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ABSTRACT - 
. 

In this paper we discuss plasma accelerators which might provide high gradi- 

ent accelerating fields suitable for TeV linear colliders. In particular we discuss 

two types of plasma accelerators which have been proposed, the Plasma Beat 

Wave Accelerator and the Plasma Wake Field Accelerator. We show that the 

electric fields in the plasma for both schemes are very similar, and thus the 

dynamics of the driven beams are very similar. The differences appear in the 

parameters associated with the driving beams. In particular to obtain a given 

accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency 

and a lower total energy for the driving beam. Finally, we show for the Plasma 

Wake Field Accelerator that one can accelerate high quality low emittance beams 

and, in principle, obtain efficiencies and energy spreads comparable to those ob- 

tained with conventional techniques. 
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1. INTRODUCTION 

Recently there have been two similar types of plasma acclerator schemes 

proposed. The Plasma Beat Wave Accelerator (PBWA) ls2 employs two laser 

beams beating at the plasma frequency to drive the plasma while the Plasma 

Wake Field Accelerator (P WFA) 3-5 replaces the laser beams by a bunched 

relativistic electron beam. Since the two schemes make use of different sources, 

the corresponding mechanisms that drive the plasma waves are different. In the 

PBWA, it is the ponderomotive force which comes from the beating lasers that 

drives the plasma, whereas in the PWFA the driving bunch is decelerated by the 

plasma and thus transfers energy 4_0 the plasma wave. Other than this difference, -L- .! 
however, the two schemes are very similar. In both cases large longitudinal 

electric fields are generated in the plasma which oscillates at the fundamental 

plasma frequency wp. These fields are then used to accelerate an electron beam. 

In this paper we study the PBWA and the PWFA in parallel to point out 

both the similarities and the differences in the two schemes. In Section 2 we 

begin with a calculation of the plasma wave induced by two beating lasers for 

the PBWA and by a relativistic electron bunch for the PWFA. From this we 

calculate the longitudinal and transverse electric fields due to the plasma wave. 

Next in Section 3 we use the fields calculated to treat several, accelerator 

physics issues. Since in both cases the plasma is driven by bunches (lasers) of 

finite cross section, there is both a transverse electric field and a transverse vari- 

ation of the longitudinal electric field. The transverse field is used to calculate 

focusing (and defocusing) effects while the radial variation of the electric field is 

used to calculate induced energy spread. Since the phase velocity of the plasma 

wave is not c, there is phase slippage along the wave. This is quite large for 

the PBWA and must be included in the design considerations. For the PWFA 

phase slippage restricts the energy of the driving electron bunch. To complete 

this section, the energy requirement and the efficiency are estimated. 

In Section 4 we compare the PWFA with the PBWA using four numerical 

-examples which serve to illustrate possibilities in design. We choose parameters 
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i which would yield either an interesting experiment or the first stage of an actual 

accelerator. Since the PBWA is somewhat more restrictive in design, we first 
: fix a design with fields ranging from 1 to 10 GeV/m using two different types of 

lasers. The design for the P WFA is then chosen to match the critical parameters 

of the PBWA. We conclude this section with a discussion comparing the two 

schemes. 

In Sections 3 and 4 we find that the efficiency of energy transfer from the 

plasma to an accelerated electron bunch is rather low. This, however, is due to 

the particular model and parameters chosen for the calculation. In Section 5 

we show two alternative methods for improving the efficiency. In addition, we 

show that it is possible te&ave amatched emittance which is consistent with 

TeV collider needs. 

In the following sections we follow Refs. 2, 5 and in particular Ref. 6 in 

most of the calculations. Sections 2, 3 and 4 are quite similar to Ref. 6 although 

Section 2 is somewhat more general here. Section 5 is new work which explores 

briefly the possibilities of improving efficiency. 

‘-‘-- 
In the next section we will treat the plasma oscillations in the linear ap- 

proximation since this is completely adequate for our purpose. Discussions of 

nonlinear plasma oscillations due to a driving electron beam can be found in 

Refs. 7 - 10 and in Ref. 5. 

2. FIELDS IN A PLASMA WAVE OF FINITE EXTENT 

We consider a uniform cold plasma of density no with stationary ions. The 

linear plasma oscillations will be driven resonantly by two beating laser frequen- 

cies for the PBWA, while for the PWFA they will be shock excited by a thin 

disk of relativistic electrons. To find the electric field in the plasma wave for 

both schemes, we start with the linearized, nonrelativistic fluid equations, 

an1 dt + no(V . &) = 0 

(24 
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i and solve for the perturbed plasma density 121. In Eq. (2.1) fr is the electric 

field due to nr, and $..zt is the external force due to either a driving beam or a 
: beating laser. i 

2.1 THE PLASMA BEAT WAVE ACCELERATOR 

In the case of the PBWA the force is most easily calculated from a Hamil- 

tonian which has been averaged over the fast oscillation of the laser frequency. 

This leaves only the beating effect of the two laser frequencies. 

