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It is an old topic for speculation that space-time contains more dimensions 

than the four familiar from our experience. Already in 1921, just after Einstein’s 

development of general relativity had given a precise basis for investigations of the 

fabric of space-time, Kaluza’ proposed an unseen fifth dimension as the origin 

of electromagnetism. In the past few years, however, this line of speculation has 
,- - -. 

come to be a major element in the search for a fundamental theory underlying 

the known interactions of elementary particles. 

An outsider to field theory, even one educated in quantum mechanics, might 

well be puzzled by this. If he is open-minded, he will admit that the number 

of space-time dimensions is an experimental question, and he might well grant 

that the answer to this question has not yet been decided. We see 4 macroscopic 

dimensions, but perhaps there exist others tightly curled, perhaps into rings of 

radius R. But then the minimum nonzero momentum that can be excited in 

these dimensions is of order l/R. If R is large, this momentum is very high, 

and we cannot probe directly for the signs of such extra dimensions until we 

reach comparably high energies. In principle, it is possible that R-r is just out 

of reach at TeV energies, but theorists seriously contemplate values of R-l of 

order the Planck mass mp - 10lg GeV. Such speculations would seem to be 

completely irrelevant to our current scientific concerns. But they are not, and 

that is the issue I wish to explain in these lectures. Even though the most direct 

manifestations of higher dimensions appear only at energies of order R-‘, there 

are consequences of this structure which can be felt at much lower energies, 

perhaps even at energies now accessible to experiment. The purpose of these 

lectures is to explain how this can be true, and what insights we might obtain 

from higher dimensions on the issues in elementary-particle physics which we 

puzzle over in today’s experiments. 

These lectures were prepared for an audience of experimentalists. They pro- 

vide an introduction to the subject of physics in higher dimensions, but only at 

- tke most basic level. The student of theoretical physics who wishes to do research 

in this field might find a quick reading of these lectures useful, but he should then 
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begin working through one of the more serious introductions to the subject, for 

example, Refs. 2-4. 

These lectures will proceed as follows. In Section 1, I will carry out some 

simple exercises which clarify the physics of a S-dimensional world in which one 

dimension is curled up to a radius R. In Section 2, I will d&cussa technical prob- 

lem necessary to generalize this discussion to d dimensions, the determination of 

the sizes of spinors in higher dimensions. One feature which we will see emerging 

in the simple analyses of these first two sections is the presence of eigenmodes 

of a higher-dimensional field with exactly zero energy. These zero modes will be 

of central importance for our discussion, since it is the existence of zero modes 

that allows the physics of the large scale R-’ to become visible at much smaller 

energies. In Section 3, then, I would like to explore the origin of such zero modes, 

using as examples conventional models of field theory. Section 4 gives the final 

bit of background material, a review of general relativity, formulated as a gauge 

theory. Finally, in Sections 5 and 6, I will come to the central results which I wish 

to describe. Section 5 will discuss, in general terms, the conditions for the ap- 

pearance of zero modes in space-time geometries with compactified dimensions. 

Section 6 will illustrate the physics of these zero modes in a series of examples, 

from the original construct of Kaluza and KleinrY5 to the currently fashionable 

superstring theory. 6,7 

1. The Cylinder World 

To begin our discussion, consider space-time in the shape of a cylinder, with 

four extended dimensions z” - x3 and a fifth spacelike dimension x4 bound up 

to a size 27rR, as indicated in Fig. 1. To be more precise, consider a space-time 

with coordinates 

xM = (x0,x1, x2, x3, x4) , (1-l) 

on which all functions are periodic in x4 with periodicity 27rR. Let us examine the 
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Fig. 1. A model cylindrical space-time. 
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solutions to the wave equation on such a space for a variety -of different particles, 

from simple scalars to gravitons and gravitinos. 

Our first example is a scalar field. The solutions to the wave equation aa+ = 0 

for a scalar field on this cylindrical space have the form of plane waves, 

4(x) = eeik” , 

,- - -. 

0.2) 

with k2 = 0. The periodicity condition in x4 implies that k4 is quantized: k4 = 

n/R; then the energy spectrum of scalar field modes takes the form 

k” = [(q” + (;)2] ’ . (l-3) 

Apparently, we can interpret the various quantized values of k4 as the squared 

masses of 4-dimensional propagating particles. The mass spectrum is shown in 

Fig. 2. 

To impress you with the generality of this structure, let me digress to consider 

a more complicated background space. Let space-time have 6 dimensions, with 

two of them curled into a sphere of radius R, as is indicated in Fig. 3. The wave 

equation on such a space is given explicitly by 

a2rp = {[ & - (V)2] - fr-&&sine-jj + -&-$$I}4 = 0 . (1.4) 

The solutions to this equation have the form 

(l-5) 

The plane wave appears because the system is translation-invariant with respect 
- to-# = (x0, x1,x2,x3); the spherical harmonics are of course the natural eigen- 

functions on the 2-dimensional sphere. Inserting (1.5) into (1.4), we find that k” 
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Fig. 2. Four-dimensional mass spectrum of modes of a scalar field on a S- 
dimensional cylindrical space-time. 
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Fig. 3. A model space-time with two spherical dimensions. 
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must satisfy 

k” = (9” + cLctR; “)]’ ; 
that is, the eigenvalues of the spherical harmonics provide the values of m2 for 

a series of the 4-dimensional scalar particles. The 4-dimensional mass spectrum -. 
emerging from this theory is shown in Fig. 4. It should be clear that this result 

generalizes to any space in which the wave equation can be solved by separation 

of variables. 

Let us now return to the cylinder world and examine the wave equation for 

fields of higher spin. In an open space of 5 dimensions, the wave equation for a 

vector field AM(X) would have solutions 

where k2 = 0, and the polarization vector is spacelike and transverse: 

cO=o, 2. Z-I- k4e4 = 0 . (l-8) 

In 5 dimensions, there are, of course, three transverse directions of polarization. 

As in the scalar case, k4 is quantized; k” again satisfies (1.3). Thus, we find a 

quantized mass spectrum of 4-dimensional particles. Consider first the massive 

particles, n # 0. The three polarization states satisfying (1.8) are: 

A8 = (0, <,O) emik” , AM = (0, $$-, 1) e-ik.z , 

where Zi, i = 1,2, are the two vectors orthogonal to z in ordinary space. These 

three states naturally form a massive vector boson. For n = 0, we have massless 

modes. The possible polarization states are: 

Ag = (0, G,O) emik” , AM = (O,c, 1) e-ik’z . (1.10) 

‘I?& two states involving the q give the two transversely polarized states of a 

massless vector particle. The third state is a new massless scalar. In general, in 
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Fig. 4. Four-dimensional mass spectrum of modes of a scalar field on the 6- 
dimensional space-time of Fig. 3. 
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a d-dimensional theory with all dimensions but 4 curled into rings, the massless 

modes comprise a 4-dimensional transverse vector plus (d - 4) scalars. 

A similar analysis can be done for the spin-2 field. Propagating gravitons 

have wavefunctions of the form 

l&MN(X) = QfN&-ik.z , ‘- - -- (1.11) 

where c is a symmetric matrix and k and e satisfy the physical-state conditions 

k2=0, EON = EM0 = 0 , ,MM = 0 , k”,MN = 0 . (1.12) 

I will write the solution to these constraints only for the sector corresponding 

to &dimensional massless particles: k M = (k, k3,O). For simiplicity, take c 11 i. 

Then there are two solutions for E which involve only the dimensions O-3: 

. 

