a realistic model the Goldstone boson may acquire soft mass due to the explicit 
global symmetry breaking terms [ 121. 
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Another comment is in turn. In our approach we would like to study the 

break-down of the flavor symmetry driven primarily by the formation of the 

condensates ($$‘$J,“) # 0, i.e., dynamical breakdown of the flavor symmetry 

in the presence of interactions, and not by the nonzero VEy’s of (Gab) # 0. r- - 
Ho.wever, once (tJf$f) # 0, one also induces nonzero (<Pab) with the relation: n8 

(13) 
Also, in a realistic theory scalar fields @)ab’s can induce flavor changing neutral 

currents (FCNC). Thus, the assumption: 

ensures that the breakdown of the global symmetry is primarily dynamic via 

formation of ($$+,“) condensates and the flavor changing neutral currents are 

suppressed. 

The presented theory is rather general and the one which has a chance to 

allow for the dynamical breakdown of the flavor symmetry. Namely, in addition 

to the terms of the type TrfF(CtC) one induces terms of the type 23-f Gl (Et E) x 

~rfG2(h) h’ h w lc arise due to the @at, exchange (see Fig. 4). Here F, Gr and 

G2 are general functions of Etc. Such terms have a chance of breaking flavor 

dynamically. ” However, only the explicit calculation can show whether the 

symmetry structure and the sign of particular terms can indicate which breaking 

pattern is preferable. 

jj8 In the case of h(O,a) < C d, the terms in the scalar self-interaction (2) proportional to X1 
and X2 can be neglected. 

79 Recall that the case of the Higgs potential (2) the solution (4) which breaks flavor sponta- 
neous emerged only for A1 +X2 > 0 and A1 < 0, i.e., the term X2(tri9t9)2 should necessarily 
be present. 

10 



4. Calculation of the Effective Potential 

In this section we shall evaluate the effective potential for the two body 

fermionic condensates for the theory presented in Sect. 3. We shall include dia- 

grams due to the 1 - gauge boson exchange and due to-l -scala~exchange. Those 

are the contributions proportional to g2 and h2, only. ‘lo 

Let us first present I’ with the Ansatz (6) for the fermionic propagator:“’ 

I-0 = $5 IdP P3 TYf (-WP” + CYp2)] + [p~~~~;;2)]} (15) 

0 

r lmGB = - dpd k 
p3 k3 

Max (p2, k2) 
0 0 (16) 

Tr f 
%‘2)C(k2) 

b2 + ~2(P2)] [k2 + C2(k2)] 

h2 O°CO 
rl-sc = -- 

321r4 Jl 
dpd k p3k3 Trf 

[P2 + A2(p2)] Trf [k2 + L&k”)] 
0 0 (17) 

00 

c 

(2& + l)!! 
c=. (2f + 2)!!(t + 2) (k2+F+mz)2c’2 

with 

r = r0 + rl-GB d- h-SC (18) 

Here Trf denotes the trace over the flavor indices. The following comments, some 

of them already mentioned in Sect. 2, are in turn 

fll0 As already argued this truncation is not justified, however, it may give an indication which 
symmetry pattern is preferable. Also, the chosen truncation to the leading order in g2 and 
h2 allows for the possibility that both g2 and h2 are comparable in magnitude. 

tfll We shall assume that C is a real matrix in the flavor space, i.e., we shall not study dynamical 
breakdown of CP. 
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(i) From (15) one sees that To is not bound from below, however it does have 

a local minimum at C = 0. 

(ii) The value of C(p2) should fall-off faster than l/p2 in order for r1-G~ to be 

finite. r- - -. 

-(ii;) One can also explicitly see that I’0 and Tr-GB can be written as TrfF(C2), 

with F being a general function of X2, thus allowing only for the flavor 

symmetric solution. 

(iv) We can also observe that a term in T1-GB proportional to Cc is negative, 

thus indicating that the chirally symmetric vacuum with C E 0 can be 

unstable. On the other hand, the terms in I’0 and I’r-SC proportional to 

CC are positive. Thus, in order to allow for the chiral symmetry breaking, 

gauge interactions should necessarily be present. 