For a model of the laser we consider two plane waves which are modulated 

radially to obtain the desired transverse profile. The nonrelativistic Hamiltonian 
-L- - r .! 

which governs motion of the electrons in the plasma is 

H = (P’- ex/cJ2 
2m ’ (2.2) 

and the vector potential for the incoming laser is 

i = c&)(r) 
fi ( 

COS(klZ - w1t) + cos(k2z - wflt) 
1 , 

w w2 
P-3) 

--- 

where wi and ki are the frequency and wave vector of the two laser lines, and 

&(r) describes the transverse profile and polarization of the beam. The fre- 

quency and wave vector are related by the dispersion relation of electromagnetic 

waves in a plasma, 

w2 = k2c2 + w2 P ’ 

where wp is the plasma frequency 

47re2n0 1 1 112 
wp = . 

m 

(2.4 

P-5) 

A simple way to calculate the ponderomotive potential due to the beating 

lasers is to average the Hamiltonian over the fast oscillation at the laser fre- 

quency. Here we assume that the difference in frequency between the two laser 
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i lines is much smaller than the laser frequency. Averaging over a time of 2~r/w 

yields the Hamiltonian 

(H) = 2 + “;~$’ [l + cos(k6z - wgt)] , (2.6) 

where w6 = wr - w2 and k6 = kl - k2, and we have dropped the index on w. The 

last term is simply the ponderomotive potential due to a beating laser with a 

finite cross section. 

In order to provide useful acceleration over a significant distance, it is nec- 

essary that the plasma wave phase velocity be close to c, the speed of a high 

energy injected electron beam. As we shall see, the phase velocity of the plasma 
-6. - 

wave is matched to the ‘phase velocity’ of the beat pattern. This-is the group 

velocity of electromagnetic waves in a plasma, 

w6 dw 
vg=---=e kb dk P-7) 

Due to Eq. (2.7) b a ove it is sometimes useful to define rp = w/wp since this 

would be the relativistic energy factor of a particle travelling at that speed. 

For the sake of a comparison with the PWFA later in this paper, we will 

select a radial dependence of the ponderomotive potential given by 

G(kpa) Io(Ic,r) + ’ r2 
Ig(r) = 2Ei qjtiy-z;Iz 

r<a 
, (2.8) 

12(kpa) JG(k,r) r>a 

where Kn and In are modified Bessel functions. This radial profile is parabolic 

near the origin but falls off exponentially for r > a. It was chosen to yield a 

simple parabolic dependence in the equations below. 

To obtain a good coupling to the response of the plasma we set the difference 

of the laser frequencies equal to the plasma frequency 

WJ = wp 

k6 = k,, 
(2.9) 

where we have noted that the plasma wave number kp is equal to kb. 
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i To use the above results we need the divergence of the force due to the 

Hamiltonian in Eq. (2.6). This is given by 

V - @ = 4re2nl + e2&(r) + e2Bl(r) cos(kpz - wpt) , (2.10) 

where Poisson’s equation has been used to substitute for V2& and 

Bl(T) = 
E;k2 
&+$a - r2/a2) r<a , 

0 r>a 
(2.11) 

(Kz(kpa)lo(kp4 - &I) r<a 

~12(kpa)fh(kpr) ’ 

. (2.12) 

r>a 

Substituting into Eq. (2.1) yields 

a2nl W2 
ata + wi nl = -$ [BO(r) + IA(r) cos(kpz - wpt)] . (2.13) 

To calculate the solution to (2.13), let the laser pulse begin at kp,z - wpt = 0. 

If the plasma is undisturbed ahead of the laser pulse, the solution is 

Bo (4 n&-,0) = - 4T -[l-cos(kpz-wpt)]-- ‘i!) (kpz-wpt) sin(kpz-wpt). (2.14) 

The solution above has two distinct terms. The first term is due to the shock 

excitation of the plasma by the front of the laser pulse, while the second term is 

due to the resonant driving of the plasma by the beating lasers. Since we would 

like to let the second term build up over many cycles, the second term will be 

much larger than the first term. In addition, in an actual device the laser pulse 

would turn on more gradually thus reducing the shock excitation. For these 

reasons we will neglect the first term in Eq. (2.14) in the following analysis. 

6 



i With nl (r, z, t) in hand, we now must find the electric field & due to the 

plasma oscillation. Since the magnetic field due to a linear plasma wave vanishes, 

we can simply use Poisson’s equation, 

i & (r -j$) + s = -47renl . 
% 

(2.15) 

If we have a laser pulse of length r, the amplitude of the plasma density wave 

will reach its peak value at the end of the pulse. From Eq. (2.14) this is given 

by 

r < a, (2.16) 
.! 

and the potential can be shown to be 

41 = R(r) sin(kpz - wpt) (2.17) 

with 

K2(kpa) Io(kpr) + i (l- $) - & , r < a 
. (2.18) 

12(kpa) Ko(kpr) , r>a 

The longitudinal and transverse electric fields for r < a for the PBWA are thus 

given by 

wprkpeEi 
” = - 4w2m Kz(k,a) lo(kpr) + - ; ( 1 - - 2) -&}cos(kp”-wp~~ ) 

wprkpeEg 
lr = - 4w2m 

r 
K2(kpa) A(Jcpr) - - kpa2 

sin(kpz - wpt) . 

(2.19) 
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i 2.2 THE PLASMA WAKE FIELD ACCELERATOR 

.- For the case of the PWFA the situation is very similar. We only need to 

change the laser source term in Eq. (2.13). For the case of a driving beam of 

density nb, the divergence of the force is given by 

‘t’ - .@ = 47re2(nl + nb) . 

Following Ref. 5, consider a driving beam with density profile 

-Cenb ro(r)b(% - vbt) . r . 

Then the solution for the perturbed density is given by 

w(r) = 
kpa(r) sin(kpz - wpt) kpz - wpt < 0 

0 kpz - wpt > 0 . 