0 es 

6 0 

, 

\ 

EC 0 

0 -CC 

. (1.13) 

These are the conventional gravitational waves of polarization t=l and -I-. In 

addition, there are three solutions which involve the new fifth dimension: 

i c2 c3 

62 

c3 I 
0 

1 

2 

3 

4 1 . (1.14) 

The first matrix displayed here represents the two components of a transverse 

vector. The second gives a massless scalar particle. This is the reduction first 

- r&iced by Kaluza and Klein: the content of S-dimensional gravity, with one 

dimension compactified, includes 4-dimensional gravity plus a photon. 
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2. Fermions in Higher Dimensions 

To complete our discussion of the cylinder world, we should investigate the 

spectra of spin-) and gravitino fields. To do this, however, we must determine 

the correct higher-dimensional equations of motion for these fields. This general- 
,- - e 

ization, immediate for integer-spin fields, requires an extra bit of analysis in the 

half-integer case. 

To begin this analysis, recall the original basis of the Dirac equation. Dirac’s 

theory tells us that if we can find a set of d matrices satisfying the algebra 

{r",rN) = 2gMN, (2.1) 

then we can write an equation which implies the Klein-Gordon equation but has 

half the number of solutions. For, if we write 

( iy”dM+m)r(l = 0, 

acting on this equation with the operator (i-j”aM - m) gives 

0 = (y”yNaMi3~ + m2) rl, = (a2 + m2)$, 

P-2) 

(2.3) 

if‘we use (2.1) to remove the 7’s. Equation (2.2) is the Dirac equation, written 

in a form that applies to any dimensionality. The solutions to this equation are 

of the form 

where t is a vector in the space on which the 7’s act. 

- -It is a standard result that, in 4 dimensions, the 7 matrices must be 4 x 4. 

We can build up the rule for more general dimensions by examining a few more 
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cases, beginning with 2-dimensional space-time. In 2 dimensions, the following 

set of 2 x 2 matrices satisfy the Dirac algebra (2.1): 

It is useful to define the chirality matrix 7 by 

P-5) 

(2.6) 

Here 7 satisfies q2 = 1 and anticommutes with the r”‘s. If we now take $J to be a 

2-component column vector, we can write the Dirac equation (2.2) in components 

as 

(30 - 31)$2 + mtil = 0 , 

(2.7) 
(-&I - dl)+l + rnqh = 0 . 

In general, the Dirac field $ will be complex-valued. However, it is clear from 

(2.7) that, in the specific case of 2 dimensions, the real and imaginary parts of 

$J do not couple to one another, and we are free to insist that + is purely real. 

The imposition of such a reality condition is called a Mujorana reduction. For a 

Dirac field of zero mass, a further reduction is possible. Setting m = 0 in (2.7) 

produces decoupled equations for +r and $9, the eigenvectors of the chirality 

operator 7. We are free to keep only one of these components. Then the content 

of (2.7) becomes 

lcll =$1(x0- x1) (a right - moving fermion), 

or $2 = $2 (x0 + x1) (a left - moving fermion). 

The imposition of such a chirality condition is called a Weyl reduction. 

P-8) 
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Given a representation of the Dirac algebra in 2 dimensions, it is easy to 

construct one in 3 dimensions: Simply append to the algebra 7f3) = i~c,l. A 

similar trick allows one to construct Dirac matrices in any odd dimensionality 

2n + 1 from those in dimensionality 2n. 

To reach 4 dimensions, however, we must increase the size of the matrices, 

since there do not exist 4 mutually anticommuting 2 x 2 matrices. It is possible, 

however, to build up the I-dimensional matrices by using the 3-dimensional ma- 

trices as components. 76, may be given as 2 x 2 matrices of 2 x 2 matrices in 

the following way: 

7k, = ( > 7t) 1 

7iG , c1=0,1,2; 7f4) = -1 * ( > P-9) 
The matrix 

7 = i7!4)7[4)7?4)7?4) = 1 ( > -1 
(2.10) 

(written in 2 x 2 blocks) anticommutes with each member of (2.9) and so defines 

the 4dimensional chirality. This matrix is, of course, just r5. This construction 

in fact gives a general procedure for finding a representation of the Dirac algebra 

in 2n + 2 dimensions, given a representation in 2n + 1. 

In 4 dimensions, all 4 x 4 matrix representations of the Dirac algebra are 

equivalent up to unitary transformations, so we are free to convert (2.9) to an- 

other, more convenient, form. One possible choice is the one made in the Bible.8 

A second is a representation in which the 76, are all pure imaginary. This repre- 

sentation allows us to define a Majorana reduction. A third choice is one which 

is manifestly amenable to a Weyl reduction: 

(2.11) 

where al4 -= (I., \?)) IP =: (0, -03, and a’ are the standard Pauli sigma r‘ Itrices. 
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In this basis, 7, defined in (2.10), again takes the form 

(2.12) 

The massless Dirac equation i7.&!~ = 0 has solutions which arcplane waves with 

k2 = 0, -kp = (k, c). If we write 

11,= 2 ( > , 
the two-component Weyl spinors GR, $JL obey independent equations 

(2.13) 

These equations express the fact that $JR has right-handed spin polarization, 

and T+!JL has left-handed polarization, as shown in Fig. 5. It is worth recalling 

that Weyl spinors are physically very important: Since the weak gauge group 

SU(2) x U(1) h as chiral couplings, it sees as fundamental objects Weyl, rather 

than Dirac, spinors. 

It is not hard to trace the pattern of the representations of the Dirac algebra 

into higher dimensions. In 2n or 2n+ 1 dimensions, 2n x 2n matrices are required. 

The Weyl reduction is possible, if m = 0, in any even dimensionality. The 

Majorana reduction, however, is more subtle; this reduction is possible only in 

8n + 2 and 8n + 4 dimensions, and the Majorana and Weyl reductions may be 

simultaneously applied only in 8n+2 dimensions. ’ We saw that this simultaneous 

reduction is indeed possible in 2 dimensions, but not in 4. It is next possible in 

10 dimensions. 

With this introduction to spinors in higher dimensions, let us take up the 

- question of spinor fields in the cylinder world. Consider first the case of spin f. 

Let us construct the plane wave solutions to the Dirac equation, imposing, as 

14 



i 

R 

L 

a- 

3-86 5366~5 

Fig. 5. Polarization of Weyl fermions in 4 dimensions. 
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before, k4 = n/R. Since S-dimensional spinors have 4 cotiponents and 7t5, = 

~(~1, we can write the Dirac equation as the following condition on the spinor t 

in (2.4): 

(2.15) 

Define V = exp[-i$T]. This matrix satisfies U7(41 -Pj+pP - 7(4) - (-iTI - 76)’ 

Thus, (2.15) is equivalent by a unitary transformation to an ordinary Dirac equa- 

tion in 4 dimensions. The particle mass is n/R, as before. A crucial feature, 

though, is that we cannot obtain Weyl spinors, even for n = 0, except as mem- 

bers of R-L pairs (as in (2.14)). The same result would have been obtained if we 

had started from a 6-dimensional Weyl fermion, since this is also a 4-component 

object containing both left- and right-handed 4-dimensional spinors. 

We have now encountered a severe problem with the idea that the world 

is in fact higher-dimensional. Higher-dimensional fermions necessarily contain 

components of both 4-dimensional chiralities. However, the weak interactions are 

observed to couple to fermions of definite chirality. How could this be possible? 

I will refer to this question as the chirality problem. One of the main goals of my 

lectures will be to explain the quite nontrivial mechanism which gives a solution 

to this problem. 

Let us turn, finally, to our last example on the cylinder world, the spin-g or 

gravitino field. Plane-wave gravitini have wavefunctions of the form 

?,b&fo = [Ma epik” , 

where a is a spinor index, and the elements of (2.16) satisfy 

(2.16) 

k2=0, [oa=O, 73Mb=6, k”hf,=O. (2.17) 

Tlie third condition removes the spin-k piece of the polarization vector. I will 

write the solutions to these equations only for the massless sector-n = 0, k = 



(k&O) -setting ic’ 11 i. We may represent the t’s as matrices with five rows, 

corresponding to the possible values of M, and two columns, giving the 7 = fl 

pieces of the spinor. Two sets of solutions correspond to spin-8 particles in 4 

dimensions: 

61R 

t2R 

The spinors satisfy 7p& = 0. ! Since there are 2 gravitini, the S-dimensional 

theory must reduce to N = 2 supergravity. In addition, there are two sets of 

solutions which correspond to spin-i particles in 4-dimensions: 

(2.18) 

+U2TjL 
- +3qL 

. (2.19) 

All four of these states come in paired chiralities, a reflection of the generality of 

the chirality problem we have just posed. 

