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ABSTRACT 

Criteria for unbroken N = 1 space-time supersymmetry in the heterotic 

string theory in the presence of background fields are discussed. We make use of 

the construction of the fermion vertex operator in the Neveu-Schwarz-Ramond 

model. (20) world-sheet supersymmetry is shown to be one of the necessary 

conditions for space-time supersymmetry in most cases. Constraints on the var- 

ious background fields implied by (2,0) world-sheet supersymmetry are derived, 

taking into account the effect of a-model loop corrections. Special care is taken 

to study the effect of local Lorentz and gauge anomaly on these constraints. Our 

analysis determines the constraints unambiguously up to field redefinitions. 
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1. Introduction 

It has become clear through recent studies that non-linear a-models provide 

an adequate description of strings moving in arbitrary background fields [l-12] . 

One of the main successes of the non-linear a-models,so far has been to provide _ 

ns .informa-tion about equations of motion of the massless fields in the string 

theory through the P-functions P-91 . At present a-model provides us with a 

major tool for finding non-trivial solutions of the classical string field equations. 

General arguments have been presented to show that a-models formulated on a 

Calabi-Yau manifold has vanishing P-function to all orders in the perturbation 

theory [13] , and provide a solution of the classical string equations of motion, 

although recent studies indicate that this may not be the case [14-161 
. 

In this paper we shall not pursue the question of obtaining the equations of 

motion of the string theory from the a-model. Instead we shall use the a-model 

to analyze another important question in the heterotic string theory 1171 , namely, 

under what condition on the background fields does the theory admit an unbroken 

space-time supersymmetry? This question has been discussed by various authors 

by studying the field theoretic limit of the string theory14] , and also by analyzing 

the a-mode1[18-201 describing the Green-Schwarz superstring[211 in arbitrary 

background fields in the light-cone gauge. The advantage of using the Green- 

Schwarz version of the a-model is that space-time supersymmetry is manifest in 

this formulation. But in this model it is very difficult to carry out the analysis 

beyond the a-model tree level, i.e. beyond the lowest order in the inverse string 

tension. The reason is that in a general background field the tree level action for 

this model does not contain the most general renormalizable Lagrangian. This 

may be illustrated by looking at two particular terms in the a-model lagrangian: 

- 
where Xi and SQ are two dimensional bosonic and fermionic fields, transforming 
in the vector and spinor representatiotis of the SO(8) Lorentz group respectively. 
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Gij is the background metric, wqb is the spin connection constructed from G;i 

and Cab denotes the generators of the SO(8) group in the spinor representation. 

The point to note is that the coupling constant w, instead of being taken as 

completely arbitrary, is taken to be related to G, although there is no obvious -. 
symmetry that tells us to do so. As a result, when we start doing quantum 

corrections, the description of the theory becomes ambiguous, and depends on 

the procedure of subtracting ultraviolet divergences, since there is no constraint 

which prevents us from adding a finite local counterterm involving the SaSP 

operator to the action. Requirement of N = 1 space-time supersymmetry may 

provide a way out, but since our purpose is to determine the conditions on the 

background fields required by N = 1 supersymmetry, we must first start from 

a general background field, calculate the effective action, and then impose the 

constraint of N = 1 supersymmetry on the effective action. 

The problem does not arise in the Neveu-Schwarz-Ramond formulation of 

the theory[221 , since for an arbitrary background field it has an N = fr (or (1,0)) 

supersymmetry [4-6,23-301 
, and the requirement of this symmetry prevents us 

from adding any local counterterm to the action besides those which corresponds 

to redefinitions of various background fields Gij (z) , Bii (z) and AM(z) 1301 . The 

disadvantage of this formulation is that it is difficult to understand space-time 

supersymmetry in this model. Recently, however, the space-time supersymmetry 

charge has been constructed by Friedan, Martinet and Shenker [31’32] in the N-S-R 

model in flat background. Hence a viable approach would be to try to generalize 

their construction for the heterotic string in arbitrary background field, and try to 

see under what restriction on the background fields we can construct a conserved 

supersymmetry charge. 