To compare with the PBWA we use a parabolic distribution given by 

a(r) = 
{ 

q(l - r2/a2) r<a 
7ra , 

0 r>a 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

where N is the total number of particles in the driving bunch. Once again it 

is possible to calculate the longitudinal and transverse electric fields due to the 

plasma wave. 5 These are given by 

-16eN &z = a2 K2(kpa) Io(kpr) + i ( 2) -&}4kp-Wpf), r<a 1 - - 

-16eN 
&r = a2 K2(kpa) Il(kpr) - A sin(kpz - wpt) , r < a . 

P 
(2.24) 

-Thus the electric fields for the two schemes turn out to be remarkably similar. 



i For reasons which we will discuss later, the transverse size of the driven 

beam must be somewhat smaller than the transverse size of the laser beams or 

the driving electron beam. In addition if kpa >> 1, then the electric fields for 

both schemes are of the following form: 

r2 
&z N - A(1 - >) cos(kpz - wpt) 

r << a (2.25) 

&,- 2A r - sin(kpz - wpt) 
kpa2 

where 

.! 

(2.26) 

Other than different coefficients, the forces that the driven electrons expe- 

rience share the same physical characteristics in both schemes. To be specific 

there is a longitudinal force e&= that either accelerates or decelerates the driven 

bunch of electrons, and there is a transverse force e&r shifted in phase which 

either will focus or defocus the driven bunch (see Fig. 1). From Fig. 1 it is clear 

that we have both acceleration and focusing over l/4 of the plasma wavelength. 

E,,max 

E,,max 

I I I 

0 n/2 7r 3~12 27r 

e-04 kY 4907Al 

Fig. 1. 
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3. ACCELERATOR PHYSICS ISSUES 

In this section .we discuss some accelerator physics issues which are relevant 

to both schemes of plasma accelerators. To begin we concentrate on the qual- 

ity and intensity of a driven electron bunch with finite transverse extent. In 

particular we treat the transverse oscillations and the energy spread due to the 

transverse variation of the accelerating field. We then discuss other issues such 

as phase slippage, spot size and driving beam energy for the PBWA and PWFA. 

The details in the discussion of these issues are different for the two schemes 

since we choose to fix different parameters in the two cases. Finally, in order to 

address the question of intensity, we discuss the efficiencies of both schemes. 
-4. - r .! 

3.1 THE BETA FUNCTION 

In this paper the beta function is defined to be the wavelength/2r of the 

transverse oscillation at some instantaneous phase 4 along the plasma wave. In 

the last section we saw that, except for a difference in coefficients, the PBWA 

and PWFA have the same electric fields. We also pointed out that there is a 

useful phase between 7r/2 and x along the plasma wave. In general there will 

be some phase slippage between the plasma wave and the driven beam. If this 

phase slippage is slow, then we can calculate the transverse focusing effects as 

if the beam were at a fixed phase on the wave. 

The differential equation governing the transverse oscillations of a highly _ 

relativistic particle is 

d2x E, 
dz2=e- ymc2 ’ (34 

where ymc2 is the particle’s instantaneous relativistic mass. Thus, for small 

radius from Eq. (2.25), we have 

(3.2) 
Identifying the coefficient of x above with pV2 yields the beta function, 

(3.3) 
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i 3.2 ENERGY SPREAD 

From Eq. (2.26) it is evident that for a driving beam with finite transverse 

size, the longitudinal field varies transversely. Consider a driven bunch with 

transverse radius b which moves along the axis of the plasma wave. Since the 

field varies parabolically in the transverse direction, the average energy gain is 

reduced slightly and an energy spread is induced. If we assume that the beam 

is already very relativistic, then the average change in energy for one stage is 

--c- - ? - 

where AE is the energy gain for a particle on the axis of the plasma wave. The 

corresponding energy spread induced in one stage for the model we have chosen 

is 

(3.5) 

3.3 THE TRAPPING PARAMETER 
I.?-- 

The trapping parameter is defined to be the ratio of the plasma density per- 

turbation nr to the unperturbed density no. Physically, this parameter indicates 

the linearity of the plasma oscillation. Since we work in the linear approxima- 

tion for the plasma wave in both schemes, a! should be kept reasonably small. 

For the case of the PBWA, we assume that the plasma oscillation saturates at 

the end of the laser, which corresponds to11’12 

nl 1 a=---- - PBWA. 
n0 4 

For the case of the PWFA we take L and &= as chosen parameters. In ad- 

dition, to scale the transverse effects, we fix the ratio between the transverse 

size of the driving bunch and the plasma wavelength, a/&,. This in turn deter- 

mines the plasma wavelength and the plasma density. In order to check that the 
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i plasma wave so generated is indeed a linear wave, we must calculate (Y, which 

in this case is given by 

’ e&= a=----- PWFA. 
mcwp P-7) 

3.4 PHASE SLIPPAGE 

For both accelerator schemes the phase velocity of the plasma wave is not 

equal to the velocity of the driven bunch. This means that the driven bunch 

will slip in phase along the plasma wave as it is accelerated. For the PBWA we 

maximize &= for a given L by optimizing the phase shift 6. If we choose a laser 

frequency w, an acceleratiu*lengt& L, and a phase slippage 6 for speed of light 

particles; then the plasma frequency is given by2 

26cw2 

( ) 

113 
wp= ~ 

L * (3.8) 

