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ABSTRACT 

We analyze canonical measurements involving momentum and position and 

show that they require a finite duration. A formalism that we have developed 

for a realistic description of quantum measurements is generalized to the multi- 

time case. This enables us to derive rigorous and unambiguous time-energy 

uncertainty relations. For a free particle, we find that T6H 2 f, where 6H 

is the variance in the measured values of energy and T is the duration of the 

measurement as given by an external clock of arbitrarily high accuracy. On the 

other hand, we find that any system, when used as a clock, obeys (St)(GH) 2 Q, 

where 6t is the variance in the values of time as measured by the system and 6H 

is defined as before. 
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Recently we presented a formalism for a non-idealized description of quan- 

tum measurement.’ Recognizing that information obtained in a quantum mea- 

surement is in general insufficient to determine the state of a system, we de- 

veloped the statistical mechanics of quantum measurements on the basis of a 

maximum uncertainty principle2 (Paper II). This principle was in turn inspired 

by an entropic formulation of uncertainty3 (Paper I) that adopts the information- 

theoretic entropy as a measure of uncertainty, and as such it is the expression of 

the principle of maximum entropy in the context of quantum mechanics. It was 

shown in II that the maxjxnum uncertainty principle implies the -standard von 

Neumann expression for ensemble entropy, and thereby provides a unified basis 

for all of statistical mechanics. 

. 

-- 
The above developments made no reference to time, as all measurements were 

assumed to refer to a common instant of time. For example, in the case of po- 

sition and momentum measurements which we shall refer to as “canonical”, we 

assumed the existence of a device capable of measuring momentum with a given 

resolution without further analyzing the nature and possible limitations of such 

a device. In this Letter we extend the formalism so as to explicitly describe both 

observables of the canonical measurement. This will in turn lead us to consider 

the occurrence of measurements at more than one time. We then arrive at a 

multi-time generalization of our formalism which enables us to analyze a num- 

ber of long-standing issues regarding the role of time in quantum mechanics in 

a rigorous way.* The main results obtained by means of this analysis are uncer- 

tainty relations between momentum and time (Statement A below), and between 

energy and time (Statements B and C). A related analysis of the quantum lim- 

itations on the accuracy of the second of a pair of position measurements of a 
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free particle, recently discussed in the literature in connection with gravitational 

wave detection using laser interferometry, is presented in the following Letter. 

We start our analysis by examining the basic, operational meaning of time. 

Generally speaking, time in a dynamical theory is a parameter that marks change; 

to every (closed) system a Hamiltonian operator fi may be assigned which deter- 

mines changes in measured values of the observables of the system by means of 

the fundamental dynamical equation di = i #, i dt. Obviously, this paramet- [ 1 
ric description may be rendered coordinate-free by comparing dynamical rates 

directly, thereby removiw11 reference to the parameter time. Similarly, time 

is itself defined and measured self-consistently on the basis of the fundamental 

dynamical equation. Clearly, time as such has no independent status in dynam- 

its, and any statement regarding time must ultimately be predicated on observed 

changes in the measured values of the properties of the system. Since information 

on changes can only come from comparing data at different times, the necessity 

of multiple time measurements becomes evident.5 

- 

We are thus led to characterize a general quantum mechanical measurement 

as entailing observables AV (tr), where u labels different observables; and r labels 

the times at which a given measurement is performed (see Paper II for notation). 

We recall from Papers I and II that the measurement of an observable i is in 

general accomplished by means of a measuring device DA which entails a par- 

titioning of the spectrum of A into a number of subsets CY~, called bins, with a 

corresponding decomposition of the Hilbert space onto orthogonal subspaces Mf 

with associated projection operators i;:. The measured data are then summa- 

rized in a set of probabilities, A Pi , for finding the outcome of the measurement 

of 2 to be within the bin CE~. We also recall from Paper II that in general the 
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i measured data are not sufficient to determine the state of the system (which is 

specified by a density matrix a).; using the maximum uncertainty principle, we 

proposed that i? be determined by maximizing the ensemble entropy -tr 3 In p^, 

subject to the constraints imposed by the measured data, Pi” = tr a[ 8. 

The novel feature here is the occurrence of non-simultaneous constraints. 

However, these may be simply expressed as Pi; s Piv(tF) = tr ;ii”(tF)$ , where 

ay(t;) = a+(q) -v h zi U(tr) . The evolution operator fi is defined as usual by 

(2/&)6(t) = &f?(t), with 6(O) = 1 . (In the absence of a time label, the 

reference time t = 0 is to-bzunderstood.) The density matrix p^ is-now given by 

- C Xrr *r (tr) 1 , (1) uir 
following Eq. (3) of Paper II. The partition function 2 and the Lagrange multi- 

pliers X are given by tr i? = 1 and Pi; = (-a/axiy,)ln 2. The multipliers are con- 

strained to be real by the hermiticity of 8. Note also that since j?(t) = 6(t)@+(t), 

j(t) may be obtained from Eq. (1) by everywhere replacing t; by t; - t, as ex- 

pected from time translation invariance. It is also worth noting here that t enters 

the above expressions through the evolution operator 6(t), and that the set of 

6(t) form an Abelian group which is parametrized by t (cf. earlier remarks 

concerning the meaning of time). 