This is the approach we shall pursue in this paper. We shall show that one of 

the necessary conditions for getting unbroken space-time supersymmetry in the 

heterotic string theory is that the a-model must have an extended (2,0) world 
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sheet supersymmetry.* We then analyze the quantum corrections in the Neveu- 

Schwarz-Ramondmodel and study how they modify the constraint equations on 

the background fields in order to have (2,0) supersymmetry. Special care is taken 

to analyze the effect of local Lorentz and gauge anomalies in this model. The 

reason is that the equations which give us the criteria for (2,OJ supersymmetry 

at the a-model tree level involve a three form, 

%k = icBij,k + Bjk,i + Bki,j) 

where Bij is the background antisymmetric tensor field. Since the effect of local 

Lorentz and gauge anomalies forces us to modify the transformation laws of B 

under these transformations, sijk does not transform covariantly under these 

transformations any more. We may construct a covariant tensor Hijk by adding 

gauge and Lorentz Chern-Simons terms to Sijk with appropriate coefficients. But 

the definition of Hijk is ambiguous, since we may add any covariant three form to 

H, without affecting its gauge and Lorentz covariance properties. Only a careful 

analysis of the quantum corrections in the a-model determines what tensor should 

replace S in the equations determining the criteria for (2,0) supersymmetry in this 

model. This question is of more than academic interest, since we must know the 

precise form of the constraint equations for generating space-time supersymmetric 

field configurations with non-vanishing torsion[1g’201 . 

. In our analysis we determine the three form H which appears in the con- 

straint equations for (2,0) supersymmetry. We also find that by making a field 

redefinition of the background fields Gij, Bij and AM we may always bring the 

constraint equations in the form of tree level constraint equations. Of course 

the new fields have complicated transformation properties under local gauge and 

Lorentz transformations, that is how the constraint equations become invariant 

2 This relation was first discussed by Hull and Witten, who analyzed the classical action 
for a (1,0) supersymmetric model, and found that the constraints on the background fields 
for this model to have a (2,0) supersymmetry form a subset of the conditions derived in 
Ref.[24] for unbroken IV = 1 space-time supersymmetry. 
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under these transformations despite the presence of an apparently non-covariant 

term sijk in this equation. 

Sec.2 of this paper is devoted to a general discussion of (1,0) and (2,0) super- 

symmetric a-models. Sec.3 discusses the relationship between space-time super- & 
symmetry and world-sheet (2,0) supersymmetry. In Sec.4 we review the role of 

local Lorentz and gauge anomalies in the a-model, and discuss how they are ex- 

pected to affect the constraint equations for (2,0) supersymmetry. Sec.5 contains 

the analysis of the effect of a-model loop corrections on (2,0) supersymmetry. We 

also compare our result with recent proposals by Strominger [lgl and by H~ll[~‘] 

. We conclude in Sec.6 by stating the main results of this paper and future 

prospects. 



2. (1,0) and (2,0) supersymmetry in the heterotic string theory 

In this section we shall study the two dimensional a-model describing the 

heterotic string in arbitrary background fields and derive the constraints on the -. 
background fields under which the a-model has an extended supersymmetry. In 

the covariant formulation the dynamical variables of the two dimensional theory 

are the ten bosonic coordinates Xp, ten right-handed Majorana-Weyl coordinates 

Ap and thirty two left handed Majorana-Weyl coordinates $J,“.* The coupling 

constants of the theory are the various background ten dimensional fields. We 

shall consider a field configuration where six of the ten dimensions (denoted by 

the index i) are compactified, whereas the other four dimensions remain flat. 

Let Gij(Z), Bij(Z) and AM(z) be the vacuum expectation values of the graviton, 

the anti-symmetric tensor, and the gauge fields respectively along the compact 

dimensions. The a-model describing the heterotic string in such a background is 

most conveniently written down in terms of the superfields ]331 , which are defined 

a, 

0’ = x’+ 8X’, i = 1,...6 

(2-l) 
A8 = Q” + 8F8, s = 1, . ..32 

where 8 is an anti-commuting parameter and F8 is an auxiliary field, required 

for the superspace formulation of the theory. The action for the heterotic string 

is then given by [4-6,24-301 t 
, 

* In previous papers[b’26’301 we had taken P*s to be left-handed and the $38 to be right- 
handed. We change our convention here in order to comply with the more generally accepted 
notation. 

-+ s ince we are formulating the theory in a flat world sheet, the background vacuum ex- 
pectation value of the dilaton field does not couple to the a-model lagrangian. Instead, it 
corresponds to adding a term proportional to a,a,ili - 6,pa2Q to the energy-momentum 
tensor i8,31-1 
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SC1 
271-a’ J [ dadTdB - i(Gij(@) + Bij(@))D@‘d-a’ 

(2.2) 
- ds(G,JI - iAy(T”)8tD@i)At 1 

plus the free field action involving the fields XA, XA A-7,...10). Here TM ia ‘- ( -- -- 
a generator of the gauge group, u, r are the variables labelling the string world 

sheet, and 

D = a, + ied+ 

We shall also need the component form of the action for our analysis. The 

most convenient form of this action is given in terms of the tangent space coor- 

dinates. We define the vielbein fields e!(z) through the relation, 

Gij(s) = eq(z)eq(t) (2.4 

and the fields Xa as, 

A” = ef(X)Ai (2.5) 