On the other hand, the acceleration gradient that the driven bunch sees 

varies along L due to the phase slippage. If the total phase slippage over the 

entire acceleration length is 6, then the average acceleration gradient is related 

to the ideal gradient by a phase slip form factor sin6/6, that is 

e&.fve = ctmcw 
sin 6 
- 

pb - 

Here the phase has been allowed to slip from the top of the cosine down one 

side so that the bunch is always in a focusing region. The average acceleration 

gradient can be maximized for a given L if 

6~ z and y N 0.85 PBWA. (3.10) 

For the PWFA we consider only relativistic driving and driven bunches. In 

addition we require that the final energy of the driving bunch after the distance 

L is still relativistic. In this case we can calculate the phase slippage along the 
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plasma wave since the plasma wave phase velocity is equal to the velocity of 

the driving bunch. Following Ref. 5 we integrate the relative velocity along the 

length L to obtain 

6 N F [hli-h/)-1 - (‘YSY#] PWFA. 
P 

(3.11) 

Since in an actual high energy accelerator the second term would be quite small, 

we will neglect it when using Eq. (3.11). 

3.5 THE TRANSVERSE SIZE 

We need the transvG%size-to calculate the transverse dynamics of the 

driven bunch. For the PBWA to make the optimum use of the laser beam it is 

necessary to match the Rayleigh length R to the acceleration section. Following 

Ref. 2 we choose the section to be twice the Rayleigh length. This in turn 

determines the diffraction limited spot size, 

RX LX 26c2w .2x-=--=---- 
Wp” 

PBWA, 
7r 27r 

(3.12) 

where Eq. (3.8) has b een used to eliminate L. For the PWFA since we would 

like to fix the number of particles in the driving bunch, the transverse size is 

determined by the desired accelerating field, 

a = [ 8’e;;;c2] 1’2 PWFA, (3.13) 

where re is the classical electron radius. 
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i 3.6 THE ENERGY REQUIREMENT 

In the PBWA-the laser beam power for the beam profile given in Eq. (2.8) 

is 

w= ra2 Eic 
--5--K’ 

(3.14) 

If we assume that we have a laser pulse length r, the energy necessary to drive 

the plasma wave density to cxno is2 

wr= a6m2c5 w 3 
e2wp c-1 

PBWA . 
WP 

-A- - - - 

where Eq. (3.12) h as b een used to eliminate a2. On the other hand, the energy 

in the driving bunch for the PWFA is simply given by 

Wr = NIEl PWFA . (3.16) 

3.7 THE EFFICIENCY -2. 

The overall efficiency of the accelerators here can be divided into three parts. 

The first part is the efficiency of conversion of ‘wall plug’ energy to.either laser 

energy or electron beam energy. These two efficiencies may be quite different, 

however, we will not discuss them here. The second efficiency is the conversion of 

either laser or electron beam energy to plasma energy. The third efficiency is that 

for conversion of the plasma energy to the driven electron beam. The efficiency 

of the transfer of energy from the laser to the plasma has been calculated for 

the PBWA model we have chosen.2 For a general phase shift 6 the ratio of the 

plasma energy to the laser energy is given by 

P.E. a6 
rll = wT = 4 * (3.17) 

If laser depletion is included in the analysis, this number will be reduced slightly. 
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i The efficiency of the transfer of energy from an electron beam to the plasma 

is quite different. In this case one must consider the beam loading effects. If 
: we could treat the-bunch as a macro-particle, then for a very relativistic driving 

bunch we could extract nearly all of its energy before it’s velocity changed enough 

to yield a phase slip. However, due to beam loading this is not possible since the 

leading edge of the driving bunch loses essentially no energy to the plasma while 

the trailing edge loses twice as much as that calculated for a point-like particle. 

Thus, for very short bunches, we can only extract about l/2 of the energy 

ql=; PWFA. (3.18) 

-A. - ,. - 

For longer bunches of electrons, one can improve this factor and also improve 

the transformer ratio 13’14 at the expense of the peak field. This technique might 

be difficult to realize in the PWFA with the model we consider here since the 

strong transverse fields due to the head of the driving bunch would focus the 

tail. Therefore, we will not consider it in this section; however, it is an important 

possiblity if the transverse fields can be reduced. 

‘.C- The final efficiency to calculate is that from the plasma to the driving bunch. 

This efficiency is the same for both cases provided that the characteristics of the 

plasma wave are the same. The total acceleration gradient experienced by a 

bunch with Nz particles in a plasma wave is 

GrdEa N2 

dz 
= eRf - 4e2F , 

where eR is the peak longitudinal electric field, and f is a factor less than 

unity which takes into account phase slippage or shifts in phase from the peak 

accelerating field. The second ‘beam loading’ term is due to the plasma wake 

induced by the trailing bunch. The efficiency is given by the total energy gained 

by the bunch divided by the plasma energy, 

v2 = N2GL (g$L)-’ . (3.20) 
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This efficiency has a maximum when 

N2 - fRb2 
8e ’ 

(3.21) 

and the value is given by 

(3.22) 

For the PWFA f can be taken to be essentially unity while for the PBWA f is 

given by Eq. (3.10). This yields 

b2 
r$az II .72a2 PBWA 

b2 
. 

--@?= ‘2 
PWFA r 

(3.23) 

4. COMPARISONS AND DISCUSSION 

Now we come to a detailed comparison between the PBWA and the PWFA. 