Questions regarding time may now be answered on the basis of Eq. (1). In 

the following application, we shall apply Eq. (1) to the simple case of a free 

particle of mass m and Hamiltonian fi = g2/2m whose state is measured’ by 

means of two position measurements at times tl = -T/2 and t2 = T/2. We shall 

see below that this measurement is in fact equivalent to the canonical (position 
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and momentum) measurement considered in I and II. We assume that the best 

resolution available for position measurements is A (see Ref. 7 in II), correspond- 

ing to the bin arrangement crf = [(i - 9) A, (i + k) A] , i = 0, f 1, . . . The 

density matrix that results from this measurement is, following (l), 

CL Xf ?ii” (-T/2) + Xi+ *i” (+W) ] , (2) 
i 

where, as before, PiF = (-a/cYA~) In 2 are the probabilities obtained from mea- 

surements at times F T/2 respectively. Every physically realizable set of PiF -A- .- - 

(equivalently, every set of real XT) will determine a state specified by p^. Our 

task below consists in showing that certain uncertainty products involving T, 

_- which is the duration of the measurement, cannot be reduced below a certain 

minimum value. 

To arrive at uncertainty relations involving T, we first note that the case of 

T = 0 actually corresponds to a single position measurement, a case known 

to fail as a measurement of state (since tr p^ diverges; see II). Therefore, for a 

measurement to yield a physically acceptable 6, we must have T > 0. With 

T > 0 fixed, our first task will be to determine the minimum value of 6p = 

[tr $fi2 - ( tr fip)“] 1’2 as XT are varied over all possible (real) values. We shall 

refer to the states /; resulting from these variations as the set of preparable states 

(preparable, that is, by the device described above). 

Suppose the minimum we are seeking is achieved on 8,. Then because 6p 

-t even under ‘?, it will also be achieved on j3: = ? j3, I , where ? is the 
4 (antiunitary) time reversal operator defined by ii-27 4 = 2 and ?$T = -8. 

On the other hand, iii: (-T/2) it = +t (+ T/2). The latter, together with 
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i (2), shows that fiT can be obtained from 3 by merely interchanging XT and xc, 

-7 - as one should expect on the basis of time reversal invariance. Hence p is a 

preparable state if 8 is. Moreover, the state p^o = (cos2 0)s + (sin2 fl)aT will 

also be preparable since $0 is experimentally realizable as the given mixture of 

two preparable states 1 and ST. It then follows that if 3, minimizes Tbp, so 

will f (p^, + id). The latter is clearly a preparable and manifestly time reversal 

invariant state. We may therefore assume a, to be time reversal invariant without 

any loss in generality. 

An entirely analogous_ggument shows that j, may be assumed to be parity 

invariant as well. But then Eq. (2) indicates that for 8, , Xi+ = At (time reversal 

invariance) and XT = XTi (parity invariance). These two invariances then guar- 

antee that 6, will also be “Fourier invariant”, where the Fourier transformation 

f(T) is here defined by f(T)&+(T) = (T/2m)j and ?(T)jf+ (T) = -(2m/T)& 

Note that f(T) is a unitary operator realized by the kernel 3(TJs, z’) = (m/7rT)1/2 

exp[(2mi/T)zz’] in the 2 representation. 

Using the parity and Fourier invariance deduced above, we see that tr[p^,j2] = 

tr[p^,(2mZ/T)2] , so that (c5p)kin = f tr a, [fi2 + (2m/T)2%2]. Since the latter 

is simply the expectation value of a harmonic oscillator Hamiltonian in the state 

8, 3 we can conclude that (6~);~~ = m/T. For the free particle under discussion, 

anin = (I;2/2m)min = & . Thus we have 

Statement A: A free particle of mass m, whose state is measured during a time 

period T, will have a variance in its momentum no less than (m/T)li2 and a 

mean energy no less than &; that is 

6~ 2 (m/T)lj2 , (Al) 
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i 
T (ii) 2 f . (A4 

Note that the lower limits in (Al) and (A2) correspond to a pure state, namely a 

Gaussian with wavefunction exp(-mZ2/T) . Strictly speaking, such a pure state 

is inaccessible to actual measurements. 

Statement A is a momentum-time uncertainty condition. To find the anal- 

ogous result for energy-time, a lower bound for 6H = [(Z2) - (~)2] 1’2, the 

variance in energy, must be determined. Exploiting the Fourier invariance estab- 

lished above, we can write-@) = $ (j* + (2m/T)*?*), similarly for M2), and from 

these conclude that (6~~)~ = $ (6h+)2 + a(Sh-)2, where i* = fi2 f (2m/T)2f2. 

