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-c- ABSTRACT - 

We present a Hamiltonian formulation for gauged non-anomalous chiral the- 

ories on a spatial lattice. The formulation has the desirable properties that it 

provides exact chiral symmetry in the mass + 0 limit, with a correct fermion 

spectrum and correct weak coupling perturbation theory for QED. It can be gen- 

eralized to non-Abelian theories. The disadvantage of the formalism is that it is 

complicated and non-local (on the lattice) and hence not easily implemented in 

practical calculations. However it does provide an existence proof for a satisfac- 

tory chiral lattice gauge theory in the Hamiltonian formulation. 
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1. Introduction 

Lattice methods an important non-perturbative tool for analyzing gauge the- 

ories like quantum chromodynamics. Considerable progress in understanding 

quantum chromodynamics has been made using lattice techniques. Unfortunately 

the extension of these techniques to theories involving truly chiral fermions, for 

example all grand unified theories, remains problematic. 

_.. 

There is a widespread belief, principally due to a theorem proven by Nielsen 

and Ninomiya’ , that it is impossible to define a local lattice theory even for 

free chiral fermions which&es n3 exhibit spectrum doubling, and which has a 

sensible continuum limit. In fact, this belief is based on a misinterpretation of the 

results of Nielsen and Ninomiya. We will show for the case of free fermions that 

there exists a broad class of counterexamples which do not violate the Nielsen- 

Ninomiya theorem but which do contradict the broader interpretation which it 

has been given. The Nielsen-Ninomiya theorem, however, is not the only reason 

for the belief that there can be no satisfactory formulation of lattice theories of 

chiral fermions. In addition to their result, there is the work of Karsten and 

Smit ,2 which showed that a gauge theory formulated with a long-range SLAC 

derivative may not satisfactorily reproduce continuum perturbation theory. Their 

result was that Green’s functions computed in naive perturbation theory are not 

Lorentz covariant even after all the usual renormalizations are performed. This 

result was interpreted to be a consequence of the way in which the free fermion 

derivative was introduced. Combined with the Nielsen-Ninomiya theorem this 

calculation has been taken as sufficient evidence that no satisfactory gauge theory 

of chiral fermions can be defined. We find that while the calculations of Karsten 

and Smit indicate the existence of a problem, the identification of the origin of 
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this problem is not correct. This is easy to demonstrate for the case of non- 

compact lattice Q.E.D. as was shown by Rabin f but no comparable treatment 

of the compact case has been presented to date. 

_- 

This paper is devoted to a reexamination of the problem of lattice chiral 

fermions focusing on an analysis of these earlier difficulties in order to discover 

at least one way of avoiding them. We explain why spectrum-doubling is a mis- 

nomer for the consequences of the Nielsen-Ninomiya theorem and exhibit a class 

of short range derivatives on lattices of finite extent for which there is no doubling. 

In fact we establish the stLosger result that for this class of free field theories the 

only low-lying states are those whose momenta lie in the region near 5 = 0. While 

these examples of free field theories prove that the broadest interpretation of the 

Nielsen-Ninomiya theorem is incorrect, encounter their own difficulties when one 

introduces interactions. In 2+1 dimensions and higher such theories have prob- 

lems similar to those found by Karsten and Smit for the long range derivative 

in a gauge theory, namely Green’s functions that are not rotationally invariant 

even after all of the usual subtractions required by continuum renormalization 

are performed. In analyzing these difficulties we are lead to the conclusion that 

interacting chiral theories based upon short range derivatives do not exist, how- 

ever the reason for this is quite separate from the question of whether or not 

the theory exhibits spectrum doubling. In understanding the true origin of the 

problems encountered in the interacting theory we achieve a better understand- 

ing of how it is that the SLAC range SLAC-derivative manages to avoid these 

problems. Turning to the case of a lattice gauge theory we find once again that 

the problems encountered by Karsten and Smit are not rooted in the doubling 

problem, but are instead due to the way in which the gauge field coupling to 
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fermions is introduced. Once the true cause of these difficulties is identified it is 

not difficult to see that they can be avoided; however one pays a price in that the 

resulting theory is considerably more complicated and hence much less easy to 

compute with than the usual lattice gauge theories. Nevertheless, it is possible 

to write a lattice version of non-anomalous Abelian gauge theories which has all 

the following desirable properties: 

1. Chiral symmetry is exact for zero mass cases, with undoubled spectrum. 

2. QED continuum weak-coupling perturbative theory is reproduced in the 

limit a + 0 (g held small4 ),after the usual subtractions have been made. -c- - - 

3. The prescription can readily be generalized to non-Abelian theories. 

_- 

It is unfortunate that the prescription which we have found is very unwieldy. 

While it does reduce to the usual gauged version of the SLAC long-range deriva- 

tive at strong coupling it is even more non-local (on the lattice) at weak coupling. 

It will be obvious from the final form of our Hamiltonian that carrying out lat- 

tice calculations using this formalism will be an even more formidable task than 

in other approaches. We do not offer this Hamiltonian as the basis of a simple 

computational procedure, but rather to show that the problem of constructing 

chiral gauge theories on the lattice has a solution, albeit an ugly one. In the con- 

cluding section of this paper we discuss the question of making approximations 

to this Hamiltonian which can render computations more feasible while at the 

same time retaining the essential physics of continuum chiral symmetry. 

The plan of this paper is as follows: Section 2 presents a study of various 

free fermion lattice field theories which avoid the doubling problem. Section 3 

studies local current-current correlation functions in these free field theories and 

shows why problems of rotational non-invariance arise in Green’s functions for 
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short-range derivatives and how they can be avoided if the range of the deriva- 

tive is taken to infinity. In Section 4 we turn to a variant of non-compact lattice 

Q.E.D. which shows that a gauged version of the long-range derivative can be 

introduced in a way which explicitly reproduces standard weak coupling pertur- 

bation theory. (This section essentially reproduces results of Rabin: although 

the approach is somewhat more intuitive.) In Section 5 we turn to the compact 

theory and suggest a gauging which preserves the good results of Section 4. This 

generalization to the compact case is important because it suggests that a com- 

parable treatment for non-Abelian gauge theories can be considered. Finally in 
-c- - - - 

Section 6 we review our results and discuss some open questions. 

2. Free Fields _- 

If one attempts to formulate a Hamiltonian theory of free fermions using the 

nearest neighbor lattice derivative one finds that, for a theory in d-spatial di- 

mensions, there are 2d-times as many states at a given energy as one expects in 

the continuum limit. This repetitive doubling of the spectrum as one goes up in 

spatial dimension seems to be a quite general problem. Nielsen and. Ninomiya’ 

This theorem has been discussed in several publications, see have proven a the- 

orem which is widely interpreted to show that any finite range lattice derivative 

suffers from this spectrum doubling. While the theorem is correct spectrum dou- 

bling is a misnomer for the phenomenon which occurs. We will demonstrate that 

it is simple to write Hamiltonian free field theories based on finite range deriva- 

tives which do not exhibit spectrum doubling and which have entirely sensible 

continuum spectra. 
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: 2.1 NOTATION 

In what follows we consider’.a lattice whose points are labelled by d-tuples 

of integers 3 = (jr,. . . , jd) where d is the dimension of space. The physical 

spacing between adjacent points is given by the parameter a, a quantity with the 

dimension of length. In addition, we assume that the integers 7 run in the range 

-N 5 j, 5 N for m = I,... , d , so that our theory is set on a lattice of finite 

physical volume, L3, with L = (2N + 1)a. 

We use dimensionless variables, except where otherwise noted. Since the 

physical Hamiltonian, H;%as units of energy, we introduce the dimensionless 

Hamiltonian U defined by 

In addition all fields are scaled by the appropriate powers of a so as to render 

them dimensionless and yield simple lattice commutation and anti-commutation 

relations. 

In particular, lattice fermion fields are denoted $(j’, with 

The lattice Fourier transforms of the fields $(y) are given by 

+h) = (2N ; l)d/2 f c e 
3 

P-1) 

(2.2) 

where 2~ = (ICKY,..., nPd) are the dimensionless lattice momenta K, = 

2mt/(2N + l), for -N 5 n < N. 