As mentioned earlier, our guide will be the self consistency among all relevant 

accelerator parameters within each scheme. Our approach is to choose a set 

of parameters in each scheme that we fix from the beginning. The remaining 

parameters in each scheme can then be calculated in terms of those chosen 

parameters. The scaling to different sets of chosen parameters is straight forward 

using the results of the previous section. To make a fair comparison we will 

study two sets of sample accelerators with the same acceleration gradient and 

the same length L. In addition, to make the comparison meaningful to real 

experiments, we employ only those laser and electron beams that are presently 

available. Under these considerations, the parameters that should be fixed in 

the two schemes are quite different. In particular, for the PBWA we need to fix 

the laser frequency w by choosing a particular laser source. If we then fix the 

length L of the acceleration section, the phase slippage determines the plasma 

frequency wp. This means that the longitudinal electric field &= is a derivable 

quantity. On the other hand, the energy gradient in the PWFA is chosen so that 

the intensity and dimensions are not far from realizable values. As we shall see, 

in spite of this difference it is possible to match the acceleration gradients. 
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4.1 NUMERICAL COMPARISONS 

To keep the dimensions to ‘a laboratory scale, we select the acceleration 

lengths to be 10 cm and 100 cm. These two lengths are then combined with 

two different laser frequencies, the Nd: Glass laser and the CO2 laser, to form 

four sets of sample calculations. For the PBWA the parameter Q! is chosen to be 

0.25, which is approximately the saturation value,” and the phase slippage is 

taken to be the optimum value given in the previous section. Finally, we assume 

that the laser pulse length and the growth time for the plasma wave r is about 

159 cycles (wpr = 1000). 

_- 

‘.-% - 

Since the PWFA is &-so restrictive in its design, we can -now set the 

parameters to match some of those for the PBWA. In particular we use the 

same acceleration gradient and the same a/&. The number of particles in the 

driving bunch is taken from the present number in the SLC and the bunch length 

is assumed to be somewhat less than the plasma wavelength. The initial and 

final energies of the driving bunch are selected so that the final energy of the 

bunch tail is 90% of its initial energy. As we can see from Tables 1 and 2, the 

phase slippage for the PWFA is much smaller than that for the PBWA. All 

parameters except the efficiency and the energy in the driving beam turn out to 

be quite comparable. In particular note that the focusing for both schemes is 

quite strong. The energy required for the driving bunch is consistently higher 

for the PBWA; however, because it is less efficient in these examples, the number 

of particles which can be driven is comparable to the PWFA. 

4.2 DISCUSSION 

The examples above seem to favor the Plasma Wake Field Accelerator es- 

pecially for the longer accelerator sections. This is due to the divergence of the 

laser. For longer Rayleigh lengths it is necessary to have a larger spot and thus 

more peak power to obtain the same intensity at the spot. On the other hand 

the particle beam is assumed not to diverge. This is true because the emittance 

of the beam is typically much smaller than the corresponding wavelength/r for 
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i Table 1. Plasma Beat Wave Accelerator 

Chosen Parameters 

w [see-‘1 

L bl 
Q 

6 [rad] 

sin 6/6 

WPT 

Derived Parameters 

- P 

wp [1013 set-l] 
no [1016 cmm3] 
e&z [GeV/m] - 

a b4 
a/XP 

[d?PG mm] 

N [1010] 

wr [Jl 

f 

Values 

Nd: Glass 1.78 x 1015 1 CO2 1.78 x 1014 
10 100 10 100 

0.25 0.25 0.25 0.25 
5+6 5x/16 5+6 5+6 
0.85 0.85 0.85 0.85 
1000 1000 1000 1000 

2.65 1.23 .571 .265 
21.7 4.67 1.00 0.22 

+- 9.38 4.36 2.00 6.94 
0.13 0.41 0.41 1.30 
1.82 2.70 1.25 1.82 
0.18 0.57 0.57 1.80 

1.95rj2 9.04772 4.19r/2 1.95r]2 
23.9 515.4 11.1 239.2 

the laser. In addition it is possible to use magnetic focusing elements to de- 

fine the size of a charged particle beam. The problem of the divergence of the 

laser beam might be solved by using lasers sufficiently intense to self focus in 

the plasma; however, this possibility was not considered since it lies outside the 

scope of the simple models given here. In addition, for the PBWA parameters 

chosen, the laser power is somewhat below the critical value for relativistic self 

focusing. 15’16 

Unfortunately, for both schemes the efficiency r/z and the energy spread 

induced are directly related. Thus, if a small energy spread is necessary, then 

72 will necessarily be small for both schemes. The efficiency 71 of the PWFA 

was better in all cases because the energy transfer from the laser to the plasma 

is limited by Eq. (3.17) to quite a small value. There is a possible solution to 

this problem. Since the laser is not depleted very much, it might be possible 

-to reuse the beam after a suitable amplification. This would yield a very high 
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Table 2. Plasma Wake Field Accelerator 

Chosen Parameters T 
L [cm] - 

eR [ GeV/m] 

Nl 

El [GeV] 

alA, 

Derived Parameters 

a imml 
6[10m3rad] 

wp [1013 set-l] 

no [1016 cmw3] 

a 
P [d+G mm] 

N2 [1010] 

WT = NIE1 [J] 

’ 10 

9.38 

5 x 1o1O 

1.04 

1.82 

100 

4.36 
5 x lOlO 

4.84 
2.70 

Values 

10 100 

2.00 0.94 

5 x 1o1O 5 x 1o’O 

0.22 1.04 
1.25 1.82 

0.25 0.36 
5.5 2.5 
1.37 1.41 

-“EL90-- 6.18 
0.38 0.17 
0.28 0.59 

2.25r/2 2.25~2 

8.33 38.8 

0.54 0.78 
42 18 

.439 .438 
- .606 - ;604 

0.25 0.11 

0.73 1.52 
2.25~2 2.25~2 

1.76 8.33 

repetition rate and looks quite attractive; however, this possibility needs much 

more study. 