After eliminating the auxiliary fields F” by their equations of motion the action 

(2.2) may be written in terms of the component fields as, 

1 
‘4& J [ 

drda Gij(X)d,x’PXj + ~QPgii(X)d,X”3~Xj + 2i(X43-Xa 

+ x=(~k”~(X) - S;b(X))Xbd-Xk) + 2(i$‘~Y+$’ + A~(X)(T”)8ti3+xi$8t,bt) 

+ iF,‘jji(X)~8(TM),~~tX=Xb 1 P-6) 
where, 

sijk = Stbezeg = k(aiBjk + ajBki + 8k Bij) P-7) 

and wfb is the torsion free spin connection constructed from the vielbein fields 
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e:(z). F,y is the field strength constructed from the gauge field AM(z). 

The supersymmetry transformation laws of the various component fields are 

given by, 

P-8) 

where E is a right-handed Majorana-Weyl spinor. Following Ref.24 we call it a 

(1,O) supersymmetry. 

If it so happens that the action (2.6) is invariant under a rigid chiral symme- 

try, 

A’ + Jj(X)Aj (2.9) 

then the action (2.6) is also invariant under a second supersymmetry obtained 

by replacing A’ by Jj(X)Xj everywhere in (2.8). In order that the second super- 

symmetry anticommutes with the first one, Jj must satiafy, [W4] 

Ji Jj = -6’ 
3 k k 

(2.10) 

i.e. J must be a complex structure. In terms of superfields the new supersym- 

metry transformation may be expressed as, 

iX+ = cJ;(@)Dipi 
(2.11) 

6A8 = i~J~(~)AM(~)D~j(T”)stAt 

- 
Following Ref.24 we shall say that the model now has a (2,0) supersymmetry. 

Using Eq.(2.11) we may calculate the variation of the classical action under the 
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second supersymmetry transformation. The result is, 

+ D~kD~i(TM)stA8AtJ~Fk~ 1 ,- - -. 
(2.12) 

where, 

aiJ:: = Jz:,i + (ri’~ - Siil) Jk( - (ri’k - Silk) J{ (2.13) 

I? being the Christoffel symbol constructed out of the metric Gii(z). Thus in 

order for (2.6) to be invariant under the second supersymmetry transformation, 

we must have, [23’241 

Gk( J,‘Ji = Gij 

J;F,y - J.fF,. = 0 

Since Jj is a complex structure, we may introduce complex coordinates .za, zfi 

such that in this coordinate system, 

Eqs.(2.14) may then be written as, 

Gap = Gap = 0 

ASP, - %, = rap7 - sap7 = s,,, = sap7 = o 

(2.15) 

(2.16) 

The second set of equations tells us that it is always possible to choose a gauge 

where B,p = B,p = o. 
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3. Space-time supersymmetry 

In this section we shall discuss the relationship between the (2,0) world sheet 

supersymmetry and the space-time supersymmetry in the heterotic string the- 

ory. We shall follow the treatment of Friedan, Shenker and Martinet 1311 for the 

construction of the space-time supersymmetry generator in the Neveu-Schwarz- 

Ramond model. Hence we shall first very briefly recall the construction of the 

supersymmetry generator for string theory in flat background. 

The main ingredient for constructing the supersymmetry generator is the spin 

operator S”. [W e s a use the index cy for denoting the spinor coordinates as h 11 

well as the complex coordinates of the internal manifold, but this will not cause 

any confusion.] A simple way to construct these operators is to first bosonize the 

10 Majorana-weyl fermions P into five right moving scalar fields Hi as, 

A’ + iA2 N: eiH’ : 

X3 + iA4 N: eiH3 : 

x9 + ix’0 -: ,iH’ : 

(3.2) 

The 32 spin operators are then defined as, 

&!P -: &H’fH’...fH’) : 

and the supersymmetry charge Q* is then given by, 

Qa cv &Sff (3.3) 

where q5 is a bosonic field obtained by bosonizing the ghost fields. Since both C$ 
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and Sa are right moving fields, Q* satisfies, 

(a, - &,)Q* = 0 (3.4 

and hence s daQa is a conserved charge. ,- - -. 