3. The Theory of Zero Modes 

Having now gained some experience with multidimensional physics by con- 

sidering the cylinder world, we are ready to discuss the features of the higher- 

dimensional spectrum of states in greater generality. Let us take as our starting 

point the observed fact that, whatever the dimension of space-time might be, 4 

of its dimensions are extended, while the rest are extremely tightly curled. The 

- mended dimensions curve slowly over distances of order 1027cm; for the pur- 

poses of elementary particle physics, we may regard them as flat. The curled 
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dimensions have R < lo-%m, based on the fact that we- observe no massive 

counterparts of the photon such as the ones which appeared in the analysis of 

the previous section. I encourage you to imagine, however, that R might be much 

smaller, of order the Planck scale, 10-33cm. 

The solutions to the wave equation on such a space have the form 

@ -e -ik*z’ * F&r4, 25,. . .) . 

The plane wave in the familiar dimensions reflects their simple Minkowski char- 

acter. The functions PA(~), by analogy to the discussion of the previous sec- 

tions, are eigenfunctions of an appropriate wave operator on the compact (d - 4)- 

dimensional space. Their eigenvalues become the masses of the 4-dimensional 

particles which this theory produces. Most of these masses are very large: by 

dimensional analysis, we expect rn: - 1/R2. Only eigenvalues which turn out to 

be small compared to the characteristic scale of l/R2 will correspond to particles 

which we can readily observe. 

If we are really envisioning values of l/R of order mp, the only relevant 

eigenvalues will be those which are extremely small on the natural scale. It is 

most natural to require that the relevant eigenvalues be exactly equal to zero, at 

least in a first approximation. For quarks and leptons, this is the requirement 

that these particles have zero bare mass, that is, that all of their mass’arises from 

SW) x U(l) Y s mmetry breaking. We must ask, then, under what circumstances 

wave operators have eigenvalues exactly zero. This may happen by accident, but 

presumably there are no accidents in the Grand Design. It may happen also for 

reasons of physics. In fact, two rather elegant mechanisms for generating zero 

eigenvalue modes are known from the study of model field theories-one relies 

on symmetry, the other on topology. In the remainder of this section, I would 

like to explain these two mechanisms for generating zero-eigenvalue states (zero 

- tmrdes), by discussing some simple (nongravitational) examples. 

(34 
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3.1 SYMMETRY ZERO MODES 

Let us first consider some examples of zero modes generated by symmetry. 

The simplest example arises in considering a domain wall between two regions 

of spontaneously broken symmetry. Such a system would be described by the ^ - -. 
Hamiltonian - 

H= 
I dx [;w)2 + V(4)] , (34 

where V(d) is a double-well potential of the form shown in Fig. 6(a). The 

states of lowest energy are those for which 4(x) remains always at a minimum 

of V: 4(x) = &r$o. However, if we insist that d(x) t 3-40 as x -t 00 but that 

4(x) -+ -#c as x + -00, we find instead a solution of the form of Fig. 6(b). In 

particular, the variational equation which follows from (3.2) is 

-V”+(x) + $(4(x)) = 0 . 

Let J(x) be th e solution to this equation of the form of Fig. 6(b). 

Consider the small oscillations about this solution: 

q!(x) = d(x) + bw. 

(34 

Inserting (3.4) into (3.2), we find 

H= 
/ [ 

dx { $‘8)2 + V(d)} + 64 { - V2d + g(d)} 

(3.5) 

+ ;{ (V&q2 + $m4)2] + 0 W3)] * 

The term linear in C;4 vanishes by virtue of (3.3). To analyze the stability of the 

19 



(a) v (b) $2x) 

B-m------ 

X 

-------.- 

-90 $0 -+. - $(x1 - 40 
3-66 5366~6 

Fig. 6. Appearance of domain walls in a model system with spontaneously 
broken symmetry: (a) the potential energy V(4); (b) the form of the domain 
wall solution J(x). 
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domain wall solution, we must treat the (6~~5)~ term as an eigenvalue problem 

Try, in this equation, the solution 

scj = $4. 

The left-hand side of (3.6) becomes 

&(-v28 + g(s)) = 0 ! 

(3.7) 

(3.8) 

Thus, (3.7) is a zero mode of the differential operator (3.6). 

There is a good physical reason to expect a zero mode to appear in this 

situation: the original problem was invariant under translations, but the domain 

wall solution singles out a preferred position, its center. Any translation of 

the wall will give a new solution of the original variational equation (3.3) with 

the same energy. Then the infinitesimal translation must be a mode of neutral 

stability. This is precisely the statement that (3.7) should be a zero mode of the 

stability operator (3.6). (It should be noted that the higher order terms in the 

expansion of H in small fluctuations do induce an energy cost for translations. If 

we go to eigenstates of P, the generator of translations of a domain wall, terms 

of higher order induce a kinetic energy term E = P2/2M.) 

Let us now consider a second example of symmetry zero modes, to show 

that such modes can potentially form a multiplet under a non-Abelian symme- 

try group. This example involves the model of nucleon structure invented by 

Skyrme lo and recently revived by Balachandran, Nair, Rajeev, and Stern 11 

- 2IId Witten.12 This model imagines the nucleon to be a condensate of pions, in 

the following way: in the strong interactions, the pions form an isospin triplet 
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and thus are in l-to-l correspondence with the generators of isospin. Construct, 

then, the SU(2) unitary matrix field 

U(X) = eii(z)*8/f, , (3.9) 

To make the exponent dimensionless, I have supplied a factor fir with the dimen- - 
sions of mass. (Using current algebra, one can in fact argue that this factor must 

be the pion decay constant.) Equation (3.9) is of the form 

.iS*a’ 
e ia.a = cos 1 fq + s -sinjZl 

14 
= no + in’sa’, (3.10) 

where n defined by this equation is a general unit vector in 4 dimensions. The 

set of all vectors n sweeps out the unit sphere in 4 dimensions. Since this sphere 

is a 3-dimensional surface, we may imagine cutting it open at the north pole and 

stretching it out to cover S-dimensional space. This produces a field configuration 

topologically trapped in 3 dimensions. Just as was true for the domain wall, 

this configuration cannot be continuously deformed to a trivial configuration in 

which Z(x) is constant. The form of the pion field corresponding to this solution 

is shown graphically in Fig. 7, its explicit form is 

fi(x) = ,UW~ , F = f(r)? , Yr 
(3.11) 

where j(r) tends to 0 as r + cc and equals 7r (the south pole, according to 

(3.10)) at t = 0. M ore generally, we may imagine placing on 3-dimensional space 

N bumps of the form of Fig. 7, so that the n vectors associated with +/jr cover 

the unit sphere N times. The number N is unchanged by small deformations; 

it is a conserved quantum number. Skyrme identified the solution (3.11) with a 

baryon and the conserved number N with baryon number. 

- - Our main interest in this solution lies in the problem of the small oscillations 

about l?(x). Because the form of I?(x) involves a spatial vector 7^ and an isovector 
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Fig. 7. The pion field configuration in Skryme’s model of the baryon. 
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8, l?(x) picks out a preferred orientation in space and in isospace. Rotations in 

space or isospace generally change the form of ti(x): 

0(x) 3 eif(f)(RJPl’a (rotation in space) , _ 
(3.12) 

fi(g-) + eif(r)‘*(Rl’) (rotation in isospace) , 

.; 

4  

where RJ, RI are rotation matrices. Note that these two motions duplicate one 

another, so that combined rotation generated by ?+ Cleaves the Skyrme solution 

invariant: 

r”+ JISkyrmion) = 0. (3.13) 

Either can be expressed as an isospin rotation of the pion field. Since space 

and isospace rotations are symmetries of the strong interactions, the rotated and 

unrotated pion fields must have the same energy. Then the infinitesimal rotation 

-$R’j(O) +)I,=, (3.14) 

must be a zero mode of the stability problem associated with the Skyrme solution. 

