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ABSTRACT 

We apply a formalism for the description of multitime measurements to de- 

termine the quantum limit on the precision with which the second of a pair of 

successive position measurements can be performed on a free mass. The result 

depends on the position resolution of the measuring device as well as on the time 

interval between the two measurements, and it spans a range of values whose 

minimum is smaller than a presently controversial result, the SQL, by a factor of 

fi; the issue is hereby resolved. 
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Recently there has been a confluence of interest in the quantum mechanical 

effects and limitations associated with very small scales and with ultra-high- 

precision position measurements. Examples include optical communication, laser 

interferometry in gravitational wave detection, and very-small-scale solid state 

devices.l In particular, the quantum mechanical limitations On the precision of 

successive -position measurements of a free mass are of considerable importance in 

connection with the detection of gravitational waves. In this connection, a result 

known as the standard quantum limit (SQL) for position measurements [recorded 

in Eq. (10) below] h as b een the subject of considerable interest, as well as of some 

recent controversy.2 It is the purpose of this letter to apply a formalism developed 

for the description of multitime measurements3 to a derivation of the quantum 

mechanical limitation on the precision with which the second of a successive pair 

of position measurements can be performed. We shall refer to this result as the 

quantum limit, or the QL [recorded in Eq. (7) below], so as to avoid confusion 

with the SQL. As will be seen in the following, the crucial feature in the present 

derivation is the explicit incorporation of the properties (e.g., finite resolutions) 

of measuring devices in the description of quantum measurements, a point which 

has served as a guiding principle in the developments that have led to the present 

formulation.3~4~5 (Refs. 3, 4 and 5 will be referred to as Papers I, II and III.) 

It should be pointed out here that the relevance of the finite resolution of the 

measuring device was recognized by Caves when he attempted to reestablish the 

SQL after a serious flaw had been pointed out by Yuen; see the Letters cited 

in Ref. 2. 

The SQL states that in two successive position measurements of a free mass 

m, a time 2” apart, the variance in the second measurement cannot be reduced 

below (T/M)‘/2. On the other hand, the above-mentioned Letter by Yuen main- 

tains that the so-called contractive states in fact violate the SQL and reduce the 

variance in question below the quoted value. The current (and rather unsettled) 

state of the issue is summarized in Cave’s Letter. The underlying difficulty, as 

may be seen in the cited works, is a lack in the existing literature on measure- 
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ment theory of a realistic formulation capable of analyzing problems that arise in 

actual measurements. We believe the present formalism provides an appropriate 

means for treating such problems. As we shall see in the following, our analysis 

shows that the QL in fact spans a range of values depending on the position res- 

olution of the measuring device, and that the lower limit-of this range is indeed 

lower than.. the SQL value by a factor of fi. We now turn to the derivation of 

these results. 

Consider two successive measurements of position at times -T/2 and +T/2 

by means of a device whose resolution for position measurements is Ax . This 

particular measurement, as well as the notation used here, is described in Pa- 

per III, where it is shown that the state of the free mass m so measured is given 

by the density matrix 

j3 = 2-l exp - 
{ 

c [Apif(-$)+Xi+ q(+f)l} . 

The objects of our attention are the variances 6x* defined by 

( 1 6xf 2 = TrJ[3i:(&:)]2- [Trfig(&g)]2 , (2) 

where, as for any operator (that does not explicitly depend upon time), 

qq = T?(T) s?(T) , 

t?(t) = exp -$$ , 
( > 

and where the absence of a time argument implies the reference time t = 0. 

The quantum mechanical limitation we are seeking is a lower bound on 6x+, the 

variance in the second position measurement. 

To arrive at the desired limit, we find it expedient to consider a unitary 

transformation implemented by 

P = exp (F) exp ($) . 
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The transformed state 3~ = P fi Pt is then found to be 

BV = 2-l exp -x [x;$T+xzii: 
{ I> 

, 
i 

(4 

,- - -. 

-where we have used fi f (-$‘) Pt = 2, and PS(+$) Pt = (g)fi. The lat- 

ter quantity, 5 $, is just what we have called 4 in Eq. (4), so that ii’ are in 

fact projection operators for momentum bins of size Ap = !$ Ax. Therefore, 

Eq. (4) describes a canonical measurement of state (cf. Paper III) accomplished 

by means of a position measurement with resolution Ax and a momentum mea- 

surement with resolution Ap = y Ax. Moreover, in the V representation, the 

variances 6x* appear as 

( > 6x+ 2 = (2)” [Tr ,& fi2 - (Tr iv 3~~1 , 

( > 6x- 2 = [Tr p^v g2 - (Tr bv i)“] 
(5) 

. 