The relationship between dimensionless variables and their dimensioned coun- 

terparts is as follows: 

(2.3) 

The operators which converge weakly to the continuum field Q’(Z) are 

We are careful to work%finitGvolume because this allows us to-count energy 

levels and thus explicitly check whether or not spectrum doubling occurs. 

2.2 1 + 1- DIMENSION : SHORT RANGE DERIVATIVES 

Let us begin by studying the simplest case, namely 1+1-dimensions. In this 

case we use two-component Dirac fields Consider the Hamiltonian 

X(P) = -i~[(1~‘{Ijlt(j)~~~(j+l)}+(~4~1){~t(j)~~7L(j+2)}]+h.e. (2.6) 
KP 

where we have adopted periodic boundary conditions; i.e., we have implicitly 

assumed that $J(N + 1) = $(-N). S ince (2.6) is translationally invariant it is 

diagonal in terms of the Fourier transforms of the $(j) and has the form 

where & (Q) is defined by 

&(I$) = y sin(np) + (P4i1) sin(2mp) 

w 

(2.8) 

Note that the minimum and maximum values of tcP are &2rN/(2N + 1) and tcP 



changes in increments of 1/(2N + 1). 

First, let us examine the nearest neighbor case, p = 1. Fig.l(a) shows the 

spectrum for this case. In order to more clearly exhibit the behavior of all 

derivatives considered we only show the plots of E(K) for the region 0 5 K < T 

since &(tc) is always an anti-symmetric function of n. The important thing to 

notice about the nearest-neighbor case is that for every low lying state near 

‘cP = 0 there is a degenerate state near r+, = 7r. This is true spectrum doubling. 

Figures l(a) and (b) which plot the same function for /A # 1 demonstrate that 

this is not a general featur%of a short range Hamiltonian. Here, for /..L = .I, .Ol, 

we see that the energy as a function of K is not symmetric about n = 7r/2 . 

To understand the important features of this spectrum expand (2.8) for n 
_- 

near zero and 7r. Expanding in ~~ for (p( < N we obtain 

whereas for “N-p and IpI < N we have 

where & is defined to be 

6 

P 
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2N+l 

If we restore dimensions of energy to the problem by defining 

k, = ;K~ (2.12) 
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then we see that the physical energy & (np)/a for k, near zero is 

and for k, near x/a 

a2k3 
i&(ipa) = kp + O(-$) 

i& (T - 6~) = /,.L-l$ + 0 
63 

( ) 

a2pm1 $ 

(2.13) 

(2.14) 

since (2N+l)a = L Eq.(2.14) implies that the lowest state for K --+ 7r occurs at an 

energy Emin = T//AL. Hens&if we-take T/,uL + 00 as L --+ 00 the spurious states - 

move off to infinite energy, and the only states which remain at finite energy are 

a single species of chiral fermions with an ordinary relativistic dispersion law for 

_- their energy as a function of momentum. 

At this juncture it behooves us to ask “What has happened to the Nielsen- 

Ninomiya theorem?“. Despite appearances to the contrary the formal result 

-..*-- stated in their theorem has not been violated. What the theorem really says is 

that the function E(n) is a periodic function with period 27r when considered as 

a function of a continuous variable -oo 5 K 5 00. The function (2.8) clearly 

satisfies this property. However, in finite volume IC is not a continuous variable. 

The continuum result depends upon how the limits L + co and /.L + 0 are taken. 

Notice that even if L + 00 first, so that K becomes a continuous variable, there is 

no true spectrum doubling. This is because the density of states for the branch 

K M 7r is ,s, whereas it is unity for tc = 0. What one has are two species of 

particles with very different speeds of light. 

Having established that there are loopholes in the Nielsen-Ninomiya theorem 

we now hasten to point out that this does not mean we are out of the woods. 

10 



While the next to nearest neighbor theory successfully defines an undoubled 

theory of free chiral fermions, it does not provide a satisfactory interacting theory 

for d > 1. The reason for this is that once interactions are introduced one has to 

do loop integrals (i.e. sums over intermediate states). Although the contributions 

to loop integrals coming from the states corresponding rc M rr are damped by 

energy denominators which are on the order of n/pL, there may be so many 

states at this energy that even taking the energy denominators into account the 

sum over these states diverges. When this happens, as it does in more than l+l 

dimensions, it can yield non-covariant contributions to Green’s functions which 
-&- - - - 

survive even after the usual continuum subtractions have been performed. 

The real problem with short-range derivatives has nothing to do with dou- 

_. bling of the low-energy spectrum but rather with the number of states in the 

region having energies on the order of r/a. For the next-nearest neighbor case 

one sees clearly from Fig.1 that there are, in the limit p -+ 0 many more states at 

infinite energy than at finite energy; moreover, these states have features which 

are intrinsically not rotationally invariant. 5 To establish this fact observe that for 

the Hamiltonian (2.6) the region of the spectrum which is linear in R corresponds 

t-o 1~1 < fi . The remaining spectrum, which we refer to as the spurious region, 

is all at high energy in the limit a --+ 0 and pL --+ 0, and the number of states in 

this region is of order (rr - 4) L/ a. It follows that if one takes the continuum 

limit to mean a + 0 and pL + 0, then the majority of the states will lie in the 

spurious region. 

In Section 3 we will exhibit the exact nature of the non-invariant contributions 

to current-current correlation functions in more than 2+1 dimensions and show 

that these spurious states do indeed cause a problem. Furthermore, such effects 
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are unavoidable for any finite range derivative. While it is true that the width 

of the region in which & is a linear function of K can be increased somewhat by 

taking additional terms, it is only by including terms of infinite range that we 

can make the spurious region shrink rather than grow as ,Y, -+ 0. We will show 

that this shrinkage of the spurious region as p + 0 as the crucial ingredient in 

obtaining a satisfactory continuum limit. 

2.3 LONGER RANGE DERIVATIVES 

One way to study the+idth 6f the region in which the spurious states is to 

adopt a damped version of the SLAC derivative. Recall that the SLAC formula- 

tion of the chiral fermion theory gives a Hamiltonian of the form 

*.--- 
where the function S’(j - 1) is defined to be 

(2.15) 

(2.16) 

In the limit N + 00 this function has infinite range, falling off like (-l)j/j. For 

finite N, note that 

S’(j - 1 + 2N + 1) = S’(j - 1) (2.17) 

which means that the SLAC derivative describes fermions on a periodic lattice, 

i.e. on a ring containing 2N + 1 points. We observe that (2.15) can be rewritten 
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as a sum of terms with range 1 5 r 5 N; 

i = -4 2 5 $+(j)a,$+’ + +5’(r) + hc. (2.18) 
j=-N f=l 

As in the nearest neighbor case we have implicitly assumed that +(j + T) = $((j’) 

where j’ is the integer in the range -N 5 j’ 5 N obtained by reducing (j + r) 

modulo (2N + 1). 

We will now introduce a damped form of this Hamiltonian as follows: 

~(~1 = -i ge ~++(j),$(j + r)eep’_S’(r) + h-c.. _ (2.19) 
j=-N r=l 

_- 

As before, U(p), is diagonal in /cP with a energy-momentum dispersion given 

by a function &(K+), of the form shown in Fig.2 for various values of p . The 

important difference between this case and the next-nearest neighbor case is that 

the width of the spurious region is only on the order of fi, and so in the limit 

p -+ 0 the region of physical momenta with a dispersion E(k,) = k, grows 

instead of shrinking. Eventually, for ~1 + 0, the dispersion law becomes the 
=.-- 

correct relativistic formula for massless particles in 1+1-dimensions. 7 

-2.4 HIGHER DIMENSIONS AND MASS TERMS 

The generalization of the preceding formulae to d+l dimensions, with fermion 

mass terms is straightforward. The generic Hamiltonian is of the form 

J/ = C -i [$+(j-t ~fi~)a,~(j’)D,(~) - h-c.1 + m c 7Cl+(j’,P+(j’, (2.20) 
f f 
3,PlV 3 

where m stands for the dimensionless mass m = mu. The functions I&(T) for 

v = l,... ,d can be chosen either as in (2.6) or (2.19). The matrices QI and 
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P are oV = 707~ and p = 70, where the r’s are the Dirac matrices for d+l- 

dimensions. Because we wish to study Q.E.D. perturbation theory we consider 

four component massive fermions. Clearly, this formulation can also be used for 

truly chiral gauge theories by introducing the projections (1 f 75)/2 and setting 

m = 0. The chiral symmetry is manifest in the m = 0 case and so the restriction 

to purely left-handed fermions is not a problem. 