(v) I’r-sc can be written as [Z’riG(C2)]2. Here G is a function of X2. This 

allows for the possibility that the flavor symmetric vacuum is unstable. 

However, the expansion in terms of C2 shows that the term proportional 

to (TrfC2)2 has the negative sign. Also this terms is damped by a factor 

Ahc/rn$ and a factor l/Nf relative to the term proportional to TrfC4. 

Here AHC is a scale at which the nonzero value for C falls-off. (See Fig. 3). 

As justified in Sec. 3, AHC < m#. Therefore there is no tendency to desta- 

bilize the flavor symmetric vacuum. 

(v;) The important observation is that I’r-SC is logarithmically divergent. In 

an effective theory with the cut-off parameter A, with A being the composit- 

ness scale of the fermions $J$ R and/or scalar fields a&, Tr-sc is finite. 

However the question of the underlying dynamics and what its contribution 

to the effective potential might be, remains unanswered. 
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Therefore, if one neglects the additional effects of the underlying dynamics, 

one can claim that in the theory with the cut-off parameter, there is an indication 

that the flavor-symmetric vacuum is stable. 

However, our main goal is to study a renormalizable theory: and see whether 

in-such-a t-heory there is an indication for the dynamical breakdown of flavor. 

4.1 RENORMALIZABLE THEORY 

In order to obtain the proper-finite form of the free energy I’ the bare un- 

renormalized fermionic propagator S should be reexpressed in terms of the renor- 

malized propagator SR. One has to take into account the wave function renor- 

malization effects, only. Note that the theory does not have any bare mass, and 

thus the only counter-term of the theory is the wave function renormalization 

counterterm 2. lD2 

In the vector-like theory, with the Landau guage there are no finite wave 

function corrections. Thus the Ansatz (6) for the fermionic propagator is the 

proper one and I’(S) is finite. However, this is not the case in the presence of the 

Yukawa-type interactions (2). Th e scalar exchange does contribute to the wave 

function renormalization and thus I’ as a function of the bare-unrenormalized 

propagator S should be properly rewritten in terms of the renormalized propa- 

gator SR. The relation between these two propagators is the following: In3 

;s,-‘Z{[l+f(p2)] k+c}=z-‘is-’ (19) 
Consistent with the truncation we used in evaluating I’(S), the finite wave func- 

*n renormalization term j(p”) and the wave function counterterm 2 should 

fll2 I am grateful to Helen Quinn for this observation. 
fl13 For the sake of simplified notation we suppress the flavor indices. 
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be evaluated up to O(h2). To this order is,-’ is diagrammatically presented in 

Fig. 5. The subtraction point p = ~1 is chosen so that j(,u”) = 0. This then 

determines 2 and f(p2) as: 

f(P2) = h2 [ 7(P2) - 3(P2)] (21) 

with 3(p2) being diagrammatically presented in Fig. 5. Since f(p2) oc h2, I’ as a 

function of the bare-unrenormalized propagator S shall be reexpressed in terms 

of the renormalized propagator Si: 

w-1 =/#I + c R (22) 

and corrections to I’ due to f(p”) is included only to O(h2). Thus, to the order 

we are working with I’(S) b finite and has the following form: 

r(s) = rO(s:) + h-G&) + Ar(s;) (23) 

with 

6ro AI? = 6s s=si si I [ 
sl-l - s-l sk + rlwsc (s;) 1 (24 

The operator & refers to the functional derivative and in Eq. (24) integration 

over the momentum is implied. I’0 and TrPGB are given by Eqs. (15) and (16), 

14 



respectively, while AI’ is of the following explicit form: 

(26) 
O” d(k2)(k2)‘+‘C2(k2) - c O” (24! + 1)!!2~+‘pz~Tr 

lcO v+ W+2) f I 
0 

[k2 + C2(k2)] [k2 + p2 + mi]2L+2 I 

Obviously, the part of AI’ which depends on C’ is finite as long as C(p”) falls-off 

faster than l/p2. 