The three independent rotations give three zero modes 

t;(j)$ = ,ijk [;k j(r)] ; (3.15) 

these three states form an spin triplet under the symmetry (i+ J’) preserved by 

the Skyrme solution. (In a higher order analysis, one finds that states of definite 

I, J (with 1 = J, because of (3.13)) receive energy E = I(1 + 1)/21. It is 

permissible to quantize I, J as half-integer angular momental ; in this case, 

the two lowest states have I = J = i (the nucleon) and I = J = 9 (the A).) 
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3.2 TOPOLOGY ZERO MODES 

The second physical mechanism for the appearance of zero modes is a more 

subtle one which is easier to illustrate than to explain. The simplest example in 

which it appears is in the motion of Dirac fermions about a magnetic vortex in 

a superconductor. Let me pose this problem carefully-and show you that a zero 

mo.de does -appear. 

Let us first set up a magnetic flux quantum in a 2-dimensional superconduc- 

tor. Particle physicists view a superconductor as a system with a complex-valued 

Higgs field (physically, this is the electron pair condensate) which acquires a vac- 

uum expectation value I (4) 1 = 40. D ee p inside the superconductor, there can be 

no electric or magnetic fields; this is the Meissner effect. It is possible, though, 

that some magnetic flux lines might thread through the superconductor, driving 

it normal or partially normal in a localized region. This situation is illustrated 

in Fig. 8. We should try to determine (4(r)) and the magnetic vector potential 

i(r) in the vicinity of such a flux tube. These functions are constrained by the 

integral 

/ d2sB = f de’-/?, (3.16) 

which gives the flux of B passing through the contour C in Fig. 8. If C is far 

from the flux tube, B = 0 there. But this does not imply that 2 = 0, since if 

2 = ax for some X, we still have B = e x x = 0. This statement reflects the 

fact that 2 can be changed by a gauge transformation: a gauge motion carries 

x=0, q5=& + i=$X, q$=e”&xq$o, (3.17) 

Using this form of 2, we can evahrate (3.16) as 

(3.18) 

This integral is not necessarily zero: by (3.17), X is proportional to the phase of 

(4) along t,he contour C. If one circles-this contour, (4) must come back to the 
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Fig. 8. Configuration of magnetic flux and supercurrents when a bit of magnetic 
flux traverses a superconductor. 

26 



i same value, but its phase may advance by 2m. In that case, 

/ d2sB = f d&i = @-2xn . 
e 

(3.19) 

The total magnetic flux flowing though C is then quantized! A simple, regular 

form for 2 which satisfies the constraint (3.19) (with n = 1)for a suffiiciently 

large contour is 

J = f&l,- = fop -3) , 
er er r’ r 

(3.20) 

where r = (xf + x”,) f and f ( ) r is a function which vanishes as r --+ 0 and tends 

to 1 as r ---) 00 (and I have returned to AC = 1). 

Let us use this 2 in the massless 2-dimensional Dirac operator 

i7j‘(d, - ieAp)$ , (3.21) 

and look for zero modes. To write (3.21) explicitly, we need two spacelike 7p’s: 

7’ = (p ;) r2 = (; ;) (3.22) 

Inserting (3.22) and (3.20) into (3.21), we find that the condition for a zero mode 

in $Q is 

1 -(a,-22,) - ~(xl;ix~)}~l = 0. 
Try a solution of the form T,!J~ = g(r); this equation becomes 

( 
x1 - ix2 

11 
d - 

r Zg+ r 
Wg} = 0. 

We find, then, that 

$1 = ew [ - 
0 

(3.23) 

(3.24) 

(3.25) 

6% zero mode of (3.21). Note that the conditions on f(r) given at the end of the 

previous paragraph imply that this form for $1 is regular at r = 0 and falls to zero 
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as r --+ 00. An analogous argument can be made for $2; this leads to a solution 

of the form of (3.25), but with the crucial change of - to + in the exponent. 

This solution blows up as r + 00 and so does not belong to the physical Hilbert 

space. Thus, in this example, $1 has a zero mode, but $2 does not. 

To understand the significance of this result, we should think about the more 

general eigenvalue problem 

i$‘(~?, - ieA,)$ = X * $J . (3.26) 

Defining 7 for this system by 5 = -i7’72, we can see that, if we have an eigen- 

vector TJJX with eigenvalue X, then 11, = T$JX is another eigenvector with eigenvalue 

-X. The spectrum of eigenvalues of (3.26) thus consists of pairs fX, as indicated 

in Fig. 9. The corresponding eigenvectors must be states of mixed chirality. The 

only states that need not be paired are the zero modes, and these may have defi- 

nite chirality. Let the number of zero modes of positive and negative chirality be 

N+, N-. Consider now the effect of making a small change in the vector potential 

A’ used to define (3.26). The nonzero eigenvalues may move slightly, but their 

pairing is preserved. In principle, zero modes may move to nonzero values. But 

they must move away from zero in pairs, each pair being composed of the two 

possible linear combinations of a positive and a negative chirality eigenfunction. 

Pairs of nonzero modes may move to zero by reversing this process. In all cases, 

however, the value of N+ - N- remains unchanged. The difference N+ - N- 

must then be determined by an expression which is insensitive to local changes 

in A. Indeed, Atiyah and Singer l4 have proved a theorem on the zero modes of 

the Dirac operator (the Indez Theorem) which reads, in this case, 

(3.27) 
e =- 

27r f 
de’. A, 

where the integral in the last line is taken around a contour at infinity. Our 
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Fig. 9. Spectrum of eigenvalues of the Dirac operator in a typical electromagnetic 
field. 
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explicit result in the previous paragraph, N+ = 1, N- = O-for a situation with 

(3.19), n = 1, is a special case of this general formula. 

As was first noted by ‘t Hooft,15 the Atiyah-Singer Index Theorem is closely 

related to a well-known result in field theory called the axial vector anomaly. By 

considering a process of the form shown in Fig. 10 ‘in i+l-Gmensional space- 

time, ‘tHooft argued that a zero mode of the %dimensional Dirac equation could 

be interpreted as a chirality-flip process in l+l-dimensions. Let jp5 = $79,b be 

the chirality current and Q5 = s dx jo5 the associated charge. Then ‘t Hooft’s 

arguments related (3.27) to the equation 

/ 
dt $QS = 

/ 
d2x -+‘F 

2T PV 7 (3.28) 

or, in local form, 

arjp5 = f/“FpY . (3.29) 

This last equation also follows directly from the Feynman diagram of Fig. 11(a), 

as was first shown by Schwinger. 16 

The whole set of results we have just discussed have a natural generaliza- 

tion to 4 dimensions. The analogue of (3.29) is the Adler-Bell-Jackiw anomaly 

equation 17 

e2 
d,jp5 = s?‘AuFpyF~, . (3.30) 

(The right-hand side of this equation is proportional to 2 s g.) Equation (3.30) 

follows from the Feynman diagram of Fig. 11(b). It is well-known to field the- 

orists because it constrains the whole set of diagrams shown in Fig. 11(c) and 

thus allows one to compute the z” + 27 decay width. The integral of (3.30) over 

4-dimensional space, connected to zero modes by ‘t Hooft’s argument, gives the 

4-dimensional Atiyah-Singer Index Theorem. 
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Fig. 10. A process in l+l dimensions which leads to a chirality flip in the vicinity 
of a magnetic flux quantum. 
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Fig. 11. Feynman diagrams which violate chiral current conservation (a) in l+l 
dimensions, (b) in 3+l dimensions. This latter diagram enters the computation 
of the class of diagrams shown in (c) and actually dominates the evaluation of 
the r” + 27 coupling. 
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The Atiyah-Singer theorem actually applies in general higher (even) dimen- 

sions. The its general form is 

N+ - N- = (constant) 
I 

ddx P’Xa--- Fpy Fxb - - - . (3.31) 

-. 