The Hamiltonian (2.20) is easily diagonalized in momentum space. The en- 

ergy momentum dispersion relation is 

(2.21) 

where is the discrete Fourier transform of the function Dl(r). 

The 2d doubling of the nearest-neighbor theory has been lifted in (2.21). In 

the region of momenta where all components K, are close to zero (2.21) describes 

the spectrum of a massive fermion with speed of light 1. When the form (2.6) is 

used for D the states for which all components ICY are near 7r look like a second 

species which propagates with speed of light l/p. However, there are 2d - 2 

regions where some components of Z are near zero and others near 7r which do 

not correspond to any sort of relativistic spectrum. For example for /cZ and ICY 

near zero but ICY = K/U - R, we have a low-lying region of the spectrum which 

behaves approximately as 

& M ( 
A2 l/2 

tcz + tci -I- s •j- m2 
P2 ) (2.22) 

which can at best be interpreted as a species of fermion which propagates freely 

in the x and y directions but pays a price of at least r/pL for motion in the 
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z-direction. It is the existence of such intrinsically non-covariant regions of the 

spectrum which leads to non-covariant behavior of Green’s functions. While 

the discrete rotational invariance of the lattice is retained when one sums over 

the contributions from all such regions, we find they lead to terms of the form 

Ci @n qf, which are not invariant with respect to small rotations even in the 

limit a -+ 0. 

For the damped SLAC derivative, (2.19), we will show that no such terms 

survive, provided we choose ,U = 0 (1/N2) in the limit N + oo. 

3. Current-Current Correlations Functions 

_- In general, for a free field theory there is an ambiguity as to which lattice 

operators should be chosen to represent the continuum currents Qt(Z)rV?(Z). 

We will choose an operator whose Green’s functions mimic the divergence struc- 

-.--- ture usually encountered in the discussion of weak coupling lattice perturbation 

theory. The operator we study is the charge density operator 

which has the Fourier transform 

(34 

where Z = (nr,... nd) is a vector whose components are integers. The operator 

p(y) is the time component of a four-vector operator which satisfies the lattice 
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equation 

wherecr= I,..., d and p is such that -N 5 i, + p 2 N. The spatial components 

of 7 are intrinsically non-local. (Explicit expressions for them are given in Ref.8, 

however, since it is sufficient to study the behavior of the time-time components 

of the current we will not need them here.) The correlation functions of interest 

will be the time ordered products of the free field currents 

-&- (&?,t’)P(.Lt))) - - (3.4) 

- where the operator p(j’, t) is defined by 

p(j+, t) = eeiWtp(i)eiyt. P-5) 

As defined, the operators p(j’, t) are normal ordered products of free fields, and so 

have vanishing vacuum expectation values. Since we are working in a Hamiltonian 

formalism these Green’s functions can be calculated using familiar Feynman rules 

except that 

1. Time is continuous, so Q integrations run from --oo to 00. 

2. Space is discrete and finite, so momentum sums range over the discrete 

variables ICY = 27rp/(2N + 1) for -N 5 p 5 N 

3. The free fermion propagator is given by 

1 
P-6) 
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where 

j&o, $7) = r”no + c r”Zi,(ICv) P-7) 
v 

where E,(lc,) is the general function appearing in the definition of the 

Hamiltonian (2.20). 

4. The overall momentum conserving b-functions at each vertex are ordinary 

b-functions of the zero components of momenta,but periodic b-functions for 

spatial components of momenta. 

3.1 THE PROBLEM WF!JH LQOPS - . 

We want to examine the Fourier transform of the time-ordered product of 

two charge densities. For d-spatial dimensions the unsubtracted expression for 

the charge density-charge density correlation function is given by 

A;,P(4’,qo) = (zn +‘l)d,d 

where 

6(r’- p’- s’- (2N + l)n’)l(Zp, Zr, Zs, ko, qo) 
p,r,n 

(3.8) 

27rp’ 
6 = 2N+l’ 

27rrr’ 
&= 2N+l’ 

27rs 
@=rc,-= 2N+l (3-g) 

and 

1 
(q. + ko)70 + ~17~5~(1~~) - m7’ kor” + a-&i(t~~) - m 1 (3a1o) 

Our problem is to estimate the contributions of the spurious regions to (3.8) in 

the limit a + 0. The detailed discussion of this calculation, while straightforward, 

is tedious and is relegated to the appendices. Here we will simply summarize 

results and note certain salient features. 
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For the case of l+l dimensions the expression corresponding to (3.8) - (3.10) 

is naively logarithmically divergent in the continuum limit; however, current 

conservation guarantees the vanishing of that divergence and no subtractions are 

needed. Table 1 lists the dependence of the most singular contributions from 

various regions of the K sums on the parameters p, L and a for the case of the 

next-nearest-neighbor derivative (2.6) for 0 < q < &i/u. If we take the limit 

u--,0, L--+00 

i.e. -IT-k 00 with 6 = constant, - 

_- 

then all spurious contributions vanish, as required. It is clear too that, the 

restriction )q) < &Ii/ a is satisfied for all finite physical external momenta in the 

limit (3.11), and so the inequality holds for all cases of interest. The results for 

negative q are similar. 

For the damped SLAC derivative we see in from Fig.2 that the function cP(s) 

can be well approximated by the linear behavior D(n) = n up to tc of order 

~(1 - ,/jZ). The analytic behavior of the function in the spurious region beyond 

this point is complicated, however we show in Appendix I that the minimum 

value of E(K) in this region occurs at IcN = 27rN/2N + 1, where it is bounded by 

(3.12) 

Thus, using this derivative in l+l dimensions, we can also obtain satisfactory 

results in the limit (3.11) provided 6 5 1. 

In higher dimensions the current current correlation function is divergent 

and requires subtraction. In the spurious regions for the next-nearest neighbor 
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. derivative the slope of the function E(K) is of order l/p, therefore each subtrac- 

tion introduces a factor (qu/p)., Th ese inverse powers of p are dangerous; they 

can serve to enhance the spurious contributions so that no satisfactory choice 

of limit can be found. The most singular contributions come from the regions 

where one component of n, say y, is in the spurious region near ?r, and the 

remaining components are in the linear region near K = 0. In this case, for the 

next-nearest neighbor derivative, we obtain contributions to the Green’s function 

which behave like 

-k- -2 F . 
da:cr(l - o); In 1 + (1 - ctt)q;L . (3.13) 

-- Clearly, there is no way to take the limit ,U + 0 so these contributions disappear. 

How can this problem be avoided ? It may appear that the damped SLAC 

derivative suffers from a similar problem; however, one must be careful. In this 

case the spurious region has a width of order 4. Thus we can choose to take 

the limit 
=:-- 

( > 
2 p=& ; ; for a + 0 

(3.14) 
and L -+ 00 with 6 = constant. 

In this case the number of states in the spurious region remains finite as a -+ 0 

and so their contributions to Green’s functions must be treated as discrete sums 

rather than as integrals. Furthermore, as can be seen in Fig.2 the slope of (n) is . 

never of order l/,~ in the allowed region of K. Instead, the function develops a 

discontinuity at n = 7r which must be carefully treated. Appendix II details our 

analysis of the 3+1-dimensional current-current correlation function, including all 

of the subtraction terms required by continuum renormalization. Table II defines 
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the regions of momentum space which must be treated separately and Table III 

shows the dominant behavior of sample contributions from various regions. (All 

other contributions can be found by exploiting the symmetry of the theory under 

discrete lattice rotations.) In the limit (3.14) only the usual contributions survive. 