In other words, 6x* are respectively equal to 5 6p and 6x in the new representa- 

tion. Our task is thus reduced to finding the minimum of 6p and the state that 

realizes that minimum. 

The last-mentioned minimum was in fact considered in Paper III, where we 

found that the symmetries possessed by the optimal state (i.e., the state that 

realizes the said minimum) imply the equalities Xi+ = Xf. But these equalities 

in turn imply that 6x + = 6x-, as can be seen from Eqs. (1) and (2), so that we 

have the result that (6x+)2 = (6x+)(6x-) = 5 (6x)(bp). In other words, instead 

of the minimum of 6p = ?6x+, we may equivalently look for the minimum 

value of the variance product (6x)(&p) in the V representation (where position 

and momentum are measured with resolutions Ax and y Ax, respectively). 



We considered this last problem in Paper II, where we found that the variance 

product (6x)(6p) h as a universal lower bound Uinf which is a function of the 

dimensionless quantity k = $ (Ax)(Ap). Moreover, we found that7 

k/(k) = + + g k + O(k2) , ,lc < 1 f 

(6) 
Uinf(k) N E k + . . . . , k>>l . 

In particular, in the limit of k = 0 one has Uinf(O) = l/2, which is the standard 

Heisenberg result. On the other hand, the behavior for k > 1 is a purely classical 

result arising from finite resolutions; recall the definition of k given above. 

We are now in a position to assemble the above information. First, we have 

from (&x+)~ = 5 (6x)(&p) the statement that (c~x+)~ 2 5 Uinf(k). Next, using 

the definition of k we find k = & (Ax)~, and from this the result that 

6x+ > lo - { 2uinf (&(Ax,")}~'~ 3 (QL) 3 (7) 

where we have defined & E (T/2m)lj2. Equation (7) is a statement of the 

quantum limit (QL) for successive position measurements. Using the limiting 

behavior of ?Yinf g iven in Eq. (6), we obtain from Eq. (7) 

6x+&f!, [1+& (%)‘I , +1 , 

for high-resolution and/or long-duration measurements, and 

6x+ > 1 Ax, --a 

(8) 

(9) 

for low-resolution and/or short-duration measurements. Note that Eq. (8) is a 

classical result,8 as is the second member of Eq. (6), and it merely reflects the fact 

that the finite bin size Ax induces a minimum in the variance 6x which cannot be 

reduced below -& Ax (corresponding to a uniform spatial distribution confined 

to a single bin). 
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For comparison, we note that the SQL gives 

6x+ 2 dal , (SQL) , (10) 

a value which is intermediate between the absolute minimum?u seen in Eq. (8) 

and the classical result given in Eq. (9). One can see from Eqs. (7)-(g) that 

the two important scales in the problem are the position resolution Ax and the 

natural quantum scale of the problem, &-,. For example, for sufficiently long 

measurement times T, lo can be made arbitrarily large (for a fixed mass m) so 

as to render the required resolution for achieving the absolute limit a relatively 

easy task. Physically, this corresponds to the fact that for such long measurement 

times, the spread in the spatial distribution is enhanced to such a degree as to 

make the finite bin size Ax inconsequential. 

As pointed out in the introductory remarks, the current discussion on the SQL 

arose in connection with gravitational wave detectors using laser interferometry. 

The most optimistic estimates of Ax for these devices place it at or about &, 

i.e., Ax 2 .&. On the basis of Eq. (8), th en, one would expect that 6x+ 2 .f?u for 

such resolutions. However, it should be remembered that the estimated optimal 

resolution Ax 2 & is subject to a number of conditions,g among which is a 

stringent requirement on the measurement time T (which must be matched to 

the interferometer parameters so as to minimize thermal noise), and also that 

the presently achievable resolutions actually correspond more closely to the limit 

given in Eq. (9). 

This work was supported in part by a grant from the California State 

University, Sacramento, and by the Department of Energy, contract DE-ACOS- 

76SF00515. 
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