For an. interacting theory bosonization may be carried out in the interaction 

picture, where the time dependence of various fields are given by free field equa- 

tions of motion. The interaction hamiltonian for the fermionic fields is mapped 

into the interaction hamiltonian for the bosonic fields. The equations of motion 

of various operators in the Heisenberg picture are then obtained by calculating 

their commutators with the interaction hamiltonian. Since Q*, in general, does 

not commute with the interaction hamiltonian, it will no longer satisfy (3.4) and 

no longer give a conserved supersymmetry charge. The situation can change, 

however, if some components of Q* commute with the interaction hamiltonian. 

Since the ghost action remains (almost) free[341 in the presence of background 

fields, it is enough to ensure that some components of Sa commute with the 

interaction hamiltonian. We shall give a specific construction which gives rise to 

such a situation, although we do not prove that this is the only way to obtain a 

conserved supercharge.* 

Our construction requires the manifold to have a complex structure+ Jj, and 

a rigid chiral symmetry of the theory under the transformation, 

As was shown in Sec.2, this is enough for the theory to have (2,0) supersymmetry. 

We shall now show how to construct a conserved space-time supersymmetry 

charge in such a theory. The existence of the complex structure allows us to 

- * A similar construction for Calabi-Yau manifolds was indicated in Ref.31. 
t It haa recently been suggested by Hull that it may be enough to have an almost complex 

structure on the manifold for unbroken supersymmetry. We do not consider this possibility 
in this paper. 
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choose complex coordinates on the manifold, which we shall denote by P, z6. 

We may also choose a complex basis for the fermionic fields, the transformation 

(3.5) has a simple form in this basis, 

Xa ---, ixa; X~ --) -ix”. ‘_ - _ (3.6) - 

As a result of this symmetry G,p and Gaj vanishes, and Gap may be expressed 

-9 

Gap = eP,ej 

where e’s are the vielbein fields. Let us define, 

Aa = ezXa; Xa = e%X’ 

P-7) 

(3-8) 

We may now bosonize the X”, Xs fields in the interaction picture as, 

~0 Hz eiH” :, Xa -:esiH” :, a = 1,2,3 (3-g) 

(The fields H4 and H5 of course still remains free fields since the fields X7,...X10 

are non-interacting). The existence of the symmetry (3.5) guarantees that the 

terms in the a-model action couples Xa to XT, but there is no coupling,of the form 

AaXb or AaX”. In other words the total connection (including the $+,Xx coupling) 

that couples to X must have U(3) holonomy. 

It turns out that the existence of unbroken space-time supersymmetry re- 

quires a stronger condition, namely, that this connection should have SU(3) 

holonomy. * This gives some further constraints on the background fields be- 

sides those obtained by demanding (2,0) supersymmetry. At the tree level of the 

,* We could start directly by requiring SU(3) holonomy, and then derive the existence of an 
almost complex structure and the rigid chiral symmetry (3.5). But we want to separately 
state the two conditions since the u-model loop corrections will be discussed only for the 
constraint implied by G.33.5). 
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sigma model, these constraints are, 

J’jF!% = () 
al (3.10) 

and that the connection I’ 1 S has SU(3) h o onomyr 1 As a Gsult of these con- 

straints the composite operator PbcXaXbXC satisfies the free field equation, 

(a, - au)(P*cAaX*Xc) = 0 (3.11) 

Hence this operator commutes with the interaction hamiltonian. In the bosonized 

picture this means that the operator 

: ,i(H’+H’+H’) . . (3.12) 

commutes with the interaction hamiltonian and hence obeys the equation of 

motion of a free right moving field. As a result, 

(a, - a,) e-# : e;[H1+H”+H8fH’fH5] : 1 = o (3.13) 

since 4, H4 and H5 are free fields. This gives us a conserved space-time super- 

charge, 

: e~[H’+Ha+H9fH4fH5] : 1 (3.14) 

whose four components are generated by four choices of the signs in front of H4 

and H5. 

Thus we have shown that in this particular way of constructing the space- 

time supercharge the world sheet (2,0) supersymmetry is a necessary condition for 

the existence of unbroken space-time supersymmetry. The rigid chiral symmetry 

given in (3.5) is needed to ensure the absence of certain operators (e.g. X”XbXc) 

on the right hand side of Eq.(3.11). S ince this consideration is not limited to 
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the a-model tree level, the presence of the rigid chiral symmetry (3.5) and hence 

also a (2,0) supersymmetry remains an integral part of the criterion for unbroken 

space-time supersymmetry even when the loop effects in the a-model are taken 

into account. 
,- - -. 