4. Non-Compact QED 

The previous section proves there exists a current whose correlation functions, 

calculated using a damped SLAC derivative, behave satisfactorily in the limit a -+ 

0. Yet Karsten and Smit found u_nsatisfactory results for the SLAC derivative -&- - . 

in weak coupling perturbation theory. How can we reconcile these seemingly 

contradictory results? The answer is that the current whose correlation functions 

are well behaved is not the one to which the photon couples in the version of 

lattice Q.E.D. considered by Karsten and Smit. The current which we discussed 

couples equally to all n-modes of the fermion, whereas the vertex obtained by 

Karsten and Smit behaves like 

E,(k + q) - E,(k) 
sin(qiu/2) (4.1) 

Eq. (4.1) describes a coupling to photons which is proportional to the slope of 

E(k) and so, in the limit ,X + 0, the coupling to fermionic states with k + q > 

r/u but IC < T/CL becomes arbitrarily strong. Thus, the contributions from the 

spurious regions to loop integrals are enhanced by factors of order l/p and survive 

the limit a + 0, ,X + 0. It is this behavior and not spectrum doubling which lies 

at the root of the problems first discussed by Karsten and Smit. 

As with spectrum doubling, there is a way out of this problem. It is suggested 

by the work of Rabin, who gave an answer which is applicable only to the case 
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. of non-compact QED. Let us review the substance of Rabin’s solution and then 

turn to a generalization of it which is more suitable for a compact gauge theory 

and thus for generalization to a non-Abelian theory. 

It is helpful to begin with a review of some elementary properties of non- 

compact lattice Q.E.D. The Hamiltonian version of non-compact Q.E.D. is de- 

fined in terms of link fields At and their conjugate variables El which satisfy the 

equal time commutation relations 

[El, Al,] = -iS,,,t (4.2) 
-)- - - . 

where f! and .@ stand for two links on the lattice. For. the pure gauge theory 

the Hamiltonian can be chosen to have one of two forms. The first form of the 

Hamiltonian is the one which trivially reproduces the ordinary free field theory 

of photons simply transcribed to a lattice. 

W) 

Here, e denotes a link variable, and P denotes a plaquette variable; i.e., El is the 

electric field variable associated with the link !Z, and Bp is the magnetic variable 

associated with the plaquette P. If we denote the links bounding the plaquette 

P by er, &, es and e4 respectively, then Bp = AtI + Al, - Aea - Al,. The second 

form of the Hamiltonian is more complicated and produces a large number of 

slightly different9 copies of compact Q.E.D. ; i.e., 

H = c GE; - & +cos(Bp). 
e 

(4.4 

The important difference between (4.3) and (4.4) is that (4.4) defines a theory qc 

interacting degrees of freedom for g2 # 0 whereas (4.3) is a free field theory. k 
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this reason the theory based upon (4.4) h as some of the features of a non-abelian 

theory (at least for g2 >> 1 ). , 

Both theories have an invariance under time independent gauge transforma- 

tions wherein 

6Ee=0 ; 6Ae= V&i (4.5) 

where X(T) a function defined on points of the lattice. If f! is the link joining 

the points y and ? = y + C then VLX = X(3) - X(y). The generator of this 

transformation is the unitary operator 
-)- - s . 

u (A) = ei Cl ELVLX (4.6) 

_- 
which can be rewritten, using the lattice analogue of integration by parts, as 

U (A) = e -4 C;(V.E)(j)X(;) (4.7) 

The lattice divergence of the link variables Et is defined as the directed sum of 

El's over the links touching the point j’. Equation (4.7) shows that V . E(T) can 

be identified as the generator of local, time independent, gauge transformations. 

From this it follows that imposing the Maxwell equation 

V-E(;)=0 (44 

is equivalent to the statement that physical states are invariant under arbitrary 

gauge transformations. The generalization of this result to include charged mat- 

ter fields is straightforward. In this case a general time independent gauge trans- 

formation not only shifts the fields Al by the gradient of a function X(y), but 
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i 
it also multiplies the matter fields by a phase factor e iqx(;). If we let jo (T) be 

the time component of the conserved electromagnetic current, then an arbitrary 

gauge transformation is generated by the unitary transformation 

U(X) = e ic;[-V.E(~)+jo(j7]X(~) . (4-g) 

We identify -V.E(T)+jo(T) as the generator of arbitrary gauge transformations, 

and once again the statement that physical states are gauge invariant corresponds 

to imposing as a state condition that Maxwell equation which is lost when quan- 
-&- - - . 

tizing in A0 = 0 gauge. 

The next question which arises is, “ What does the pure gauge theory Hamil- 

_- tonian look like when one restricts attention to the sector of gauge-invariant 

states?“. One way to answer this question is to observe that even on a lattice 

the operators Et and Al can be written as a sum of a gradient and a curl; i.e., 

Ee=E,L+ET (4.10) 

where Ef is a function whose lattice curl vanishes, and ET is a function whose 

divergence vanishes. (For details of this decomposition see Ref.9 and papers cited 

therein.) Obviously, a similar decomposition holds for At . Furthermore, it is 

clear that the transverse part of Al must be a function of Bp alone. 

With this decomposition in hand it is a straightforward to write a Hamil- 

tonian for non-compact Q.E.D. which has a well behaved continuum limit as 

follows: 

H = HO - Z’ C Q’t(J~pKll(~+ r$,)D,(r)eigCtl AS + HT; 
T,P 

(4.11) 
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c; stands for the set of links along the line joining 7 and i+ r& where 

iso = $ c [Ef” + Ea”] - & ems 
e P 

(4.12) 

and HT is given by 

HT = C at (J eigAf Q (j’ + I;> (eigAT _ 1) . 
;+p 

(4.13) 

It is now easy to answer the question just posed, “What does the Hamiltonian 

look like when projected iriSthe sector of gauge invariant states?“. Since a gauge 

invariant state is one for which the equation 

_. V~EL(;)-jo(;)(r#) =O (4.14) 

is satisfied and EL, by definition, can be written as 

Ef = -VJ. (4.15) 

For gauge invariant states 

Ef = -$Vjo (4.16) 

so we can rewrite (4.12) as 

Ho = -g c jo(T)$jo(T) + $ c ET2 - -$ xcos(Bp). (4.17) 
j’,i’, L P 

The first term is easily recognized to be the Coulomb interaction between two 

charges at the sites T and ? (a quantity which rapidly passes to its continuum 
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. form) and the remaining terms in the HO are explicitly gauge invariant. As for 

the remaining terms in the Hamiltonian (4.11) we see that the factor of eiAL can 

be dropped since the only effect of this operator is to change the eigenvalue of 

EL for a gauge invariant state and we have now chosen to rewrite this change 

completely in terms of the change in the charge density je(y) which is caused by 

the operators X&t(;) and !I!(;). Hence, without ever fixing gauge, beyond making 

the choice A0 = 0, we have obtained the Coulomb-gauge form of the Hamiltonian 

in the sector of physical states. The important features of this Hamiltonian are: 

1. The free fermion part of th@Hamiltonian is arbitrary, in particular DP(r) 
-+- - . 

can be taken to be the damped SLAC derivative. 

2. The coupling to transverse photons, which together with the Coulomb in- 

_- teraction constitutes the entire interaction Hamiltonian, is strictly local on 

the lattice, that is it is independent of the form of DP(r). 

It is easy to verify that with a coupling of this form the results of the previous 

section for the dependence of the current-current correlation function on CL, L and 

a are retained and the limit (3.14) is satisfactory. 

5. Compact QED 

The major objection to the treatment presented in the previous section is that 

it introduces fractional flux on links of the lattice and hence cannot be used for a 

compact theory. However an important physical point has been learned-gauge 

invariance does not dictate a relationship between the form of the derivative 

D,(k) and the form of the vertex TP. In (4.1) we have seen that it is this 

relationship which leads to a problem when we gauge the SLAC derivative by 

introducing a straight line of unit flux between the fermion fields. 
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i . Although the discussion of the non-compact theory does not directly tell 

us how to modify the Lagrangian of the compact theory, it points out the fact 

that there need be no tight connection between the gauge invariant fermionic 

derivative terms and interaction between the fermions and the transverse gauge 

fields. Consider then the most general form for the gauge-invariant derivative in 

a compact gauge theory: 

-A- - - . 

where the sum over paths runs over all possible paths from j to j + nj2 and upath 

is any suitably chosen weighting factor. The usual gauged derivative corresponds 

_- to the choice upath = 1 for the straight line path and wpath = 0 for all other paths. 