There is one final problem for the PBWA. We have assumed that the plasma 

wave would grow over 1000/27r cycles. If there are density fluctuations greater 

than about .2%, then the wave would saturate much sooner. This case would 

require a much larger laser energy in order to drive the plasma to the desired 

field in a shorter time. 
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i 5. THE EFFICIENCY AND THE TRANSVERSE EMITTANCE 

One primary problem in the.preceding discussion is that the plasma accel- 

erators discussed have very low efficiency, 72. If we require that the induced 

energy spread due to the transverse variation of the acceleration field is say 1 %, 

then the maximum efficiency of transfer of plasma energy to the electron beam 

is 

r/2ma= N 0.02 . 

Even the ~~az above cannot be realized since it would require full beam loading 

and thus would yield 100-y~energy spread (since at the tail of the bunch the * w 
accelerating field is zero). 

- 

Typically in an RF structure qFaz is limited by the fact that the wake 

field of a bunch contains modes other than the fundamental accelerating mode. 

Thus, if the bunch current is increased until all energy is extracted from the 

fundamental, there is still energy radiated into all higher modes. This of course 

depends upon the longitudinal bunch distribution as well. For example, for the 

>.‘-- SLAC accelerating structure with a 1 mm Gaussian bunch17 

?gaz N 0.3 SLAC . (5.2) 

However, operating at this efficiency would yield a beam with 100% energy 

spread. Therefore, the efficiency is sacrificed for an acceptable energy spread. 

For SLC operation the full energy spread can be kept to about 1% provided 

that 

$9 CT 0.03 SLC . (5.3) 

This is achieved by balancing the beam loading effects against the curvature of 

the RF to achieve optimum energy spread. 

In the case of plasma accelerators one can expect a similar reduction factor 

from r/r” to 72. The problem is that r/F” is too small. 
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The problem of small efficiency is related to transverse focusing and the 

transverse emittance. As mentioned earlier, the small efficiency is basically 

proportional to the energy spread. Since the longitudinal electric field varies with 

radius, the trailing beam size b must be kept small compared to the leading beam 

size a. Therefore, the efficiency r/2 = (b/a) 2 is small. However, the variation of 

the longitudinal field is related to the strength of the strong radial electric fields 

which focus the trailing beam. Thus, both the beta function and the beam size 

are coupled to the efficiency. In addition, for self consistency, one must require 

the emittance of the accelerated beam to be 

Using Table 2 we can calculate the emittance necessary for the example in 

column 1. First let us assume that a transverse variation of acceleration gradient 

of 1% is acceptable. In this case the trailing beam must have a size 

b = .036 mm . F-5) 

To calculate the beta function consider an injected 10 GeV electron bunch which 

resides at a reasonable phase 4 = 0.1 on the plasma wave. Then the beta 

function for transverse focusing is 

p = 12.4 cm . (5.6) 

Therefore, using Eq. (5.4) b a ove and assuming perfect matching, one finds an 

emittance 

E 1: 1 x 10m8 m F-7) 

or an invariant emittance of 

yc N 2 x 10m4 m . (5.8) 

This value is much larger than the nominal value for the SLC, 

[~C]SLC = 3 x 10v5 m . F-9) 

For Tev linear colliders we would like emittances much smaller than the 
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i present SLC emittance. In this sense the previous example does not match the 

desired characteristics of the trailing beam. If a very low emittance beam were 
: injected, the resulting beam size would be reduced and the efficiency would 

suffer. Therefore, it is useful to attempt a solution to both the problem of 

efficiency and the problem of large emittance. In the next two sections we 

discuss two possible solutions to the problems of emittance and efficiency. 

5.1 A MODIFICATION OF THE TRANSVERSE PROFILE 

All of the results ins Tables 1 and 2 were calculated with particular models of 

the driving beam. In this section we show how changing the transverse profile 

of the driving bunch candzamatically affect both efficiency and emittance. 

In this section we consider the PWFA with a driving bunch profile 

- 
{ 

N r<a 
a(r) = z 

0 r>a. 
(5.10) 

There is a corresponding example for the PBWA, but we will restrict the dis- 

cussion to the PWFA in this section. 

The solution for the perturbed density n1 is again given by Eq. (2.22), and 

the fields behind the bunch are 

&z = F{l - kpaK1 (kpa) lo(kpr) } cos(kpz - wpt) , r<a 

(5.11) 

&r = ~ 4eNkp Kr (kpa) 11 (kpr) sin(kpz - wpt) , r < a. 
a 

Comparing this with Eq. (2.24) we see that for large kpa, the longitudinal field 

is quite constant and the radial field is quite small. Explicitly, for kpa large but 

k,r small, we have 

-4eN 
Ez = a2 ~ cos(kpz - wpt) , r < a 

&r 11 (2a)1/2(kpa)3/2e-‘pa$r sin(kpz - wpt) , r << a. 

(5.12) 

-Following Section 3.1 we can calculate the beta function for small transverse 
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i oscillations, 

[ ’ 

$&a 
’ = sil4 (2n)i/2(kpa)3/2Nr, 1 l/2 

’ 
(5.13) 

Due to the exponential factor in Eq. (5.13) above, we can increase the beta 

function quite easily in this model. 