Although the constraints for unbroken space-time supersymmetry have been _ 
derived by other means before, the advantage of using the Neveu-Schwarz- 

Ramond model is that all the quantum corrections are well defined in this model, 

and so we may actually compute corrections to these conditions using pertur- 

bation theory. In the next two sections we shall study how the condition for 

(2,0) supersymmetry undergoes modification under quantum corrections in the 

a-model. 

Finally we should mention that in our construction of the supersymmetry 

charge we have not encountered any constraint on the vacuum expectation value 

of the dilaton field. This is not surprising, since we have only used equations of 

motion of various fields in our analysis, which are independent of the vev of the 

dilaton field. In order that the supersymmetry charge (3.14) converts physical 

vertex operators into physical vertex operators, we must ensure that it commutes 

with the BRST operator [31,34-371 
. Since the expression for the BRST charge 

involves the dilaton vacuum expectation value, we expect that the requirement 

of BRST invariance of the supersymmetry charge will give further constraints on 

the dilaton field as well. 
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4. Local Lorentz and gauge anomaly in the a-model 

In Sec.2 we derived restrictions on various background fields in order to 

have (2,0) supersymmetry in the a-model. These equations are summarized in 

Eqs.(2.14). These equations; however, are not invariant under-local Lorentz and 

gauge transformations [24,26,30,39] once we take into acount the effect of one loop 
(331 chiral anomaly . To see this let us define local Lorentz and gauge transforma- 

tions on the background fields as, 

be:(s) = @ “*(z)ef(z) 

(4.1) 
6Ay(z) = &@(z) + fMNPA~(z)OP(z) 

together with appropriate transformations on the two dimensional fields. Here 

W* and OM are infinitesimal parameters for local Lorentz and gauge transfor- 

mations respectively. Under these transformations the effective action changes 
&301 * , 

&+-‘00P) = - & 
/ 

d~~de[Do”(o)a-~“AM(Q) - Ay(@)D@%O”(0) 

- DO”*(@ )w~*(@)d-9’ + ,;*(~)D@%LO’*(iP)1 

which may be cancelled by redefining the transformation laws of 

metric tensor field Bij as, 

(4.2) 
the ant isym- 

Under these modified transformation laws, sijk, as defined in Eq.(2.7), is no 

longer invariant under local Lorentz and gauge transformations. If, however, we 

* We must interchange all the 8;s with 3:s in order to compare the results of this section 
with those in Ref.[5,26,30]. 
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define, 

where 

is the Chern-Simons three form, then H is invariant under local Lorentz and 

gauge transformations. Hence we may expect S to be replaced by H in Eq.(2.14). 

There is, however, an ambiguity in defining H, since we may add any local 

Lorentz and gauge invariant antisymmetric rank three tensor, constructed out 

of Yang-Mills field strength, the curvature tensor and H itself, to the right hand 

side of Eq.(4.4), without spoiling the gauge and local Lorentz invariance of H. 

This ambiguity may also be seen in a slightly different form as follows. Let Tz? 

and Ti”* be two gauge and Lorentz covariant tensors. If we now define, 

where, 

+f=~M+@f a a s 9 
Aab = 
Wi wi”* -I- Ti”* 

&ii = Bij - g (ArTjy - w$‘T~*) (4.7) 

then it can be easily shown that I? is invariant under local Lorentz and gauge 

transformations. We may then expect that when we take into account the effect 

of one loop Lorentz and gauge anomaly, the requirement of (2,0) supersymmetry 

should give constraints on the background fields of the form, 

Jl,i + (I’,C - ir,i,)J,’ - pi”, - hi”,) J{ = 0 (4.8) 

J; F,y - Ji” F,y = 0 

where 2 is calculated from (4.6) with some specific choice of the connections 
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j$f = AM + TM md &a* = ,a* + p* . We shall show in the next section that 

this is indeed the case and derive expressions for i and G. 

- 
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5. Effects of radiative corrections on (2,0) supersymmetry 

We shall begin the discussion in this section with a simple calculation. We 

shall calculate the contribution to the one loop effective action involving the a’ 

fields from the As loop, and-study the variation of this effective action under the 

-second-supersymmetry transformation given in Eq.(2.11). Since the A8 loop is 

the only source of gauge anomaly, we expect that by studying the variation of 

this effective action, we shall know how the requirement for (2,0) supersymmetry 

is affected by gauge anomaly. What makes this calculation simple is that, as we 

shall show, we may directly calculate the variation of the effective action under 

(2,0) supersymmetry, without calculating the effective action itself. 