The natural choice for the subtraction point is the choice of the on-shell 

renormalization: 

P - &uz(P2) oa - a = 1, 2, . . . Nf (27) 

which ensures that C(p2) corresponds to the pole of the renormalized propagator 

defined in (19). 

As expected one sees that the properly renormalized finite free energy I’ has 

the similar symmetry structure. All the conclusions regarding ITO and rImGB 

remain the same. On the other hand Al? has a different functional form from 

the one of I’l-SC. However, one can again see that the expansion in terms of 

C2 has the same sign in front of each term. Namely, the term proportional 

to TrfC2 is positive, while the term proportional (TrfC2)2 is again negative 

and again damped by factors A4 HC/m$ and l/Nf compared to the term TrfC4. 
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Therefore, from the form of I’ one has an indication that the flavor-symmetric 

vacuum remains stable in the renormalizable theory. 

There is also another new feature: while in an effective theory with the cut-off 

A parameter the leading contribution of I’r-SC was Q( &) compared to I’c, the 

leading-contribution of Al? is 0 (& zy) compared to In. Here dHC is again 

the scale at which the value of C drops off sharply (see Fig. 3). Therefore, as . 

rn# + 00, the contribution from the 1 - scalar exchange becomes negligible, i.e., 

the decoupling takes place. This observation therefore implies that any change 

in the symmetry of the vacuum due to the Yukawa-type interaction (2) is not 

likely, because the contribution to I’ from this interaction is damped by a factor 

Gdm;. 

In order to make the above analysis quantitative we shall now explicitly 

evaluate I’ with a particular Ansatz for C presented on Fig. 3 with the dotted 

line. 

4.2 EXPLICIT EVALUATION OF I' 

Exact solution for X(p2) as arises by solving the gap equation (8) is difficult 

to obtain. However, one can be satisfied with a less ambitious task by assuming 

a certain shape for C(p2) with free variational parameters and minimize I’ with 

respect to these parameters (Rayleigh-Ritz variational principle). This can enable 

one to extract a nature of the symmetry pattern for C. 

We shall use the Ansatz for E(p2) p resented on Fig. 3 with the dotted line. 

It is of the following form: 

VP21 = 
OAHC , P 5 AHC 
& 

, P > AHC 
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Here AHC is intuitively a scale at which g, the gauge coupling constant and 

correspondingly the Yukawa coupling h become large, It14 i.e., of order 1. We 

choose u, the constant matrix in the flavor space, to be a variational parameter. 

This simplified Ansatz agrees with our intuition (see Fig. 3, solid line) for what r- - -. 
the momentum dependence of C should be. On the other hand the essential 

symmetry structure in the flavor space is still encompassed in the variational 

parameter 6. 

We shall also assume:‘15 

oaa 5 1 a = 1, 2, . . . , Nf (29) 

The subtraction point is then chosen to be: 

Paa = AHCQaa a = 1, 2, . . . , Nf (30) 

In agreement with discussion of Sect. 3, that the dynamical breakdown of the 

symmetry is driven by formation of fermionic condensates and that FCNC could 

be suppressed we shall also expand I’ in terms of the small parameter A&/m$. 

Finally, I’ is of the following form: 

r. = --E+ 
2 Tr ,(-q1+,,.,[2-.,,(1+-$)]} (31) 

1114 It can be shown [14, 151 that for this theory h evolves proportionally to the gauge coupling 
.g at low momenta, i.e., h reaches very soon the infrared fixed point proportional to g. 

fl15 One can show that for ccra > 1 the effective potential I? can be cast in the following form 

1 
I’ = ATrf&z(l + 0”) + BTrf - + 0 

CT2 

with A being negative. The effective potential is not bound from below and it does not have 
a minimum for u,, > 1. 
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A& 3(N; - 1)g2 
rlsGB = - 

167~~ NC879 

x Trf -02+04h(1+-$) [,, +(1+ -$)I} 

L 

(32) 