Let us instead consider the weighting 

Wpath = c 
,-s”+) 

lEP 

where 

n,(e) = number of times the path P traverses the link 

I? in a positive direction 

-number of traverses in a negative direction. 

(5.2) 

(5.3) 

At strong coupling this weighting is clearly dominated by the shortest path- 

however for weak coupling the string becomes very non-localized. Now let us 

examine the coupling to any plaquette variable Bp given by this prescription. 

Consider any plaquette and isolate the contributions to the sum over paths com- 

ing from terms which carry flux (p, q, r, -p - q - r) into the four corners of that 
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plaquette. The coupling to BP is 

I-p = - ;$ 2 w(p, q, r) 2 (4n + 3p + 2q + ?+-(4~+3p+2q+r)ag2 
(PM) n=-co 

(5.4 

where 

Z = C w(p, q, r) 2 e-(4n+3p+2q+r)2g2m 

(ww) n=-co 
(5.5) 

The factor w(p, q, r) is the sum of the weightings of the parts of the paths which 

do not touch the referenc@aqueIke P (modified by an n-independent term from 

the reference plaquette weighting). For small g2 it is instructive to rewrite this 

sum using the identity 

2 f(n) = 2 7 dx e2amzif(x) . 
n=--00 m=w --co 

One then finds 

(5.6) 

1 L,q,r r(g) = - 
W (P, q, r) Cz=, (2nm) sin 7rm (%+iq+r ) e-m27r2/$2 

g CPA,? 4P,W) (1 + c;=1 cos Tm ( 3P+iq+r) em2*2/g2) ’ (5’7) 

We see explicitly that every term in the numerator is smaller by at least a factor 

of emr2/g2 than the equivalent term in the denominator. Hence, as g --+ 0, I’ 

vanishes faster than any power of g. This is then a compact equivalent of the 

result given in the previous section; i.e., it is a prescription for rendering the 

derivative gauge invariant which does not introduce a coupling to the plaquette 

variables BP to any finite order in g. 
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Once again the coupling can be reintroduced using an additional nearest 

neighbor term. The perturbation theory so obtained will not acquire any spurious 

contributions form the regions near K + 7r, since the coupling of photons to 

fermions in this region are not significantly enhanced by such an interaction 

term. 

Although this weighting leads to a very attractive result, the generalization 

of the calculation just given to a non-Abelian theory is non-trivial. Our counting 

made use of the Abelian nature of the gauge field. Each string was weighted 

by exp(-g2E2) h w ere E is the field created by the string operator acting on the 

flux-free state. The state created by the action of successive U operators on a link 

is not unique in the non-Abelian case so an equivalent weighting is not readily -)- - - . 
achieved. Fortunately, we believe that the strong result achieved above is not 

necessary in the non-Abelian case, because such theories are asymptotically free. 

-- Consider instead a weighting 

(5.8) 

I.--- 

where Lpath is the length of the path in question. A calculation of the coupling 

to a given plaquette variable Bp, similar to that given above for the weighting 

(5.8) shows that I’ vanishes at least as fast as g 5. In an asymptotically free theory 

such non-leading contributions to perturbation theory are presumably irrelevant 

in the a -+ 0 limit. 
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6. Conclusions 

Although the calculations ofthe preceding sections of the paper were carried 

out for a theory of massive fermions it is obvious that we could have dealt with 

a chiral theory from the outset by setting the parameter m = mu = 0 and 

projecting all fermion fields onto fields of a single definite chirality. Hence, we 

assert that we established that there do exist schemes for defining purely chiral 

gauge theories on a lattice. 

-- 

=.--- 

Unfortunately, we learned that in order to get results free of lattice artifacts 

not only does the fermioni?deri&,ive have to have infinite range but also the 

introduction of gauge fields has to be written so that for each term in the fermion 

derivative we sum over an infinite number of string configurations. Obviously, for 

strong coupling the string configurations which do not correspond to the straight 

line routing of the flux between fermions are severely damped; hence, whether 

or not one uses the Hamiltonian which we have proposed, the strong coupling 

results will be unmodified. The problem, as always, is what happens as we try 

to approach the weak coupling region of the theory. 

We will now argue that for couplings on the order of unity or less we expect 

there to be a significant difference between the behavior of the theory we have 

written down and a straight-line gauging of a theory based upon a SLAC-type 

of derivative. Furthermore, we will argue that the necessity for summing over 

multiple string configurations reflects an aspect of the problem which transcends 

the desire to get weak coupling perturbation theory to work out correctly; namely, 

the desire for a renormalization group invariant formulation. 
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6.1 EXPONENTIAL DAMPING AND THE RENORMALIZATION GROUP 

We will show -that starting ,from a theory based upon a SLAC derivative 

simple renormalization group ideas force us to gauge the theory in the manner 

just discussed. To see this, imagine that we begin calculating for a small value 

of the lattice spacing and a small value of the coupling. Since, we are dealing 

with an asymptotically free theory, we can imagine writing a trial ground state 

wave-function which is essentially a Gaussian free field wave function for gluon 

and fermion degrees of freedom corresponding to momenta near ~/CL. Integrating 

out these degrees of freed-we obtain an effective Hamiltonian for the-remaining 

degrees of freedom; i.e., a theory with a new coupling and a larger lattice spacing. 

While carrying out such a calculation for a non-Abelian theory is somewhat 

_- problematic, for compact Q.E.D. the process is entirely straightforward. 

-.--- 

The question we wish to ask is how the gauged fermion kinetic term changes 

under such a renormalization-group transformations. It is easy to see3 that one 

effect of integrating out the high-momentum modes of the gauge field is to modify 

the weighting factor by an amount exp(-g2rlpath) where r is some calculable 

constant. For a choice of tipath which is unity for straight lines and zero otherwise 

this result means that in one renormalization group transformation the fermion 

kinetic term goes over to the form of the exponentially damped SLAC derivative 

with a damping factor ,U = g2r . This, however, is a disaster since although in a 

non-Abelian theory g2 + 0 as a -+ 0 it does so only logarithmically; thus, given 

the results obtained in the previous sections, in this sort of theory the fact that 

lattice artifacts will survive the continuum limit would appear to be unavoidable. 

In the case of a more general upath the situation can be quite different. The 

reason for this is that now we are faced with the question of what is the mean 
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i length of a path joining terms in the fermionic kinetic term. This is not a trivial 

question since in computing this quantity one has to take into account the com- 

petition between the damping factor e-g2rL, which tends to favor the shortest 

paths, and density of entropy factor, the number of paths of length L joining a 

given pair of points, which grows with the length of the path and favors longer 

paths. Clearly, it is quite possible that as one varies g2 the entropy factor can 

win out and the mean path length can grow rapidly. In fact, in a moment we 

will argue that this will happen for g2 << 1, however let us first take a moment 

to see why this is important. 
-)- - - . 

Suppose for a moment that for points separated by a distance less than some 

_- 

=.--- 

fixed value LO the sum over paths joining these two points is dominated by 

paths of length Lo, whereas for points separated by more than this distance the 

sum is dominated by the straight line joining the points. Now consider a single 

renormalization group transformation of the form just discussed. As before, the 

gauge field factor is resealed by a factor of e-g27L, but now this means that all 

terms in the kinetic part of the Hamiltonian which involvefermion fields separated 

by a distance smaller than Lo are resealed by a common factor. Hence, in this 

case one once again gets an exponentially damped SLAC derivative, however 

now the damping scale is set by Lo and not 1/g2r. This is important since this 

provides a way of decoupling the factor p appearing in our formulation from g2 

and thus invalidating the general renormalization group argument that indicates 

that lattice artifacts must survive the continuum limit. In fact we will now argue 

that there is a value of g2 below which the mean path length joining two fixed 

points diverges, which puts us back into the situation of the undamped SLAC 

derivative. 
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Now let us see why there is a dramatic change in the mean length of a path 

joining two fixed points as we vary g 2. The mean length of the path for a term 

in H involving fermions separated by a distance r is given by 

(L)r = (6.1) 

We can obtain a crude estimate of this quantity by underestimating the number 

of paths of length L > r as follows: any path joining two points separated along 

some lattice direction by distance r must have at least r links along that direction. 

