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Abstract 

This is an elem&ary introduction to the classical and quan- 
tum mechanics of a single bosonic string, and to some aspects 
of its supersymmetric and heterotic extensions1 

-- 1. Introduction 

-..-. 

This last year we have witnessed a dramatic revival of interest in string the- 
ories. It followed the remarkable observation of Green and Schwarz, “I that gauge 
and gravitational anomalies miraculously cancel in a theory of open and closed 
superstrings with SO(32) as the gauge group. Here, then, is an aesthetically pleas- 
ing theory with a rich enough spectrum to potentially encompass all known phe- 
nomenology (including gravitational interactions),“I and for which no one has yet 
been able to demonstrate an inconsistency. We might, in particular, for the first 
time have a consistent theory of quantum gravity. This should by itself suffice as 
motivation to further pursue this mathematically rich and largely unexplored di- 
rection. It’s nevertheless, fair to say that not only the phenomenological merits,131 
but the very predictive power of string theories’41 remains at present questionable. 

In these two lectures I will discuss the most elementary and old-fashioned 
aspects of the classical and quantum dynamics of a single string. Rather than 
a review, I would call it a preview of the several thorough reviews that already 
exits.‘*-” My hope is to demystify some of the most common buzz words of string 
theory, in preparation for the more technical talks during the last week of this 
Schcol. In Section 2 I discuss the classical dynamics of a bosonic string. In Section 3 
I discuss its quantization, and the emergence of a unique critical dimension of space- 
time. Finally in Section 4 I briefly consider its supersymmetric extensions, including 
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i the heterotic strings,“’ and the emergence of two unique gauge groups. This is the 
only material in these notes that is less than ten years old. 

.I 2. Classical Relativistic String”” 

The classical trajectory followed by a free relativistic particle from (space- 
time) point A to point B is obtained by extremizing an action-functional over all 
possible time-like curves zp(r) between A and I3 (see Fig. 1). The simplest choice 
for an action is the geometric length of the trajectory+ 

S= -+i (F $)1’2 

which is invariant under arbitrary_ reparametrizations zfi(r) + #(F(r)). Partic- 
ularly convenient is the uni&peed parametrization where (dxp/di)(dxp/dr) = 1, 
and the equation of motion takes the simple form 

-- 
d2xp 
--j-p0 

showing that the classical trajectory is a straight line. Such a parametrization is 
always possible, provided the trajectory is time-like, that is (dxp/dT)(dx,/dT) > 0 
everywhere. 

-..-. By complete analogy we can derive the classical mechanics of a freely moving 
relativistic string by extremizing the invariant area of its trajectory,“11 which is now 
a two-dimensional “world-surface” x~(o, 7). In what follows we shall also use co 
and c1 in place of r and u respectively. The world surface is locally approximated 
by a Minkowski plane spanned by a time-like vector 9 s LW/dr and a space-like 
vector x’p c dx~/&r as shown in Fig. 2. The distance squared between two points 
on the surface with coordinates cQ and ca + dca is 

which defines the “induced-metric” 

sap= (,t: y) (24 

Using elementary Minkowski geometry we can calculate the area of the infinitesimal 
parallelogram of Fig. 2: 

t Our convention for the space-ti.:? z-Ark +‘” is (+I, -1,. . ., -1). 
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Fig. 1. Typical trajectory 
of a point-particle, over which 
the action should be mini- 
mized. The velocity dxp/dT 
must lie everywhere in t& 
forward light-cone. 

5355A2 

Fig. 2. A typical string trajectory. It can 
be locally approximated by a Minkowski 
plane spanned by ul- = ipdr and uq = 
x’pda . 

-- Area (ua,u,) =, Iuo.llu,lsinhB = Iu~llu71 m 

= [(UC7 * WI2 - uz ~31 = (-det g)lj2 da dT 

The Nambu action”” for the string is proportional to the total area of the world 
surface 

S,-1 
47ra / du dr (-det g)‘i2 (2.2) 

where CY is called the Regge slope, has dimensions of area and we shall here set it 
equal to l/2. That det g 5 0 is guaranteed by the fact that the surface is everywhere 
time-like. 

The Nambu action is invariant under non-singular reparametrizations of the 
surface 

We are thus allowed to impose two gauge conditions, or functional constraints; a 
particularly convenient choice is to make the tangent vectors 3‘ and x’p everywhere 
orthonormal up to a scale factor: 

kP x; = 0 
$2 + 2’2 = 0 

(2.3a) 

(2.3b) 
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so that the induced metric becomes conformally flat 

1 0 
gap = i2 4 1 _ = eQ - 

0 -1 
nap 

We shall refer to Eqs. (2.3) as the (Lorentz) covariant gauge. In terms of c* = 
(so f c’) we can rewrite them as: 

(c)+x)2 = (a-x)2 = 0 P-4 

which makes it clear that they leave a residual invariance under reparametriza- 
tions of the form c+ ---) t+(<+) and c- + f-(<-). In Euclidean parameters 
(SO -+ i<O, c+ --) z, c- ~--) Z) this residual symmetry is the conformal groups of 
all menomorphic (and antimenorphic) transformations. 