To calculate the efficiency with limited energy spread, it is useful to approx- 

imate the longitudinal electric field for both kpa and kpr large. In this case 

(5.14) 

From Eq. (5.14) b a ove ye+see that the field is quite constant for r < a and - w 
drops exponentially to l/2 its value at r = a. Therefore, the field is essentially 

constant until r N a. 

If we consider a trailing beam with full width b, the full energy spread 

induced by the spread in &z is 

[%I,,, =  i (~)1’2e-kP(amb) . (5.15) 

In this case the efficiency ~2 is again given by 

(5.16) 

It is useful to calculate an example which yields high efficiency and low 

energy spread. Consider the example shown in Table 2 column 1. To maintain 

the acceleration field of 9.38 GeV/m, we must reduce a by & To maintain the 

ratio alAp, we increase the plasma frequency by the same factor: 

a = .175mm 

w = 1 94 x 1013 set-l P * 
(5.17) 

which yields 

kpa = 11.3 . (5.18) 

This is quite large and is fine for the approximations made in Eq. (5.14). 

23 



i Using Eq. (5.15) ‘f 1 we restrict the full energy spread to about 1 %, the 

driving beam radius b can be increased to 

b 
- li .63 
a 

which yields an efficiency 

rgaz N .40 . (5.20) 

(5.19) 

To check the transverse focusing we use Eq. (5.13) to find 

pe5.7dmmm (5.21) 

which, for a 10 GeV bunch-with sin C$ = .l, yields - . 

/3 cx 2.5m. (5.22) 

If we assume perfect matching, the emittance at 10 GeV is 

E = b2//3 ?li 4.9 x lo-' , (5.23) 

which yields an invariant emittance 

*.-- 
-ye -1x 10-4. (5.24) 

The emittance above is not the rms emittance since it includes essentially 

all of the beam. To compare with rms emittances one might divide by a factor 

of 5. Even so, it is still quite large; however, it can be dramatically reduced 

by increasing k, by a factor of 2 without affecting the efficiency or peak field. 

Keeping a and b fixed this yields 

k, + 2kp 

p -+ 420m 

E + 2.9 x lo-l1 

yr + 5.7 x 10-7. 

(5.25) 

The emittance above is much closer to interesting values for large linear 

-colliders. The example above should be considered an illustration, but it is 
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i by no means optimum. The primary purpose is to illustrate that neither the 

efficiency nor the transverse emittance are fundamental problems. In the next 
.’ section we show yet another possible way to increase the efficiency. 

5.2 VAN DER MEER’S SUGGESTION FOR ENHANCING THE EFFICIENCY~~'~' 

S. van der Meer suggests in Ref. 18 that one way of solving the problem 

of small r]2 might be to decrease the radius of the beam relative to the plasma 

wavelength so that kpa < 1. This causes the resultant electric field to be much 

more constant over the dimension of the driving bunch even in the case of a 

parabolic transverse profilei -More importantly, the wake field is not so strongly - w 
dependent on the transverse size of the bunch which allows one to obtain a large 

efficiency even for small b/a. 

To calculate the efficiency in this case let us return to Eq. (2.24). We can 

write the efficiency as 

N2AE2 
’ = Ni AEi ’ 

(5.26) 

‘.-- where AEi is the energy loss of a particle in the first bunch over a length L, 

and A& is the net energy gain, including beam loading, of a particle in the 

second bunch. As usual, we assume that the trailing bunch is placed at a point 

of maximum acceleration. Since the field varys little over the bunches in this 

case , we estimate 72 using the field at the center. From Eq. (2.24) we have 

AE1 N 
8e2Nl L 

,2 fl 

AE2 N 16eTLfl _ 8e2bFL f2 , 

where 

1 fl = K2(kpa) + - - ___ 
2 (kp:)2 

f2 = K2(kpb) + A - --?- . 
2 (kPb12 

(5.27) 

(5.28) 
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The efficiency above is maximum when 

and has the value 

(5.29) 

(5.30) 

For the cases considered previously (k,a >> 1 , kpb >> 1) we find 

fl,2 + ; * (5.31) 

However, for the oppositecibse, ifwe expand the Bessel function for small argu- 

ment, we find 

f 1 

f 2 

kpa<< 1, 

k,b< 1, 

(5.32) 

where C = .577.-s is Euler’s constant. This yields an efficiency 

-.--- 
$--C+ln& 

?ga= N 3 
--C+ln&’ 

k,a , k,b < 1 . (5.33) 
4 P 

To complete the calculation we need the energy spread induced by the ac- 

celerating field. From Eq. (2.24) for k, a < 1 and k,r << 1, the longitudinal 

electric field is 

&z N -2eNk2 3 - (4 C+lnj&- (J2+a(k)4) . 
P 

(5.34) 

Therefore, for a trailing beam of radius b, the full energy spread is 

w42 
full N i - C + In 2 ’ 

kpa<l. 

k,a 

(5.35) 

Finally it is also useful to calculate the beta function in this case. Returning 
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to Eq. (2.24) for small lcpa and small kPr, the transverse electric field is 

Following Section 3.1, this yields the beta function 

1 112 
P=a ’ J- 

4Nlr,kp sin 4 
. 