Of the remaining (L-r) Kiiks~ (L9~)/2 can be chosen ih any of 2(d 2 1) directions 

without any risk of retracing the same path. The remaining (L - r)/2 links must 

be chosen to bring the path back on axis and so are not completely random. It 

follows that there are at least 2(d - 1)(L-r)/2 d’ t’ 1s mc paths of length L between t 

points separated by a distance r. This is a gross undercounting of the number of 

long paths but it is sufficient to show that the average path length diverges at 

some finite g. For a weighting such as (5.8) we find 

(L) _ xL,r Le-g2TL2(d - 1)(L-r)/2 
r> 

t: L,,. e-g2rL(2d)(L-r)/2 (6.2) 

Clearly for 

g2 < (l/27-) ln(2(d - 1)) (6-3) 

this expression diverges for all r. This is of course the result we wished to 

establish. 
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6.2 PHYSICAL SCALES AND CONFINEMENT 

For a non-Abe&an gauge theory we believe that confinement occurs at some 

fixed physical length scale. This suggests that the fact that (L), + 00, which was 

important to reproduce weak-coupling perturbation theory in QED, may in fact 

be modified in such a theory. It is possible, even intuitively plausible, that the 

average length of the flux strings does not diverge in physical units but is in fact 

some finite multiple of the physical confinement scale. This notion is suggested 

by the discussion of the previous section. 

Imagine a recursive pdureof successively thinning degrees of freedom to 

increase the lattice spacing. Starting with a form such as (5.8) at small lattice 

spacing we evolve to stronger coupling as the lattice spacing increases over many 

recursive steps. Eventually, at sufficiently strong coupling, we expect that con- 

finement means that there is an energy cost for having gluon flux stretch over 

large distances in units of the confinement length. Presumably, this means that 

at this point the argument given in deriving (6.2) applies but with a value of g2 

above the critical value and so we expect (L), M Lconfinement; hence we expect 

the effective form of the fermion derivative go over to the damped form on a scale 

set by the confinement length. Since we believe that this form of the Hamilto- 

nian will apply to the study of the motion of quarks within a hadron our earlier 

analysis would suggest that the turning down of the spectrum for momenta near 

K M 7r means the appearance of states with masses on the order r/Lconfinement. 

-- 

I..-- 

Although we referred to states of this sort as spurious in our earlier discus- 

sions, because they did not appear to have a rotationally (or at least approxi- 

mately) invariant spectrum, the states of the recursed Hamiltonian need not be 

lattice artifacts-they can be finite mass hadronic states of &CD. The reason this 
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can be true is that many recursive steps are needed to go from weak to strong 

coupling and the SLAC derivative will, along the way, evolve into a form which 

involves off-axis terms as well as on axis terms and which is essentially rotation- 

ally invariant. We raise this rather speculative point because of results which we 

obtained in an earlier paper where we analyzed chiral symmetry breaking in the 

context of a strong coupling version of the SLAC derivative lo . Our results did 

not require an infinite range for the SLAC derivative and would be valid also with 

a weighting such as (5.8). The result of the calculations described in that paper 

were that the chiral symmetry of the theory is spontaneously broken, implying 
-&- - . 

the existence of a massless multiplet of pseudoscalar Goldstone bosons and also 

massive multiplets of particles which we identified as a p, p’ and a possible X’ 

_- multiplet. The relevance of this calculation to the present one is that if these 

states are written in terms of the “free” quark modes of the coarse grained lattice 

then the massless states contain no quarks from the region K M 7r but the massive 

ones all contain at least one quark from this region. 

The combination of these earlier results with our admittedly speculative argu- 

ment suggest that those features which are essential for obtaining the correct free 

spectrum and weak coupling perturbation theory may be less important when it 

comes to the study of the hadron spectrum. 

6.3 PRACTICAL CALCULATIONS 

Given the discussion of the previous sections we would argue that any theory 

which attempts to deal with truly chiral theories, must eventually deal with a 

gauging of the fermion derivative term which contains a sum over arbitrarily 

long strings. Obviously, this is not the sort of term which lends itself readily 
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. to carrying out practical calculations. The question then arises as to how to 

implement our results within the framework of a practical computational scheme. 

First, we would like to point out that the formalism we have introduced is 

explicitly Hamiltonian in nature and we do not know how to generalize it to a 

Euclidean path integral approach, except in the obvious way as a theory of a finite 

spatial lattice with continuous time. It makes no sense to take our prescription 

for a spatial lattice and use the same prescription to write down a Euclidean 

formulation. The introduction of more than nearest neighbor couplings in the 

time direction in L lead to a non-hermitian Hamiltonian which would seem to be 
-6. . . 

extraordinarily difficult to understand. 

One can, of course, introduce an asymmetric formulation of a Euclidean 

_- theory which takes a finer mesh for the time direction than the space direction, 

and use only nearest neighbor terms for the time direction. Naively, this would 

appear to lead to a single doubling of the of all propagators. We have not studied 

this theory so cannot make any statements about decoupling of the spurious 

states in the continuum limit. A more attractive alternative is to adopt the 

Monte Carlo techniques of Blankenbecler and Sugar” who work directly with 

the transfer matrix computed from the Hamiltonian. 

Yet another possibility is to eschew Monte-Carlo techniques and directly at- 

tack the Hamiltonian theory by strong coupling perturbation theory ,‘” non- 

perturbative methods like the t-expansion :3 or whatever other method comes 

to hand. 

In any such approach it will be necessary to truncate the full Hamiltonian 

and study one’s results as a function of the truncation scheme. For example, 

one could work with the nearest-next-nearest neighbor fermion derivative and 
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include sums over strings of length up to some length Lo. One could then study 

quantities which are expected to scale early, i.e. ratios of masses, and see how 

they depend upon the parameters p and Lo. Reliable answers will be those 

which are insensitive to the choice of these parameters. The virtue of this sort 

of approximation scheme is that we know the specific form of the Hamiltonian 

being approximated and presumably can obtain control over the dependence of 

the results obtained on the approximations. Furthermore, we have reason to 

believe, from the strong coupling calculations which are have studied previously, 

that the masses of the true physical states will indeed be relatively insensitive to 
-&- - - . 

p and LO. 

6.4 A WORD ABOUT ANOMALIES 
_- 

-:-- 

Up to now we have studied the question of how to write a satisfactory lattice 

gauge theory for the case of a non-anomalous chiral symmetry. This is because 

we know that in the continuum it does not make sense to gauge an anomalous 

chiral symmetry. Presumably, although it is not apparent from what we have 

said in this paper, the same is true for our lattice models; even though one can 

carry out the entire construction we have just described for theories of this type. 

Probably, what goes wrong is that in such a theory it is not possible to find 

a range of couplings which will allow us to take the limit a t 0 and define 

a satisfactory continuum theory. Analysis of this question requires a thorough 

study of the dynamics of models of this type and goes beyond the scope of this 

paper. 

There is another question related to anomalies which usually comes up in 

the discussion of fermions in lattice gauge theories, and that is that there is 
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a widespread belief that such theories cannot exhibit anomalies in any global 

symmetries. It is therefore believed that the U(1) problem cannot be solved 

correctly in a lattice theory. This belief is based upon a collection of notions 

_- 

-.--- 

which our discussion has shown to be fallacious. The first fact is that for any 

theory of massless lattice fermions there is, even for a current which would be 

conserved in the continuum theory, an exactly conserved lattice chiral charge. 

The argument then goes that this means there must exist an exactly conserved 

chiral current corresponding to this charge in the continuum limit of the lattice 

theory. In an earlier paper by one of us14 it was shown that this argument was 
-rc- - - . 

fallacious for a lattice version of the l+l-dimensional Schwinger model based 

upon a SLAC derivative. While there is an exactly conserved chiral charge in 

this lattice theory it is not the integral of a current density which has a finite 

continuum limit; moreover, the only axial current which does have a continuum 

limit is not conserved. Applying our present analysis to a 1+1-dimensional theory 

shows that the effects of damping by a scale factor proportional to g2 do not 

produce lattice artifacts in the continuum limit of such a theory; hence, our results 

provide additional supports for the arguments presented in Ref.14.. Obviously, 

a parallel discussion of theories in higher dimension will require more care and 

remains to be given. Nevertheless, there is no reason to believe that there are 

any non-perturbative effects which will change the fact that computations in our 

present formulation of lattice gauge theories of massless fermions go over to their 

continuum form if the limits a -+ 0 and g2 --+ 0 are taken properly. 