Now, as can be seen from Eq.(2.2), the gauge field A? appears in the tree 

level action only in the combination A”D@‘. Thus naively one would expect that 

the the one loop effective action may be expressible as a (non-local) function of 

the composite superfield AFDQ’. Also, since, 

hga,g,(AyDQ’) = DOM + jMNP@P(A~DQ’) (5.1) 

even in the gauge variation of the effective action AM should appear in the same 

combination. By examining expression (4.2) for the gauge anomaly we find, 

however, that it contains a term proportional to Ayi3-!Bi as well. The solution 

to this puzzle lies in the fact that in defining the effective action we are allowed 

to add arbitrary local counterterms to the action* and in this case, in order to 

reproduce Eq.(4.2) we must add a local term involving AyB-Qi to the effective 

action. The effective action whose gauge variation has the form (4.2) may be 

expressed as, 

S(*) = j(AyDQ’) - -& 
/ 

d&dOA”&@‘A~D@j (54 

where f is a non-local function which depends only on the combination A”D@‘, 

* This corresponds to a redefinition of various background fields 
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and which transforms under a gauge transformation as, 

(5.3) 
,- - -. 

so that _ Ggsuge j depends on AM only through the combination AFDQ’. The 

advantage of representing the effective action in the form (5.2) lies in the fact 

that under the second supersymmetry transformation given in Eq.(2.11), 

&,,,(A~D@‘) = D(eA”J;DOj) + jMNPA~DQk(eA;J;D@.‘j (5.4) 

i.e. AFD@’ transforms as in a gauge transformation with the gauge parameter 

cAyJjD@j. Thus the variation of f under the second supersymmetry transfor- 

mation may be obtained by replacing OM by cAyJjDC?j in (5.3). On the other 

hand the supersymmetry variation of the second term in (5.2) may be calculated 

explicitly. The final result is, 

(5.5) 

Combining this with (2.12) we see that in order that the full effect,ive action is 

invariant under the second supersymmetry transformation, sijk must be replaced 

dy sijk + gRz(A)ijk in Eq.(2.14). Th’ IS analysis thus tells us that the effect 

of gauge anomaly on (2,O) supersymmetry is indeed to change the constraint 

equations to the form given in Eq.(4.8). 2 . 1s calculated from Eq.(4.6) by setting 
TM=o+ . 

t Of course at one loop order we could argue on general dimensional grounds that TM must 
vanish, since there is no gauge and Lorents covariant tensor that could be constructed to 

- this order. A tensor like F,$fHjki can be added to A,v with an explicit power of or and 
hence can contribute to the right hand side of &.(4.6) at two loop order. But this explicit 
calculation demonstrates that there is nq subtle effect, and that the gauge invariance of the 
theory ia indeed consistent with (2,0) supersymmetry. 
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A similar analysis for graphs involving the @ loops becomes much more com- 

plicated, since the variation of the non-local part of the effective action cannot 

be expressed as the variation of the action under a local Lorentz transforma- 

tion. Hence we must use some indirect method for analyzing this contribution. 

But before doing that, let us first point out an apparent co&adiction in the 

results we have obtained so far. According to our analysis the criteria for having 

an extended supersymmetry requires modification when we include the one loop 

contribution to the effective action. However, there is a superfield formulation for 

theories with (2,0) supersymmetry once the tree level equations (2.14) are sat- 

isfied. In this formulation we may calculate the effective action using extended 

supergraphs, and hence never spoil the (2,0) supersymmetry. How then is our 

analysis consistent with this result? 

It turns out that the solution to this puzzle is also the key to the understand- 

ing of how the equations (2.14) are modified by Lorentz anomaly. The point is 

that different methods of computation of the effective action may differ by finite 

local terms. It was shown in Ref.30 that the addition of any local term in the 

lagrangian which respects the (1,0) supersymmetry may always be absorbed into 

a redefinition of the coupling constants Gij, Bij and AM. Hence our result can 

be consistent with the results of (2,0) superfield calculation only if the new equa- 

tions (4.8) can be brought into the form of Eq.(2.14) after a field redefinition. To 

check this, consider the second of Eqs.(4.8), written in complex coordinates, 

I&r - I&p7 = rap, - ii& = I&p7 = l?Q5 = 0 

According to our argument ,it must be expressible as, 

(5.6) 

I?’ -q&j7= w7 Paprl - s& = s&g7 = s.& = 0 (5.7) 

- 
where I” and S’ are Christoffel symbol and torsion constructed out of some new 

metric G’ - and new antisymmetric tensor B’ -. In order to verify that this is QP aP 
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indeed the case, we express Eq.(5.6) in terms of Gij and Bij, 

~(%,7 - G57,p) - f(Br~,~ - Bs7,p + Bp7,c5) - 93(&, = o 

-f(Ba~,~ +.Bp7,a + B,,,p) + 3-J3(A),p7 = o ‘- - -- 
(5.8) 

The other equations in (5.6) are obtained by complex conjugating (5.8). 