Now using Eqs. (2.4), we can rewrite the Nambu action 
-6. - . 

/ d<+ d~-(c3+xp)(a-xp) P-5) 

so that the string coordinates ~9‘ satisfy the simple wave equation 

a+&# = p - x”P = 0 (2.6) 

In what follows we will restrict ourselves to closed strings, meaning that the xfi are 
periodic in u with a period that we set equal to K. For open strings the requirement 
of a stationary action would have lead to the edge condition x’pl string = 0. 

endpoints 

Now the most general solution to the wave Eq. (2.6) on a periodic 0 < CT < T 
strip is 

xL”=(f+P~. 7 + C g a[ e-2in(r-a) 

n#O 

+ 1 ; &; e-fin(r+cr) 

n#O 

P-7) 

where qp is the initial center-of-mass position of the string, Pp = $ JOT da 9 is its 
conserved total momentum (as can be easily seen by using the Noether theorem 
for an infinitesimal translation), and the amplitudes of the left- and right-moving 
modes obey the reality conditions: 

It still remains to make sure that the gauge conditions (2.4), which have been used 
to arrive at the wave-equations of motion, are satisfied. After some straightforward 
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algebra, they can be written in the following form: 

. I  

(2.8a) 

Conditions (2.8) play a central role in the theory of strings. To better under- 
stand their meaning, note that LN is the generator of the infinitismal menomorphic 
transformation* 

which leaves the free-field 3Qion (2.5) invariant. This-can be checked directly by 
use of the Noether theorem. A less direct, but useful for what follows method, is 
to show that the LN’S obey the infinite dimensional algebra of the two-dimensional 
conformal group. Indeed, the canonical Poisson brackets for the free field theory 
(2.5) read 

{ Pp(a, T), x”(u’, T’)} IT+ = -npv . S(a - a’) (2.10) 

where Pp E -$$ = $3‘ is the momentum density. These can be equivalently 
rewritten in terms of the normal-mode oscillators: 

-X9 a;) = {CK, &h} = --inp”. n . Jm,+ (2.11a) 

{P”, q’) = -nlru (2.11b) 

Thus, for any two functionals A and B of the string coordinates, we have 

+iC nag $ 
n#O n -w 

One can then easily deduce that 

{LN,hf} = i(N - M)LN+M (2.1.2) 

with a similar expression for the LN. That this is indeed the algebra of the conformal 

* We jump from the Minkowski to the Euclidean notation freely, aa this should cause no co;lfssioil. 
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group follows by commuting two infinitesimal transformations of type (2.9) 

- (( Z+cN.zN+l) +Qf(Z+CNZN+’ 
= ENeM - (N - M)ZN+M+’ + o(C3) 

We can now understand the meaning of conditions (2.8). The string coordi- 
nates can be made to obey the conformally invariant wave equation in two dimen- 
sions; since however this conformal invariance is part of the original reparametriza- 
tion invariance (i.e. gauge symmetry) of the string, it can have no physical meaning. 
Thus, its generators LN ati-&N must be set equal to zero. Note in particular that 
LO = LO = 0 leads to 

. 

(2.13) 

which expresses the effective mass of the string in terms of the amplitudes of oscil- 
lation modes. 

‘..-. 

It is of course possible to solve the conditions (2.8) explicityly, or, put differ- 
ently, to completely fix the residual invariance under conformal parametrizations, 
by setting the parameter r proportional to some string coordinate 

np xp = (n. P)T (2.14) 

It is convenient to choose a light-like vector 

np G 1 (l,-1,O ,..., 0) 
fi 

and the notation A* = -&(A” f A’) and x = (A2, A3,. . . , AD-l) = {A’} for any D- 
vector APL. Then the only independent degrees of freedom of the string are q-, P+ 
and the “transverse” oscillators ai and ?;‘, (including ai = 66 = iPi) since 

q+ = a+ = c;t = 0 n for n # 0 (2.15a) 

and the conditions (2.8) yield 

(2.15b) 
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1 O” 
ii; = p+ c ZN-n ’ & (2.15~) 

n=-00 

Note that by setting N = 0, we find that only transverse oscillations contribute to 
the effective mass. Equations (2.15) together with (2.7) give a complete description 
of the classical dynamics of a relativistic string. 