Another misconception which leads to the conclusion that one can have no 

anomalies in theories with lattice fermions, is that species doubling produces 

contributions which cancel the ordinary fermion contribution to the anomaly 
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calculation. Obviously, from what has been shown in this paper this argument 

applies only to the case of the nearest neighbor derivative. Even in the patho- 

logical case of the nearest-next-nearest neighbor derivative we have seen that the 

density of states in the doubled region is very different from that in the normal 

region and no detailed cancellation of contributions is possible for general values 

of /L. 

6.5 FINAL REMARKS 

_- 

*.-- 

We would like to conclulue byemphasizing that the arguments which we have - 

presented in this paper show that it is in fact quite possible to formulate lattice 

gauge theories which allow the introduction of chiral fermions in a straightforward 

manner. In addition, this same method allows us to discuss vector-like gauge 

theories of massless fermions in a way which preserves global chiral symmetries 

and allows a direct attack on the problem of spontaneous symmetry breaking 

and the dynamical origin of non-elementary Goldstone bosons. Admittedly, the 

Hamiltonians which we propose appear more difficult to deal with than the more 

familiar versions of lattice gauge theories, however this may be illusory. It could 

well be that the fact that this class of theories preserves all chiral symmetries 

allows for a more direct attack on questions of dynamical symmetry breaking 

than is possible in theories where one explicitly breaks these symmetries and 

then attempts to discover how to take the continuum limit in such a way that 

the symmetry is restored. 

In addition to this remark we would also like to point out that while we believe 

on physical grounds that the complexity of our Hamiltonian is unavoidable, that 

aspect of our discussion is heuristic and should not be taken at face value. Since 
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this paper shows that something which was heretofore widely believed to be 

impossible is, in fact, possible we encourage others to have another look at the 

problem in the hope that they will find something we have overlooked and arrive 

at a simpler formulation of a satisfactory theory. 

-)- - 
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APPENDIX A 

l+l Dimensions-Next Nearest ‘.Neighbor 

The results of Table I are obtained from the current-current correlation func- 

tion given in (3.8). In If1 dimension(d = 1) this quantity requires no subtrac- 

tions in the continuum theory because the apparently logarithmically divergent 

terms cancel by current conservation. Hence we make no subtractions on our 

lattice expressions. After evaluating the traces, Feynman parametrizing, and 

performing the Ice-integration, (3.8) yields 

1 
A&(&q,) = n C b(Kc, - up - ~8 - 2rn) 

s 
da J’(nr,np) (A-1) 

2N+1 p,r,n 0 

where 

[g(G) - s(Kp)] [(l - Q) c(Kp) - a.zi(rC,)] 

F(Kr’np) = [OZ2(lCr) + (1 - a)fj2(Icp) + m2 - ~((1 - (-r)qiu2)]3/2 
(A4 

and 

27r.s 
m=mu , P=Ks= 2N+1 * (A-3) 

We wish to study fixed finite external momenta q. For the sake of discussion 

we examine q > 0, which means 0 < s < N. Then the delta function restricts 

the n-sum to contributions from n = O-the non-umklapp terms, and an n = -1 

contribution when p + s > N. Thus we can rewrite the sums in (A.l) as 

N-s 
CGp(nr-np-n,--2ms) = C 6(r-p-s)+ 5 6(r-p-s+2N+1) . (A.4) 

P,n p=-N p=N-s+l 

We can further divide the contribution of the first term in (A.4) by looking at the 
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behavior of E(K). We have, for the case of the next-nearest neighbor derivative 

zj(K,) = yp) sinn, + (’ GP) SiI12Kr . (A-5) 

In the region of small rc, this function is well approximated by the linear behavior 

ii(K) = lc for K < fi . (A-6) 

We will study the limit 

-&- 
-i 

- - 

P = 6 : = 2N~1 for finite 6, N-t 00. 
( > 

In this limit any finite physical q satisfies 

(A-7) 

(A.8) 

Thus we can further divide the sum over p into the regions 

Ip, < @W + 1) 
> 27r 

In each region of the sum there are an infinite number of terms in the limit a -+ 0 

and hence we can make the replacement 

The three contributions are thus 

ARegion I = 2 -4 l J‘/“i d/c F(n + WC) (A.lO) 

(A-9) 
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dtc F(/c + ~5, KC> 

@rN-s)/2N+l 

+ 
s 

dn F(n + b,~) 

fl 

(A.11) 

and finally the umklapp contribution, 

2rN,‘2N+l 
-A - 

ARegion III = G 
J 

dtc I’(% i /cs - 27r, n) : (A.12) 

2a(N-s+1)/2N+l 

-- All that remains to obtain the results given in Table I is to estimate the dominant 

contributions from each of these expressions in the limit (A.7). To do this, it is 

useful to note that 

&c + n,) = E(K) + &I(1 + /J) cos K - (1 - p) cos 2rc] 

w 
-lo 2 ( 1 

4 = E(K) + n,B(n) + 0 T ( 1 . 
(A.13) 

In Region I we use the linear approximation (A.6). This gives 

A Region I = 3 &l da J-5 dn 
(qa){(l-2cY)rc--aqa} 

I( n+crqa)2+a(l-a)(q2a2-q~u2)+~2]3~2 * (A.14) 

Shifting the integration variable and exploiting the K +-+ -K symmetry this can 
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be rewritten as 

ARegion I = 
2a(l- a)qV 

[n2 - a(1 - a)(qi - q2)a2 + 7TAZ2)]3/2 

fi+aqa 
+ J 

dZ 
qa[(l - 2a)Z - 2a(l- a)qu] 

lp-crqa 
[E” - a(1 - a)(qi - q2)u2 + ?&22]3/2 

(A.15) 

s 

a(1 - ct!)q2 2 
= 2 da 

m2 - a(1 - cr)(qz - q2) 

where the second integral&as been estimated by setting 2 = & over its en- 

tire range. The first term represents the usual continuum contribution. The 

remaining contributions vanish in the limit (A.7). 
- 

The contributions of Region II can be treated using (A.13). We find 

1 
ARegion II = 2;rr 

(2rN/2N+l)-(I--a)qa 

4q2u2cx(l - 2a) 
J 

B2 (4 
dK R3/2 (n, gu) 

fiaq” 

+ 
s 

dn quB(n)[(l - 2@(n) + 241- a)quB(n)] 
R3i2 (n, qu) 

&-ffv 

(2nN/2N+l)-aqa 

+ 
s 

dK qaB(n)[(l - 2@(n) + 2a(l- a)quB(K)] 

(2nN/2N+l)-(1-a)qa 
R3i2 ( IC, qu) 

+ 0 

where 

(A.16) 

R(~,qu) = Z”(K) + a(1 - a)(q2u2B2 - qzu2) + m2u2 . 
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The second two integrals are estimated by taking the maximum value of the 

integrand within the range multiplied by the range. The contribution of the 

second integral is bounded by a term of order q2u2/p2 while the third integral 

gives contributions of order /J. 

The first integral is best treated by dividing it into the regions 

tC<E and 
2 

In the first of these regions we set cos K = 1 - y, the resultant integral is then 

bounded by -A- - - - 

1 1 

J 

da: 2a(l - a) q2u2p 

J 
dy [-3Y + 2Y2 + P(2 - Y)(l - 2Y)] 2 

7r Y2(2 - Y12[Y + Pu(2 - Y>13 
0 I-cos(fi-qu) 

< %]dy (--$) +higher order in p. (A’17) 

= 0 q2a2 
(3 CL m 

In the second region we set cosn = -1 + y. The contribution of this region is 

then 

J 479&L 

dcY (2N + 1)2 s 
' dy L2c2 - d212 --) o(p) 

Y2(l - y)5 E 
(A.18) 

where 

E = 1 + cos 
27r(N - (1 - Q)S) 27+(1- (y.) + ; 2 

2N+l (2N + 1) 1 = O(qu)2 . * 

Finally, in Region III, the umklapp region, we can expand both E(K) and D(n + 
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KS - 27r) about their values at n = 7r. This gives 

. I  +=+-~~+l)] =; (,,:I) 
5(/c + tc, - 274 = 

(-2s+a) 7r 

P 2N-+-1 
(A.19) 

1 < 0 < 2(s - 1). 