The quantity on the right-hand side can, quite generally, be written as a surface 

integral at infinity. 

We have now discussed two physical mechanisms for obtaining zero modes 

of wave equations. The first arose from considerations of symmetry. The second 

arose from the nontrivial topology of the background fields. It is reasonable 

that both of these mechanisms have analogues in the study of wave equations in 

higher-dimensional spaces. The topological mechanism is particularly promising, 

because it can produce fermion zero modes of definite chirality; thus, it could 

potentially solve the chirality problem noted at the end of the previous section. 

Let us now investigate how exactly these mechanisms can work in gravitational 

contexts. 

4. General Relativity as a Gauge Theory 

Before beginning this discussion, however, we should review one.further bit 

of formalism. We would like to generalize results obtained in ordinary gauge 

theories to theories involving gravity. This generalization will be made easier if 

we can cast the theory of gravity into a form which looks as much like a gauge 

theory as possible. In the process, we will gain some useful insight into the gauge 

structure implicit in the theory of gravity. 

Einstein’s theory of gravity has as its basic dynamical variables parameters of 

the geometry of space. Consider, then, some general curved space, for example, 

- tR??one shown in Fig. 12. One way to describe distances on this space is to define 

a set of coordinates xp and then to summarize local measurements of distance in 

33 



,- - 

Fig. 12. A piece of curved space, and some orthonormal frames to use in mea- 
suring it. 
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a metric tensor gPy (x): 

ds2 = gpy (x) dxpdx” . (4.1) 

Let VP be the components of a vector referred to this coordinate system. An 

alternative approach, which- we will -find preferable, is te set -up at each point 

in the space an arbitrary orthonormal frame. Let e,p(x) be the expression in 

the coordinate representation of the oth vector of the frame at x. Then the 

components of a vector with respect to the orthonormal basis obey 

VP = earVQ . (4.2) 

In &dimensional space-time, e,p represents a set of 4 vectors and so is called a 

oierbein or tetrad. (Its higher-dimensional analogue is, of course, the vielbein.) 

Let us define the matrix eQP to be the inverse of eJ‘; this matrix inverts the 

relation (4.2), converting components VP to V O. The invariant square of a vector 

is given by 

v2 = rjapvavP = gp”vv” , (4.3) 

where qab is the usual metric tensor on Minkowski space: rlacl = (1, -1, -1, -1). 

Inserting into (4.3) the inverse of (4.2), and comparing terms, we find: 

SP” = Qap eapePu . (4.4 

The orthonormal frames we have constructed can have any orientations, and 

these orientations can vary arbitrarily from point to point. This arbitrariness 

in the way we may construct the frames is precisely a local gauge invariance, in 

which the gauge group is the group of rotations or Lorentz transformations. To 

- make this gauge symmetry an invariance of the equations of motion of fields, we 

should introduce a covariant derivative, including a gauge field which I will label 
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wCcA. The superscript A labels a group transformation; the elementary transfor- 

mations are rotations in planes, so we may replace A by a pair of antisymmetrized 

indices o/3. We may now write the covariant derivative more explicitly, on vectors 

D,Va = (L$Va + w&VP)-, - -- (4.5) 

and on spinors 

using CaP = ’ p[7a,7fl], the generators of Lorentz transformations on spinors. A 

vector (or spinor) is parallel-transported along a curve in the direction of the 

vector rP if 

nPDPVa = 0. (4.7) 

A vector which is parallel-transported around a closed loop on a curved sur- 

face will generally return rotated from its original orientation. This is illustrated, 

for the case of a sphere, in Fig. 13. Around an infinitesimal loop, we find an 

infinitesimal rotation, which depends on the plane (cr,p) of the rotation and on 

the plane (PV) of the loop: 

(4.8) 

This equation defines the Riemunn curvature tensor. This tensor is given explic- 

itly by 

R aP - a w aP _ a w a/? rP w - PV v P + wpa+Qv - qha+Jv Y/3 . (4-g) 

TKs is exactly the form of a field strength tensor F,, corresponding to the non- 

Abelian gauge symmetry of Lorentz transformations. 
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Fig. 13. Parallel transport of a vector around a triangle drawn on a sphere, 
beginning and ending at the north pole. 
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Since Rpvafl is a field strength, it is transforms covariantly under gauge trans- 

formations. It therefore can reflect directly the symmetries of the space it de- 

scribes. Consider, for example, the curvature tensor of the 3-dimensional sphere, 

which is parametrized by 3 angles w, 8,& The nonzero components of Rpvap are 

,- - -. 

(4.10) 

with R on the right-hand side being the radius of the sphere. The equality of 

these three elements reflects the spherical symmetry. For completeness, let us 

define two contractions of the curvature tensor, the Ricci tensor Rq and the 

curvative scalar R: 

Rar = ea“ep” Rp,‘P , R = Raa . (4.11) 

For the 3-dimensional sphere, the Ricci tensor is forced by symmetry to be pro- 

portional to the unit matrix 

Ra7 = (4.12) 

We may now write Einstein’s equation for the gravitational field: 

R w - ;Rgpv = ~&NT,, . (4.13) 

So far, we have discussed only the gauge invariance of the theory of gravity 

under local Lorentz rotations. But this theory has a second set of local invari- 

antes, the freedom to make local changes of coordinates. This freedom may be 

viewed as a local translation invariance, as is illustrated in Fig. 14. To under- 

stand how this second local gauge invariance is implemented, it will be useful 
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Fig. 14. A general change of the coordinate system, accomplished by making 
local translations of the coordinate points. 
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to work out the variation of the vierbein associated with-a change of coordi- 

nates x/L + x’p. Let us write the expression for an infinitesimal vector of fixed 

orientation located at the point x’: 

dxlp clap(x) = dx” ea,(x(x’)) 
- 

= dx”’ -$& eav(+‘)) . 
(4.14) 

Let x’ differ from x only infinitesimally: x“ = x’p + (p(x). Inserting this formula 

into (4.14), we find the transformation law: 

crap - a e p = axe d("eav + ("&ear . (4.15) 

If we consider an approximately flat space and take eaCr to be a natural uniform 

choice of the orientation of frames, cap = Jap, the transformation law (4.15) 

takes the form 

6eap = a,p , (4.16) 

a transformation of a set of gauge fields by the gauge parameters ta. At least in 

this linearized approximation, then, the vierbein provides the gauge fields for a 

local translation invariance. 

The field strength constructed from this gauge field, 

T a PV = Dpeav - DyeaCc (4.17) 

is called the torsion. In Einstein’s theory of gravity, the torsion has no physical 

content. The Principle of Equivalence implies that all invariant information about 

the structure of space is contained in the curvature tensor. It requires us to set 

Tpva = 0; this constraint is a set of equations connecting eacI and wpap which 

fixes the W~‘S in terms of the vierbein. Note, however, that the constraint is 

- c;evariant with respect to both of the gauge invariances that we have discussed 

and leaves them both in force. 

40 



5. Zero Modes of Geometrical Equations 

Now we are ready to address the basic issue toward which we have been work- 

ing: given a space of some higher number of dimensions, with some dimensions 

curled into a compact space, what zero modes will we find for wave equations 

on this space? To answer this question, we will need to generalize the discussion 

given in Section 3. I will discuss this generalization in some detail for symmetry 

zero modes, and then more quickly for topology zero modes. In this section, I 

will refer to the decomposition of a vector xM into components lying along the 

extended and compact directions by writing 

xM = (xy yy (5-l) 

withp=O(), . . . . 3,q=4 ,.... 

Let us first ask how to find symmetry zero modes of the basic wave equations. 