(5.36) 

(5.37) 

To illustrate this technique it is again useful to show an example. However, 

in this case it is necessary to modify the design somewhat more. Consider again 

the example in Table 2 c&&in l.In order to keep theacceleratingfield at 9.38 

GeV/m, we will reduce a and N while keeping k, fixed. (If we were to decrease 

kp instead, the plasma wake would become nonlinear.) If we fix kpa = 0.1, this 

yields 

~-2.2xlO-~rn 

Nl N 5 x lo8 . 
(5.38) 

Using Eq. (5.35) and keeping the full spread to about 1 % yields the transverse 

size of the trailing beam 

b 2 0 - e .032 . 
a 

The maximum efficiency can now be calculated using Eq. (5.33) 

(5.39) 

r/raz N .65 . (5.40) 

Finally, we can calculate the beta function from Eq. (5.37), 

p 2! 4.3 x 10P6[-j/ sin 4]‘j2 m , 

which, for a 10 GeV bunch and sin 4 = .l, yields 

p = 1.9mm . (5.42) 

(5.41) 

27 



The emittance necessary for matching to the beam size is therefore given by 

: E N 7.6 x 10-l’ m , (5.43) 

which yields an invariant emittance 

7c-l.5x10-6m. (5.44) 

The example above illustrates again that it is possible to obtain both small 

matched emittances and good efficiency for the trailing bunch. However, the two 

methods are quite different; the beta functions differ by 5 orders of magnitude 

and the beam sizes differhy 3 orders of magnitude. - This leads to additional 

problems for the second scheme. 

One problem is that when we decrease kpa we increase the relative magnitude 

.- of the transverse electric field. This leads to a small beta function. But the 

driving beam must be focused by external magnets. If we assume an emittance 

for the driving bunch equal to that of the trailing bunch, then to obtain the 

required beam size (a = 2.2 pm), we would need a beta function due to external 

focusing of 

Pezt N 1.5m . (5.45) 

To obtain the beta function above would require quite strong focusing even with 

the extremely low emittance driving beam assumed above. Such a low emittance 

for the driving beam could probably be obtained with the damping rings used 

for the accelerated bunch. However, since we have not optimized the design, 

there may be other solutions to this problem as well. 

A second problem with the strong focusing is that the particles which os- 

cillate in the focusing fields emit synchrotron radiation. The average loss in a 

smooth focusing system is given by5 

(5.46) 

-Using the results obtained above, we find that a trailing 10 GeV particle with a 
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transverse amplitude b loses energy at the rate 

dE 
- N 1.7 MeV/m . 
dz 

(5.47) 

This is quite large but is still small compared to the acceleration rate. But, as 

the beam is accelerated the synchrotron radiation increases rapidly. Once again, 

with more careful design, we may be able to solve this problem since it is very 

sensitive to p. Therefore, in spite of these difficulties, we believe that the second 

method for enhancing the efficiency is also quite promising. 

-“6. CONCLUSION - 

In this paper we have discussed plasma accelerators which have possible 

applications to TeV linear colliders. The two schemes, the Plasma Beat Wave 

Accelerator and the Plasma Wake Field Accelerator, are very similar in that 

the field oscillation is supported by simple linear plasma oscillations which have 

phase velocity close to the speed of light. They differ in that the plasma is 

driven in the first case by high power beating lasers and in the second case by 

an intense, high-energy electron bunch. 

In the preceding comparisons we showed that in most essentials we get com- 

parable results in the two schemes. However, the PWFA is somewhat more 

efficient. It has another advantage in that it may be easier to manipulate high 

energy electron bunches rather than high power laser beams. 

In the last section we focused on two important issues, the efficiency and 

the required emittance to obtain that efficiency. We showed two solutions which 

increase the maximum efficiency to levels exceeding those for conventional struc- 

tures. Therefore, we do not believe that efficiency is a fundamental limitation. 

There are many questions which we have not addressed. We have said 

nothing about many of the more practical questions of how we obtain the driving 

bunches or lasers and how efficient that process is, and we have not treated the 

problem of how to stage the devices. 
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.- 

We have instead attempted to focus on rather idealized problems to gain 

insight into the basic physics of both schemes. In doing so we have not addressed 

questions of transformer ratio for the PWFA. This important subject is treated in 

another paper in these proceedings. 2o We have limited our treatment to driving 

bunches which are short compared to the plasma wavelength. In the case of 

longer bunches one must fold the longitudinal charge distribution with the wake 

field to obtain the field both within and behind the bunch. In this way for 

asymmetric triangular bunches one can enhance the transformer ratio at the 

expense of peak field for a given intensity driving bunch.13’14 However, in 

treating this problem it is necessary to include the action of the transverse 

wake of the driving bunch&on itself in a self consistent way. This may cause - 
difficulties for long bunches in that the tail of the bunch will be focused by the 

head. However, if the transverse fields are small (as in Section 5.1), they have 

little effect, and the triangular bunch idea looks much more promising. 

To conclude, we would like to emphasize that this paper has attempted to 

explore the feasibility of both the PBWA and PWFA on fundamental grounds. 

We have certainly not explored the parameter space completely, and thus the 

designs sketched here are simply examples. They were chosen to illustrate that 

very high accelerating fields (1 - 10 GeV/ m can be obtained in both the PBWA ) 

and the PWFA, and more importantly, that other limitations (such as the effi- 

ciency) do indeed have solutions. Therefore, we conclude that both’the PBWA 

and the PWFA continue to be interesting possibilities for new acceleration mech- 

anisms for TeV linear colliders. 
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