-Ar = Glc h2 Glc --- 
167~~ 87r2 12m$ i [ 

Trf a2 - 8a4 + 160~ 

x k-(1+-$) - 2&,1 +O (%)]Nf 43) (33) 

x Trf 
[ 
o2 - 804+16+n(l+-$) - 2(l:u2)]] 

x Trf o [ 2-04h(l+-$)]} 

with r = r. + rl-GB + Ar. 
Expansion in powers of CT < 1 simplifies AI’ to the following form: 

% h2 A&, 
AI-=--- 

167r2 8x2 12m$ 
Trf(a2 - 8a4)Nf 

-6 

The explicit form for I’, as presented in Eqs. (32 - 34) again substantiates all the 

claims we made in Sec. 4.1. It clearly shows, that the flavor symmetric vacuum 

is stable. 
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4.3 LARGE Nf LIMIT 

Observation that the terms which have a chance of breaking the flavor sym- 

metry, are suppressed by a factor l/Nf relatively to other terms of the form 

TrfF(C’), is crucial when studying-a theory with Nf +- 00 and h2Nf = const. 

In. this-case one sees that to all orders in h the only contribution to I? which 

survives is the one of Fig. 5 where the empty fermionic line denotes the free 

propagator of the massless fermion. Note, that these terms with one fermionic 

line being empty arise as the leading expansion in terms of A&,/m;. This contri- 

bution is obviously of the form h2Nf Trf F(C2) and has not a chance of breaking 

flavor. 

5. Conclusions 

In this paper we studied the structure of the effective potential of the two- 

body fermionic condensates in a vector-like theory with chiral fermions and the 

flavor invariant Yukawa-type interaction between fermions and scalars. We con- 

centrate on the dynamical breakdown of the flavor symmetry with the formation 

of the two-body fermionic condensates. 1116 

Although the contribution from the l-scalar exchange to the effective poten- 

tial gives a new structure, different from the one of the gauge-boson exchange, 

the sign in front of this new term is wrong: flavor symmetric vacuum remains 

stable. The conclusion is the same, whether one treats the theory as a renormal- 

izable theory of elementary fermions and scalars or as an effective theory with 

fl16 In Ref. [X2], J. C. P a t i and myself per-sued the problem of dynamically generated fermionic 
masses and mixing angles within the theory where Yukawacouplings and scalar masses al- 
ready break the flavor symmetry. Such a theory may arise as an effective theory of compos- 
ite fields based on local super-gravity interactions. We show that the realistic dynamically 
generated fermionic mass matrix lion arise. 
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the cut-off parameter A, with A being the compositness scale of fermions and 

scalar. 

Also, as the scalar mass rn4 + 00 the contribution to the effective potential 

from the l-scalar exchange becomes .negligible in a renormalizable theory, thus 

decoupling--takes place. 

In the limit when the number of flavors Nf + 00, one concludes (to all orders 

in the Yukawa coupling expansion) that dynamical breakdown of the flavor is also 

not possible. 

Thus, our approach indicates that in the presented theory the world with 

dynamically broken flavor may not be favored. 
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Figure Captions 

Fig. 1 Diagrams contributing to the free energy I’. The blobs on the solid lies de- 

note the fermionic propagator with dynamically induced mass. The wiggly 

line denotes the gauge .boson propagator. ,_ _ -. 

fig. 2 Diagrams appearing in the gap-equation. The blobs on the solid lines again 

denote the fermionic propagators with dynamically induced mass C and the 

wriggly line denotes the gauge boson propagator. 

Fig. 3 The momentum dependence of the dynamically induced mass (solid line). 

The scale AHC denotes (intuitively) the scale at which the coupling con- 

stants become strong. The dotted line represents an approximate Ansatz 

for C, with u being a variational parameter. 

Fig. 4 The diagram of order h2 which contributes to I’. 

Fig. 5 Diagrammatically presented form of the renormalized propagator exact up 

to O(h2) and O(g2). 

.Fig. 6 The only remaining diagrams in Nf -+ cc limit. 
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