Since d&(A) is proportional to Tr(F A F), and since F,p = FBp = 0, d&(A) 

has two holomorphic and two antiholomorphic indices. (In other words it is a 

(2,2) form.) Hence, 

qdw4))c$?7] =qd(fl3(4)ap,] =o (5.9) 

showing that !&(A),p, and C13(A)dip7 may be expressed as, 

(ns(A))ap7 = DC&p,7 + q37,a + D,,,p (5.10) 

(~3(4)w37 = G,,, - G,,, + D/37,& (5.11) 

for some tensors C&p and D,p (= - Dp,J. Similarly s23 (A)+ may be written as, 

(n3(4),B7 = CapT, - ca7,p+q37,a , (5.12) 

Note that we are not assuming any symmetry properties of C, so that C&,p and 

Cpti are completely independent of each other. Substituting (5.10) and (5.11) in 

(5.8) we see that we may express Eqs.(5.8) as, 

&(G;p,7 - G&J - +(B,& 7 - B;7p + Bi7 -t) = ;(B’@  , , ,Q a 97 + B/& + B&J = 0 
(5.13) 
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where, 

G& = Gap - ; (C&/I + cps) 

B& = Bsp + ; (cep - $4 - -- (5.14) * 

B’ =B a’ 
4 +-D @  4 @  

Because of the last two equations of (5.6) we can no longer choose B,p to be 

zero, but we may choose Blap to be zero. 

With the lesson that we learned we may proceed to determine how Eqs.(2.14) 

gets affected by Lorentz anomaly. The key point is that it must be affected in 

such a way that the resulting equations may be expressed as (5.7) after a field 

redefinition. Furthermore, any set of Lorentz and gauge covariant constraint 

equations which reduce to Eq.(5.7) after a field redefinition is a valid set of 

constraints, since if there is more than one set of such constraints satisfying the 

above criteria, they may be transformed into each other by a field redefinition. We 
A 

shall seek for a constraint equation of the form (4.8). We take H of the form given 

in Eq.(4.6) with TM set to zero. As before, we may convert the new constraint 

equations to the old ones by a field redefinition if &(cj) = Tr[R(ci) A R(G)] is 

a (2,2) form, i.e. if R(h) is a (1,l) form.* A convenient choice is, 

Aab = 
wi wi"b + Qb (5.15) 

With this choice fi appears on both sides of the equation (4.6), but it can be 

solved iteratively for l?. If we calculate the corresponding connection in the 

* It has been argued by Strominger 1191 that this is the only case where we can obtain a 
perturbative solution to the constraint equations, whose seroth order solution is a Calabi- 
Yau manifold. 

22 

.- . 



coordinate basis, 

(5.16) 

where I’ denotes the Christoffel symbol, then, after using the co_nstraint equations 

(4.8), the various components of f in complex coordinate system are given by 

(5.17) 

The curvature tensor constructed from it may be shown to be a (1,l) form with 

correction terms of order (Y’ by using the equation 

G4a,li16 - Ga[ptqcz] = a4 (5.18) 

which again follows from the constraint equations (4.8). Removal of the extra 

terms of order Q’ will need addition of new terms of order cy’ to the right hand 

side of Eq.(5.15), i.e. of order cy I2 to the definition of I?. Note that in ~2, I? 

is added to the spin connection, whereas in Eq.(4.8) the covariant derivative is 

taken with respect to a connection where I? is subtracted from the Christoffel 

symbol. 

A different choice of the connection 2’ has been proposed by Strominger. 

Expressed in terms of r^l defined by Eq.(5.16) with fi replaced by fi’, the various 

components of this connection take the form, 

The other components of I!/ are obtained by complex conjugating the indices. 

The curvature tensor constructed from this connection is a (1,l) form, and hence 
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(5.19) also gives a valid choice of & to be used in Eq.(4.8). Expressed in terms 

of real coordinates, this corresponds to choosing a different C’, given by, 

where Eak is the inverse of the vielbein e4. Again &-I may be obtained by solving 

Eq.(4.6) iteratively. The values of Gii and Bij obtained by solving Eq.(4.8) with 

the connection ~3’ will be related to those obtained by solving Eq.(4.8) with the 

connection ~3 by a field redefinition which, in general, will involve the complex 

structure J as well. 