Thus the contribution of the umklapp region is 

1 2(9-l) 

ARegion III = F 
f -I 

-da 
&j (-d[(’ - do + dS - d] 

0 1 
[Q(S - a)2 - (1 - Q)cqW 

Hence we have shown that only the usual continuum contribution survives in the 

limit (A.7). 
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APPENDIX B 

The Damped SLAC Derivative ’ 

In order to evaluate the loop contributions using the damped SLAC derivative 

we need first to derive certain properties of the spectral function E(Q). The 

Hamiltonian defined in (2.19) gives 

Q-4 2jpp> = 2N + 1 eev4m + &-)m P.1) 

where r+, = 27rp/2N + 1 &r-&the -normalization C(,U) is chosen so that the slope 

of E(n) is 1 at tc = 0. We are going to study the limt 

6 
’ = 6 (;I” = (2N + 1)2 

; N -+ co 6 fixed. (B.2) 

In this limit /JN is of order l/N, and hence vanishes as N -+ 00. A little 

algebra gives 

~$c~)=cK~ I+.LN+~~~~ 
{ 

n 

c 0) Fr 
r=l 

P- ; 
(B-3) 

- ,F-!‘, $s2 F(N + $ - s) + 0(/-b (pN)2) 

where 

F(r) = 
1 - (-1)’ cos 42 

2 sin2 n,/2 

Now 

2N1+ 1 fl: F(r) = ““,: ’ + o(1) 
r=l 

(B-4 

(B.5) 
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i and 

2N1+l CF(ti++-s)=e+O(l). 

Hence 

i(n) = n - ,,,“” n> + 0 (PU, p2N2) 

Thus, 

2iJ dE .-I- 
dn 7r(7r - rc)2 - O(/w2N2) - 

-&- - - - 

The maximum occurs at 

(71. - K) = E . 

(B-6) 

P-7) 

(B.8) 

(B-9) 
-- 

‘.I- 

For K greater than r- dm the slope of E(K) is negative-this spurious region 

is of width l/N and hence contains only a finite number of momenta K, = 

2rm/(2N + 1) even in the limit N + 00. The minimum value of Z(K) in the 

spurious region occurs at KN = 27rN/(2N + 1) and is given by 

5(&N) = KN - 
4/..+N + 1) 

r2 + O(p,p2N2) > RN - 2pN . (B.10) 

The current-current correlation function of interest, Eq. (3.8), is quadrati- 

cally divergent in the continuum theory and hence requires three subtractions. 

We will make the same three subtractions and study the resulting expression 

in the limit (B.2). I n order to define precisely what we mean by the various 

contributions in Table III, we adopt the following procedure: 

1. evaluate the traces, Feynman parametrize and perform the (finite) ~0 inte- 

grations; 
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2. divide the sums over each of the spatial momenta into the regions given in 

Table II; 

3. treat each such region as a separate expression to be three times subtracted 

at (q0,G) = 0. 

This yields the results of Table III. (Because the boundaries of the various regions 

are q-dependent the sums in the subtraction terms may run over a different range 

than those in the original expression.) Of course, provided the subtraction is done 

correctly, the answer does not depend on how the contributions are distributed 

between entries on our tsbJe. However it is important to note that a correct 

subtraction procedure treats the umklapp contribution separately. Let us outline 

a one-dimensional example of a twice subtracted sum just to make all of this clear. 

-- Consider the unsubtracted expression 

B’(s) = xF( ~2, K~)~~(Kz + h + 27rn - K,) 

where q = 27rs/2N + 1 

N-s N 

B’(q) = c F( IC~,K~+K~) + c F(~p,~p+~.s-2~) . (B.ll) 
-N N-s+1 

Now subtract twice. The contribution of the first sum in (B.11) is 

N-s 

Bgegion I = c F(~P>"P + d - f&'bp+p) 
-N -N 

27rs N d - 
c- 2N+l -Ndn, 

F(np, up + G> 
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+ 2FJ 1 F(KN,KN) 

r=O 
(B.12) 



While the second sum gives 

B~gion 11 =. ~ F(~~p,np + US - 2~) - 2~~ ~F(~N,K-N) . (B.13) 
N-s+1 

Since the umklapp region is of width q the contribution of Region II is explicitly 

of order q before any subtraction. The second subtraction introduces a boundary 

term which is different for the umklapp and non-umklapp contributions and hence 

does not cancel out when the two regions are added. 

The results given in Table III are then obtained by a straightforward step- 
-)- - - - 

by-step procedure. In the spurious regions the denominator E(n) is replaced 

by the bound (B.lO) h’l w 1 e numerator factors of E(K) can be replaced by the 

_- upper bound (Ifi < r). In both the normal and the umklapp regions, after 

subtractions the sums can be replaced by integrals using the prescription 

1 m’ 1 
2rm’/2N+l 

c J 
dnp . 

2N$1 p=m+2?r 
2rm/2N+l 

(B.14) 

However, the number of states in the spurious region remains finite in, the N + 00 

limit, hence these regions must be treated as discrete sums even in this limit. 
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FIGURE CAPTIONS 

.I 
1. (a) The spect rum of the nearest neighbor derivative (CL = 1) showing true 

spectrum doubling. (L = 2N + 1 = number of sites) 

(b) The spectrum of the next-nearest neighbor derivative for p = 0.1. Note 

the larger slope and correspondingly lower density of states for tc near 7r. 

The energy of the last state is approximately r/pL. 

(c) The spectrum of the next-nearest neighbor derivative for p = 0.01. 

(Note the change of vertical scale.) 

2. (a) The spectrum The dXmped SLAC derivative for the case p = 0.01. 

-- 

(L=2N+l= number of sites) 

(b) The spectrum of the damped SLAC derivative for the case p = 0.002. 

Note the shrinkage of the spurious region. 

(c) The spectrum of the damped SLAC derivative for the case ~1 = 0.002. 

3. Fermion loop graph encountered in the computation of the current-current 

correlation function. 

4. fermion loop encountered in computation of current-current two point func- 

tion 
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i 

. I  

Table I 

-Region ’ Contribution 
2 - Usual continuum result + 0 5 

2 -?r u+$<k<-$ 
O 0 

-E 
P + Obu) 

<k-c;-i-q from &i/u limit 

?r- Il. E-q<k<:-% r, O(P) 

-&- - 



i Table II 

Label Region Number 

of States 

S Spurious n=O -.!I u+;~k<-~+~ 6-l 

N Normal n=O -t+ $ < k 5 I(1 - &‘i) - q O(L/u) 

S Spurious n=O -;(I-@)-q<k<;-s-q 6-l 

S Spurious n= -1 ~+;-q5kF~(l+@)-q 6-l 

U Umklapp (normal)&= -I-. :(I + &i) - q < k 5 I(1 - &Ii) (qL/r) 

S Spurious n= -1 z(l-,/jZ)<ksE-i 6-l 



Table III 

Type of kegion ’ 

kz[-k,) kz 1 Order of Dominant Contribution 

aNIN q2 s da cr(1 - cx) ln[(cr(l - cx)q2 + m2)/m2] 

u I u lb I !13 a 

NISISI 
SJSISI (P)3’2 q3 a 

&13 a N I s Id 

slulul P q3 a 



TABLE CAPTIONS 

_. 1. Contributions to the current-current correlation function in l+l dimen- 

sions given by the next-nearest neighbor derivative for & < qu < &i. The 

contributions listed are the dominant terms in the limit a --+ 0, L -+ 00 

with p = (62) and 6 held fixed. 

2. Regions of momentum space treated separately in calculating the current- 

current correlation function in 3+1 dimensions using the damped SLAC 

derivative for rfi < qu. 

3. Dominant contribufiio”ns to The current-current correlation function in 3+1 

dimensions (three times subtracted) given by the damped SLAC derivative 

in the limit a + 0, L -+ 00 with p = S(U/L)~, and 6 held fixed. 
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