Thece are produced in several ways. The first possibility is quite trivial. The 

scalar field wave operator on a compact space 

-D2 44~) (5.2) 

always has a zero mode given simply by the constant function. Thus, scalar 

fields on a space with extended and compactified dimensions will always have low 

energy modes of the form of (3.1), with F in this equation a function independent 

of the yq. The components of vector and tensor fields in which all of the indices 

point into the extended directions O-3 also may be decomposed into terms of the 

form (3.1) with F(y) an eigenfunction of the scalar operator (5.2). These fields 

thus have low-energy modes 

AM(~, Y) = L‘hb) ) , S’MN(%Y) = 

- cprresponding to one &dimensional photon or graviton field for each such field in 

the d-dimensional theory. Note, however, that this trick does not work for spinor 
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fields, either spin-a or spin-g. The reason is that, while a vector in d-dimensions 

can be written as the sum of a 4-dimensional and a (d - 4)-dimensional vector, 

a spinor in d-dimensions is, by the considerations of Section 2, the product of a 

&dimensional spinor and a (d - 4)-dimensional spinor. 

A second mechanism for producing zero modes is ,-mole closely connected to 

the sym-metries of the compactified space. To introduce this mechanism, let me 

consider the simplest example, the cylinder world of Section 1. We have already 

analyzed directly the light particle content of this theory, but it is instructive 

to reconsider this theory in order to count its gauge invariances. Despite its 

compact structure, the cylinder has its full translation symmetry in 5 dimensions. 

A 4-dimensional local translation symmetry has its gauge fields contained in the 

&dimensional gravitational field shown in (5.3). But we have one more gauge 

degree of freedom which requires a corresponding gauge field. Where is it? To 

see, consider the effect of making a local translation into the 5th dimension 

EM = (o,G, X(x)) . 

Inserting this into (4.15), we find 

(5.4 

or, using (4.4), 

&MN = aMb4N -k aNX g4M + A a4SMN . (5.6) 

If gMN is independent of y = x 4, the last term vanishes. Then we find 

6gp4 = a,X . (5.7) 

_ %s, gP4(x) must be the gauge field corresponding to this last local translation 

symmetry. By the usual argument from gauge invariance, this vector field must 
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be massless. This is exactly the conclusion we reached at the end of Section 1 

by explicit computation: the off-diagonal components of gMN contain a massless 

&dimensional vector. Now we have identified that vector as a gauge particle. 

Kaluza and Klein, in their original work, went a step further and identified this 

particle with the photon. -. 

_ This method of generating gauge bosons from the gravitational field can be 

readily generalized to more involved situations. Let us, then, consider a general 

compact manifold described by the metric tensor gqs (y). Let qP (y) be a symmetry 

motion of the manifold, a set of local translations which leaves grls unchanged. 

Using (4.4) and (4.15), we can write this condition as 

bss = avdegec + 99ea,de + Haohs = 0 - (5.8) 

Such a motion is called a Killing vector or an isometry. Now consider making a 

coordinate transformation on the full space given by 

(5.9) CM = (vi X(x) * P(Y)) - 

Inserting (5.9) into the general transformation law for g, we find 

b,, = apwv(Y) . (5.10) 

Thus, in general, the off-diagonal terms in the metric tensor contain 4-dimensional 

gauge fields for every symmetry of the compact dimensions: 

QPl = A,(x) - #V(Y) . (5.11) 

Let us illustrate this result with a concrete example. Consider a configuration 
- &pace-time in which the total dimensionality is (N + 3), with N - 1 dimensions 

curled up to form the unit sphere in N dimensions. Two views of this space-time 
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are shown in Fig. 15(a) and (b). The N-dimensional sphere is a space of high 

symmetry: it possesses N - 1 symmetries of the form of Fig. 15(c), corresponding 

to N - 1 orthogonal directions in which one can move the north pole of the 

sphere. In addition it possesses (N - l)(N - 2)/2 symmetries of the form of 

Fig. 15(d), this being the number of planes in which one can rotate leaving the 

north pole invariant. In all, there are N(N - 1)/2 Killing v&ors, and so we 

must find this number of gauge symmetries and of 4-dimensional gauge bosons in 

the compactified theory. The counting is just that appropriate to a non-Abelian 

gauge theory with gauge group O(N). 

This mechanism for producing symmetry zero modes applies also to spin-f 

fields. In this case, low-energy modes of the field are generated by Killing spinors, 

local supersymmetry motions c=(y) satisfying 

wp(Y) = 0 * (5.12) 

If the space-time geometry contains a flat Minkowski space in addition to com- 

pactified dimensions, this condition is equivalent to Dllc(y) = 0. Given such a 

Killing spinor, one can consider modes of the d-dimensional gravitino field of the 

form 

*MA = ‘b&) ’ cb(Y) - (5.13) 

Here A is the index of a d-dimensional spinor; such a spinor may be decomposed 

into the product of a 4-dimensional spinor and a (d - 4)-dimensional spinor, and 

this decomposition has been used in writing (5.13). Then tiPa will appear as 

a massless gravitino field in 4 dimensions. 

It is considerably more difficult to produce topology zero modes in compact- 

ified geometries. To set up the problem, consider the eigenvalue problem defined 

by the Dirac operator in a geometry of the form of (5.1). We may write 

r”D~$ = [rPD, + (r”D,)]+ - (5.14) 

The quantity in parentheses is the Dirac operator on the compactified space. 
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Fig. 15. A space-time with N - 1 dimensions compactified into a sphere: (a) 
and (b) show two ways of visualizing this space; (c) and (d) show two classes of 
symmetry motions of the compactified subspace. 
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A zero mode of this operator yields a massless fermion in 4 dimensions. These 

zero modes are counted by the Index Theorem; to determine the number of 

zero modes, or at least to determine whether these zero modes have a chirality 

imbalance, we must discover what quantity stands on the right-hand side of the 

Index Theorem. If we were lucky, we might find there the Euler number 
-. 

x- 
/ 

dx 6‘ v&l... ~apr6... Rpv ap Ran 16 . . . , (5.15) 

which counts the number of holes in the surface. But (5.15) is even under parity 

and so is an inappropriate candidate. To correct this difficulty, we should con- 

tract the indices a,@, . . . . In 4 dimensions, this produces an object called the 

Hirzebruch number, which does in fact appear in the appropriate index theorem: 

N+-N- = --!- 879 J 

ddx @CL.. R P ap RXcap - 

Unfortunately, a theorem of Linchnerowicz insists that the right-hand side of 

(5.16) can be nonzero only if the scalar curvature R of the compact manifold is 

somewhere less than 0. Actually, we really need a somewhat weaker requirement, 

that the right- and left-handed zero modes of the Dirac operator on the compact 

space, considered in terms of the gauge group defined by our earlier analysis of 

the symmetries of this manifold, should form inequivalent representations of this 

group. But this still cannot happen on a compact manifold of positive curvature.3 

Apparently, there is a conflict between the appearance of chiral fermions and the 

hypothesis that all gauge bosons arise as components of the gravitational field 

associated with Killing vectors of complex manifolds. 
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6. Some Examples of Higher-Dimensional- Models 

Now that we have discussed the basic theoretical principles to be used in 

working out the low-energy spectrum of a theory with compactified dimensions, 

let us apply the understanding we have gained to analyze a series of models. We 

will first discuss, one last time, the original scheme ,of KaluzE and Klein. We 

will generahze this scheme in the grandest possible way, arriving finally at the 

11-dimensional maximal supergravity theory. Then, motivated by the conflict 

discussed at the end of the previous section, we turn to a simple model with 

fundamental gauge fields in addition to gravitation. Finally, we discuss another 

grandly ambitious model which incorporates the best features of both approaches, 

the lo-dimensional superstring theory. 