In fact, since by a field redefinition we may bring Eq.(4.8) in the form of 

Eq.(2.14), we could just solve Eq.(2.14) without worrying about any quantum 

corrections at all. The fields Gij and Bij obtained by solving these equations will 

again be related to those obtained by solving Eq.(4.8) by a field redefinition given 

in Eqs.(b:w), although these fields will have complicated Lorentz transformation 

properties under local Lorentz and gauge transformations. 

We conclude this section by pointing out that our general considerations do 

not tell us what choice of & will express the constraint equations in terms of the 

physical fields, where the definition of a physical field is such that the P-functions 

(i.e. the equations of motion) expressed in terms of the physical fields will not 

involve the complex structure. Since the field redefinition which takes us from one 

choice of G to another involves the complex structure in general, certainly not all 

choices of & will express the constraint equations in terms of the physical fields. 

In order to settle this question one has to carry out a computation of the effective 

action in a scheme which does not depend on the complex structure, study the 

variation of the effective action under (2,0) supersymmetry, and determine the 

constraints that must be satisfied in order that the above variation vanishes. 
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6. Conclusion 

In this paper we have analyzed the criteria for unbroken space-time super- 

symmetry in the heterotic string theory, starting from the a-model describing 

the propagation of the heterotic string in arbitrary backgrou”nd fields. We use 

the Neveu-Schwarz-Ramondformulation of the string theory and try to construct 

a conserved supercharge following the methods of Ref.31. The construction re- 

quires the background fields to satisfy certain restrictions, one of which is the 

existence of unbroken (2,~)) world sheet supersymmetry in the a-model. 

We then discuss the restriction imposed on the background fields by the re- 

quirement of (2,0) supersymmetry. At the tree level the equations involve the curl 

of the antisymmetric tensor field Bije Since this field has anomalous transforma- 

tion laws under local Lorentz and gauge transformations, the tree level equations 

are not invariant under these transformations and must be modified by quan- 

tum corrections. The requirement of local gauge and Lorentz invariance however 

does not uniquely specify what the corrections to the equations should be, since 

we may add any Lorentz and gauge covariant terms to these equations without 

destroying their invariance properties. With the help of explicit calculation and 

some general arguments we have been able to determine the correct equations 

describing the requirement of (2,0) supersymmetry in this model. The main re- 

sult is that the modified equations can always be transformed into the original 

tree level equations by a field redefinition. The redefined metric G~j and the 

antisymmetric tensor field B~j have complicated transformation properties under 

local Lorentz and gauge transformations which compensate for the non-trivial 

transformation properties of dB' appearing in these equations. We have also 

expressed the criteria for (2,0) supersymmetry in terms of the fields Gij and Bij, 

which transforms in the standard way under local Lorentz and gauge transfor- 

mations. Our result says that the effect of quantum corrections is to replace dB 
in the tree level equation by a gauge and Lorentz covariant three form I? with 
the property that dI? is a (2,2) f arm- when expressed in complex coordinates. 
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[The existence of (2,0) supersymmetry requires the manifold to have a complex 

structure, and hence ensures the existence of a complex coordinate system]. Fur- 

thermore, if there are two or more three forms satisfying the above requirements 

we can use any one of them in our equations. Since we have shown that each 

set of equations using a particular three form fi can be deformed into the form 

of tree level equations by field redefinition, two sets of equations using different 

three forms can also be deformed into each other by a field redefinition.* We 

have constructed specific examples of & satisfying these requirements. These 

forms of J? have previously been advocated by Strominger llgl and by Hull1201 

from different considerations. 

It is tempting to conjecture that the complete set of equations obtained by 

requiring unbroken N = 1 supersymmetry may be transformed into the corre- 

sponding equations at the a-model tree level after a field redefinition. Then if 

we obtain a solution to these equations at the tree level we shall obtain a solu- 

tion to all orders in the perturbation theory. This result will also be consistent 

with the general arguments presented by Witten PI , showing that in the effec- 

tive four dimensional theory the F term in the superpotential does not receive 

any contribution from the a-model loop corrections. As a result the position 

of a supersymmetric minimum is unaffected by the a-model loop corrections. 

(Ref.[15,16], h owever, seems to provide a counterexample to this result.) In any 

case it will be interesting to see how the radiative corrections in the a-model 

affect the various other constraint equations for unbroken space-time supersym- 

metry. One should also be able to compare these results with the higher order 

corrections calculated by various authors 1401 by trying to supersymmetrize the 

Green-Schwarz action. We hope to return to these questions in the near future. 

* Of course we must stay away from pathological choices for which the field redefinition is 
singular. The safest rule is to take the O(1) contribution to H to be dB and use the freedom 
of choice on the O(a)) contribution. 
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