Now, it can be shown mathematically6 that (i?) > (2m/T)2. Since Fourier in- 

variance implies that (i-) = 0, we see that (6L) 2 2m/T, and consequently 

(6~~) 2 m/T. This yields 

__ 

Statement B: For the measurement described in Statement A, the variance in 

‘..-- energy will be no less than & ; or 

T 6H 2 l/2 . (B) 

Statements A and B above express fundamental limitations in the accuracy of 

energy (and momentum) measurements arising from the finiteness of the duration 

of the measurement. A tacit assumption in the above is the existence of (external) 

clocks of arbitrary accuracy (to measure T ). But as pointed out at the outset, 

time is itself measured by means of changes in non-stationary systems. Therefore 

any system can in principle serve as a clock, and a moment’s thought reveals that 

there is a reciprocity between the accuracy with which a system can measure time 
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i and the variance in the measured values of its energy. We now turn to a derivation 

of this relationship. 

Suppose an observable A of a system in a state 3 is used to measure time 

(e.g., spin of the cesium atoms in a cesium clock). The system is then a clock and 

2 is the chronometric property being utilized. Consider a reading of this clock to 

measure the time of some event. In essence, this corresponds to a measurement 

of i simultaneously with the event, and mapping’ that value onto a correspond- 

ing value of time according to the equation of motion A(t) = tr a(t Now the 

measurement of A will yield a distribution described by the probability function -4.. - 
P(A), where P(A)dA = tr jS(t)iiA(dA), with iiA(dA) denoting the projection op- 

erator onto the spectral interval dA . The operator iiA(dA) is well-defined when 

A is self-adjoint. Clearly, the distribution in the values of A induces a correspond- 

ing one in the values of t in the usual way, namely, P(t) = [dA(t)/dt] P[A(t)]. 

With P(t) in hand, we can define (6t)2 = j’dt P(t)(t - q2, where f= s dtP(t)t. 

Alternatively, we find (St)2 = $ dAP(A) [t(A) - t”], where t(A) is the function 

inverse to A(t).’ Relating P(A) back to fi, we arrive at a remarkably simple, and 

intuitively plausible, result: 

(6t)2 = tr p^(t) [t(A) - f]” . (3) 

It should be noted that the variance (6t) is a joint property of the state of the 

clock, 8, and the chronometric observable A (together with the device used to 

measure 2). 

With Eq. (3) at hand, we can use the generalized Heisenberg inequality to 

conclude that (6t)(6H) 2 $ 1 tr j(t) [z, t(d)] 1; this lower limit will be denoted 

by $ X. Note that X is simply the rate of change of the operator t(A) in 
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i the state c(t). Our final task, then, is to minimize X by finding the optimal 

chronometric observable & . However if & is to give rise to an extremum of X, 

the first-order change in X caused by a change in 2 must vanish.This standard 

condition requires that [g, D(A)] = 0, where D(A) = d(A)/dA. The vanishing 

of the commutator in turn forces 2 to be a function of &, unless D is the trivial 

function D(A) = D 0, where DO is a constant. However, if 2 is a function of 

ii, dA(t)/dt ‘11 wl vanish, and A will not serve to measure time, let alone minimize 

X (instead, it will maximize it). This leaves D = DO as the only choice, which 

in turn implies that A(t) is a linear function of t; with no loss in generality, -4.. - - 
one can set A(t) = t. Thus we have the result that the optimal chronometric 

observable & (if it exists) is characterized by the condition t = tr b(t)&. The 

__ corresponding value of X is easily seen to be unity, which therefore implies 

Statement C: The variance 6t in the values of time measured by means of a 

system used as a clock can not be reduced below (2 bH)-l, where 6H is the 

variance in the energy of the system; in other words 

@)(6H) 2 f . (Cl 

It is worth emphasizing that the above proof does not require the existence of 

the optimal chronometric observable &. Indeed, the fact that & does not in 

general admit a (well-defined) canonical conjugate* shows that t(A) does not 

exist in general. Nevertheless, the energy of a quantum system does have an 

uncertainty conjugate which is time as measured by the system itself. 

We conclude with a few remarks: (a) The uncertainty relations A, B, and 

C are consequences of the canonical commutation relations and do not have an 

independent status. (b) While the lower limits in Al, A2, and C are greatest 
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lower bounds, the proof we have outlined in Ref. 6 does not establish the same for 

B. In any event, actual experiments impose further, often more severe, restric- 

tions arising from finite resolutions, etc., with non-trivial consequences. Papers 

I, II, and the following Letter9 illustrate examples of these. (c) Bohr’s statement 

of time-energy uncertainty relation essentially corresponds to Statement B (cf. 

discussions relating to Einstein’s photon box experiment*). (d) A time-energy un- 

certainty condition first presented by Mandelstam and Tamm* and subsequently 

questioned and discussed in the literature is usually considered to be the only 

existing one derivable from quantum mechanics. 8 Notwithstanding a bewildering - --c - 
variety of interpretations for it in the literature, the Mandelstam-Tamm result 

resembles our Statement C more closely than it does A or B. (e) Statements A 

__ and B, derived for free particles, obviously hold also for a bound particle if T is 

sufficiently small in comparison with the time scale relevant to the bound state 

in question. 

This work was supported in part by a grant from the California State Uni- 

versity, Sacramento, and by the Department of Energy under contract No. DE- 

AC03-76SF00515. 
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