6.1 (GENERALIZED) KALUZA-KLEIN THEORY 

Let us begin, then, by reconsidering and generalizing the model of Kaluza and 

Klein. The results of the previous section can be encapsulated in the following 

statement: if one considers the equations of gravity on a space of the form 

(4 - d Minkowski space) . (compact M) , (6-l) 

the low-energy spectrum of this theory contains a graviton plus one 4-dimensional 

gauge boson for each isometry of M. If the isometries of M form a non-Abelian 

group, as in the sphere example given above, we will find a non-Abelian gauge 

symmetry. As long as the gauge symmetry of the theory remains unbroken, 

these bosons remain exactly massless. In principle, such bosons can be given 

mass by the Higgs mechanism. It is a natural hypothesis that deformations of 

the geometry ofM can act as Higgs bosons, and this mechanism for giving mass 

to Kaluza-Klein bosons has in fact appeared in some models.18 

- - Since the general logic of this program is quite clear, it seems not inappropri- 

ate to jump to its grandest known realization. To set up the theory in question, 
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recall our result of Section 2 that a 5- or 6-dimensional spin-i field yields, in a 

compactification to 4 dimensions, two &dimensional spin-g particles This is a 

signal that the full theories obtained by compacitification contain 2 distinct 4- 

dimensional supersymmetries. Since the size of the spinor representation doubles 

at every even dimensionality, compactification of still higher-dimensional spaces 

will lead to theories with still more 4-dimensional supersymme&ies. Fortunately, 

there is- a limit to how much supersymmetry a theory can reasonably contain. 

Each &dimensional supersymmetry contains one helicity-lowering operator, and, 

in a theory with several supersymmetries, these operators act independently. A 

theory with a graviton (which has states of helicity f2) and particles of all lower 

spins can accommodate eight independent helicity-lowering operators: 

3 1 1 3 -2t--t--It--tot-cl+---e-2, 
2 2 2 2 (6.2) 

but more such operators can only be accommodated if the theory contains fields 

of spin > 2. If we are not to admit such high-spin fields (whose quantum theory 

is known to be extremely problematicall ) the maximum number of supersym- 

metries we may allow is 8. A theory with this largest supersymmetry would arise 

from a theory with spinors of 16 components, or 32 Majorana components. Thus, 

this grandest and most symmetrical supergravity theory lives most naturally in 

11 dimensions. 

The 11-dimensional supergravity theory, constructed by Cremmer, Julia, 

and Scherk, 2o can be compactified in such a way as to maintain its maximal 

symmetry. 21 In principle, one would like to compactify this theory by dividing 

11 dimensions into &dimensional Minkowski space plus a ‘I-dimensional sphere. 

Unfortunately, the energy-momentum generated by the compactification, set on 

the right-hand side of (4.13), requires that the &dimensional space have a cur- 

v&ure comparable to the curvature of the sphere. The resuting &dimensional 

geometry is a non-compact geometry of constant curvature-anti-de Sitter space. 
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The spatial compactification 

ll- d + (4 - d anti - de Sitter) x (7 - d sphere) (6.3) 

produces the decompositions 
,- - -. 

SMN + !i’/.w + A, A + . . . 

(6.4 

+MA + $+40 I + . . . 

The gauge bosons ApA make up the bosons of an O(8) gauge theory, in the matter 

that I described in the previous section. The 8 spin-i particles q!~~~’ arise from 8 

Killing spinors of the ‘I-sphere; these enter the 4-dimensional theory transforming 

as an 8 of O(8) under the gauge symmetry. The &dimensional theory contains 

56 spin-i particles, which form an irreducible, but non-chiral, representation of 

O(8). The maximal supergravity theory forms itself, then, into a beautiful and 

highly symmetrical structure, though one which still stands at some distance 

from the observed world. 

6.2 CREMMER AND SCHERK'S MONOPOLE MODEL 

As we discussed at the end of the previous section, it is extremely difficult 

to obtain a chiral multiplet of spin-i particles from a compactified geometry 

unless the original, higher-dimensional theory contains fundamental gauge fields. 

It is worthwhile, then, to review the simplest example of a theory in which 

fundamental gauge fields are present and play an important, nontrivial role. 

This is a model due to Cremmer and Scherk,22 which begins in a 6-dimensional 

space-time containing a fundamental O(3) (isospin) gauge theory and a Higgs 

field 4i transforming as a vector (3) of this O(3). 

_ _ Cremmer and Scherk found a solution to this model of the form indicated 

in Fig. 16. They split 6-dimensional space into &dimensional Minkowski space 
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Fig. 16. Configuration of Higgs fields in the compactification model of Cremmer 
and Scherk. 
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and a 2-dimensional sphere. They then decorated this sphere with a Higgs fields 

whose direction in isospace is everywhere normal to the sphere 

4’ - (F)’ (6.5) 

and with gauge fields whose field strength also has an isospin direction normal 

to the sphere 

F’ tls cv frjci' B. (6.6) 

This configuration of geometry and fields is completely invariant under combined 

space and isospin rotations, in just the way that the Skyrme model example dis- 

cussed in Section 3 had an invariance under such combined rotations. Thus, the 

low-energy 4-dimensional spectrum of this model contains a full O(3) gauge sym- 

metry, whose gauge bosons are associated with the geometrical transformations 

shown in Fig. 17. 

Another consequence of this invariance is that it forces the Ricci tensor for 

this space to take the form 

RAB = 

-C 

c 
c 

c 
D 

L 

0 

1 

2 

3 ’ 

4 

5 

(6.7) 

where C and D are constants. Equation (6.7) can be a solution to (4.13) if we 

put on the right-hand side a fixed background energy-momentum proportional 

to QAB (a cosmological constant). The constant C depends on the curvature of 4- 

dimensional space as well as that of the sphere; to insure that our solution has an 

extended 4-dimension part, we must adjust the value of this cosmological constant 

so that (4.13) is satisfied for the C corresponding to 4-dimensional Minkowski 
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Fig. 17. Symmetry motions of the compactified geometry which give rise to the 
4-dimensional gauge bosons of the Cremmer-Scherk model. 
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space. Thus, the Cremmer-Scherk configuration does provide a solution to the 

field equations of their model; however, it requires a fine tuning of one parameter 

to take a fully realistic form. 

The Cremmer-Scherk model has one further very attractive feature. Since 

the gauge field strength and the Higgs field are always parallel in isospace, the 
,- - -- 

flux of F’, referred to the Higgs direction, has a nonzero integral over the sphere: 

/ 
d2 SE”< F,,<‘q+ # 0 . (6.8) 

The Atiyah-Singer index theorem implies that, if we add a Dirac field to this 

configuration of space-time, we will find chiral fermion zero modes. This model 

might, then, serve as a prototype of theories in which a realistic fermion content 

emerges from compactification. 

6.3 C OMPXCTIFICATION FROM 10 DIMENSIONS 

How can we combine the best virtues of this model with the grandeur of ll- 

dimensional supergravity? If such a grand fusion could be possible at all, it should 

take place in the dimensionality which contains the maximally symmetric system 

of supergravity coupled to matter. We might hope that this dimensionality is also 

the one which describes matter itself as symmetrically as possible. A multiplet 

of matter must necessarily, for our purposes, contain gauge bosons; it should also 

contain spin-$ fermions. In 4 dimensions, we know that we can form a complete 

supersymmetry multiplet from these two components. We should ask whether 

this is possible in any higher dimensions. In 4 dimensions, we can check that 

a gauge boson and a gaugino can form a complete supermultiplet by counting 

propagating fields: the gauge boson has two transverse polarization states, and 

a &component Weyl or 4-component Majorana fermion also has two physical 

states, half the number (counting spins for particle and antiparticle) of a Dirac 

_ fermion in 4 dimensions. This matching fails in 5 or more dimensions, except, 

magically, in 10 dimensions. There, as we noted in Section 2, we are allowed 
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to place simultaneously a Weyl and Majorana condition on spinors. Thus, we 

may define 16component Weyl-Majorana spinors which describe 8 propagating 

fermion states. This is exactly the number of transverse photon polarizations 

in 10 dimensions. Ten-dimensional supergravity with a Majorana-Weyl gravitino 

contains four 4-dimensional supersymmetries. By an argument analogous to that 

given in (6.2)) this is the maxlmum number of supersy&&etrieg allowed if we are 

to have- supermultiplets containing only particles of spin 1 or lower. Thus, 10 

dimensions provides the setting of maximal symmetry for theories of supergravity 

coupled to matter. 

Having now settled on the dimensionality of space in our grand construction, 

we must ask, what is the gauge group? Ordinarily, this question has no definite 

answer; in 4 dimensions, we could choose any possible compact group. How- 

ever, even in 4 dimensions, the specific representations to which we assign chiral 

fermions are constrained by the axial vector anomaly which we discussed at the 

end of Section 3. In general, not only the overall chirality current but also the 

gauge charge currents may have their conservation spoiled by an anomaly. Since 

the whole structure of a non-Abelian gauge theory depends on the conservation 

of the gauge charge currents, one must arrange that these anomalous terms can- 

cel. This is the requirement that, in the SU(5) grand unified theory, forces one 

to include equal numbers of 5 and iG multiplets of left-handed fermions. 

In 10 dimensions, however, the cancellation of anomalies is much more diffi- 

cult, for two reasons. First, the lo-dimensional anomalies arise from diagrams of 

the form of Fig. 18; 5 powers of the external field appear because in 10 dimen- 

sions there are 5 powers of Fpv on the right-hand side of (3.31). The diagrams 

giving nonconservation of gauge currents thus contain a trace of 6 group matri- 

ces. Since this number is even, some invariants which appear in this trace will 

be necessarily positive for any group representation and so will not cancel when 

we sum over representations. Second, lo-dimensional Weyl-Majorana spinors are 

_ c&al with respect to their gravitational couplings and are their own antiparticles; 

this implies that we must consider gravitational as well as gauge contributions 
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Fig. 18. A typical diagram contributing to the axial vector anomaly in 10 
dimensions. 
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to the anomaly.23 Until the summer of 1984, it was believed that no system 

of lO-dimensional supersymmetric matter multiplets allowed the cancellation of 

all gauge and gravitational anomalies. But then Green and Schwarz 24 discov- 

ered that a field in the lO-dimensional supergravity multiplet can also enter the 

expression for these anomalies, and that one can use this additional degree of ,- - 
freedom to arrange cancellations. Their mechanism works, however, only for two _ 
specific gauge groups: 0(32) and Es x Es. These two groups, then, provide the 

only possible choices for fundamental gauge groups of supersymmetric theories 

in 10 dimensions. 

The group Es is the largest exceptional group in Cartan’s classification. It 

contains in a natural way the groups which appear most often in discussions of 

grand unification; for example, one may decompose 

Efj > su(3) x E6 > o(lo) > su(5) . (6.9) 

In the first step of this decomposition, SU(3) x Es, is a maximal subgroup of 

Es. Though E6 is somewhat less familiar that its subgroups O(10) and SU(S), it 

is a quite reasonable choice for a grand unifying group. 25 The fundamental 27- 

dimensional representation of E6 contains one generation of quarks and leptons. 

Let us, then, concentrate on the possible gauge group E8 x Es., Candelas, 

Horowitz, Strominger, and Witten’ have proposed the following compactification 

of this theory: 

10 - d + (4 - d Minkowski) x (ce) . (6.10) 

Here cs is a 6-dimensional space with the property that it possesses a spinor 

field configuration ea ( y) satisfying Dtc = 0. Such a space is called a Calabi-Yau 

manifold. 26 Since this spinor field is a Killing spinor, the &dimensional theory 

- resulting from the compactification will contain a gravitino and thus an unbroken 

local supersymmetry. 
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The compactification of Candelas, Horowitz, Strominger, and Witten turns 

out to have a number of mathematical features which produce remarkable effects 

in the physics. First, the existence of a covariantly constant spinor implies that 

the Ricci tensor vanishes, both on the 6dimensional space and on the full lO- 

dimensional space. This allows the space (6.10) to solve Einstein’s equations ,- - -. 
without invoking an adjustable cosmological constant term. Second, the rotation 

group in 6 dimensions, O(6), ’ 1s locally isomorphic to SU(4), with the 4 of SU(4) 

corresponding to the chiral spinor representation of O(6). At each point, the 

covariantly constant spinor picks out a preferred direction in this representation, 

leaving over an orthogonal SU(3). All of the rotation done by the curvature 

tensor must be within this subspace. This allows one to construct a solution of 

the Cremmer-Scherk type, with an SU(3) gauge field proportional to the spin 

connection on the Calabi-Yau space 

(6.11) 

and a corresponding field strength proportional to the curvature tensor 

RtlSafl = Fvsi (T’)@ , (6.~2) 

where (T’) is a representation matrix of O(6) belonging to the SU(3) subgroup 

we have picked out. We have already noted that SU(3) is naturally’a subgroup 

of Es. Fermions in the adjoint representation of Es decompose under SU(3) x E6 

in the following way: 

(a+%) -+ (adj&,l) + (27,q + (27,3)-l- (1,8) . (6.13) 

Third, Calabi-Yau spaces have no isometries. This means that the compactifi- 

cation (6.10) will produce no Kaluza-Klein gauge bosons. This is no problem, 

- since we began with a fundamental Es x Es gauge theory, we have more than 

enough already. Fourth, the right-hand side of the Atiyah-Singer Index Theorem 
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in 6 dimensions contains the integral of a product of three powers of the field 

strength. Using (6.12), this integal may be converted to the structure 

,- - -. 
More explicitly, the Index Theorem appropriate this field configuration is: _ 

N3 - Ns = 5x9 (6.15) 

where x is the Euler number of the Calabi-Yau space. In a generic situation, 

we would have only zero modes for fermions in the 3 of SU(3). According to 

(6.13), fermions belonging to the 3 of SU(3) also belong to the 27 of E(6). Thus, 

the fermion zero modes should yield &dimensional fermions corresponding to ix 

27’s of E6, that is, kx generations of quarks and leptons. In this model, then, 

the number of quark and lepton generations reflects directly the topology of the 

compactified component of the higher-dimensional space-time. 

Some difficulties remain in making this lo-dimensional compactification into a 

complete unified theory of Nature. We should, for example, worry about whether 

the theory underlying this computation is renormalizable, so that systematic 

corrections can be calculated. We might also ask whether the fundamental gauge 

group Et3 x Es has a geometrical origin, so that the model really does unify matter 

and gravity. These problems seem extremely difficult to address, but, in fact, 

they are answered and perhaps solved if the true underlying theory is taken to 

be a theory of superstrings.“’ One might ask whether such a compactification 

can correctly predict the spectrum of quark and lepton masses. The answer to 

question is not known, but the lo-dimensional compactification has suggested 

some concrete ideas for attacking this long-standing problem.28 One might also 

worry about another fundamental question, why one particular compactification 

- which yields 4 extended dimensions and 3 generations is chosen over all others. 

I think it is fair to say that no one has any idea of how to solve this problem. 
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I hope, though, that this stunning example has succeeded in persuading you 

that Nature could well have more than 4 dimensions, and that the study of such 

higher-dimensional theories is not simply speculation but also physics. Even if the 

size of the extra, compact, dimensions is extremely small, their basic geometry 

can determine crucial features of the physics at much larger distances. Through 
- - -. 

specific examples, I have shown that the isometries of the compact dimensions can 

determine the gauge symmetries of Nature, that the spinor isometries of these 

dimensions can determine the amount of supersymmetry in Nature, and that 

the topology of these dimensions can determine the number of quark and lepton 

generations. The idea that there exist more than 4 space-time dimensions is a 

fundamental departure from previous theories of the basic forces, but perhaps it 

is just the turn required to resolve some of the fundamental mysteries that these 

theories still present us. 
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