3. Quant izat ion: The Critical Dimension 

-- 

As is well known, the symmetries of a classical system are not automatically 
preserved upon quantization. In can_onical quantization operator ordering problems 
may forbid the implementatiz-of the algebra of symmetry-group-generators. In the 
functional integral approach, the Noether current of the symmetry is not necessarily 
conserved due to ultraviolet divergences that require the introduction of a regulator. 
We then say that the corresponding symmetry is anomalous. As we will now see, 
the global Loventz invariance and the local reparametrization invariance of a string 
can be both preserved at the quantum level, without introducing extra degrees of 
freedom, only at a special number of space-time dimensions, namely D = 26. 

‘..-. 

There are two different ways of quantizing the classical string. We shall 
briefly describe them both, even though they are totally equivalent at the critical 
dimension, because they offer complementary views that are particularly useful 
given our present incomplete understanding of the theory of strings. A historical 
analog is that of spontaneously broken gauge theories, for which unitarity is manifest 
in one gauge, and renormalizability in another. 

(A) Light-cone quantization 

The starting point here is the completely fixed parametrization, defined by 
Eqs. (2.14) and (2.4). We then postualte canonical commutation relations, accord- 
ing to the rule 

{A, B) * $4, B] 

only for the independent variables q-, P+, & and &. Explicitly 

[al, a&] = [iii,, zi,] = +@j . n .6 m,-n (3.la) 

[P+,q-] = +i (3.lb) 
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The Hilbert space can be constructed by starting with a ground state, annihilated 
by all positive-frequency oscillators, and characterized by some D-momentum p? 

ai,l0,p) = iii[O,p) = 0 cn ’ 0) 

qo, P> = PYO9 P> 

Negative-frequency oscillators act to create excited states. Note that unlike con- 
ventional field theories, where the oscillators are labelled by the momentum in real 
space, here they are labelled by the frequency of the excitation in the direction 
along the string. This frequency is nevertheless related to the invariant mass of 
the corresponding string state, by means of Eqs. (2.15b) and (2.15~) which we can 
rewrite in the form 

= c ii-, * Z+n - OLO = c 2-n ’ Z+n - QO 
n>O n>O 

(3.2) 

We have here normal-ordered the oscillators so that positive frequencies ap- 
pear to the right of negative frequencies, and have introduced the constant cro 
expressing the effect of zero-point oscillations 

-.-. O” 1 
CYO = (D - 2) c -gz 

n=O 

The sum is of course formally infinite, but we can calculate it by introducing a 
cutoff and looking for the cutoff-independent finite piece. This is justified because 
a change in the cutoff can be compensated by a resealing of the parameters of the 
world surface, that should not affect CYO, which is the physically observable mass of 
the lowest string state. In the “heat-kernel” regularization we find 

so that 

aoJD-2) 
24 (3.3) 

The reader can verify that the same result obtains in any other regularization, for 
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instance: 

o:o = lim 00 1 
ZT.: 

--8 
8-i-l 1 5" 

This is of course completely analogous to the Casimir effect of quantum electrody- 
namics: the cutoff independent piece of the zero point energy that scales appropri- 
ately with cavity size, is unique and experimentally observable. 

We now go back to the construction of the Hilbert space. First we note that in 
view of the commutation relations (3.la), and the hermiticity property ai,” = a<,, 
all states have positive definite norm; the price we pay, however, is the loss of 
manifest Lorentz invariance. Given that left- and right-moving modes must occur 
in equal numbers [because of Eq. (3.2)], the first excited state is a<i ?L<i IO,p), and 
ha,sama,ssL@=l-- 8 24 * But the only spin-2 particle (or 2-index symmetric 
field) with only transverse degrees-of freedom is the graviton, which is massless. 
Thus, if our string theory is-&- be consistent with Lorentz invariance, we must have 
O=l-v+D=26! 

It is of course also possible to arrive at the critical dimension by a more direct 
argument, namely by explicitly calculating the algebra of Lorentz generators 

r 

ML“’ = L 
27r I 

da (x“ 2’ - x”P) 
0 

The ordering of operators in MpV is completely fixed by demanding hermiticity; 
the only ambiguity is the constant cxo in the equation for a; = iP-, which we can 
leave undetermined. A lengthy but straightforward calculation then shows”” that 
the commutator [M’-, Mj-] h as anomalous pieces that vanish if and only if D = 26 
and 00 = 1. 

In conclusion, the Hilbert space of the quantum string in the light-cone gauge 
is manifestly positive-definite, but Lorentz invariance is only restored at D = 26. 
Note also that the lowest lying state has a negative mass, (iM2 = -1) i.e. it is a 
tachyon. This is of course a serious problem which will find its resolution in the 
supersymmetric versions of the bosonic string. 

(B) Covariant quantization 

In order to keep Lorentz invariance manifest, we can treat all oscillators as 
independent variables on equal footing, by postulating the canonical commutation 
relations 

[a:, ak] = [ifig, ?;$I = -npv . n. 6m,-n (3.4a) 
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[P”, f] = +inpv 

. I  We must then impose the vanishing of the conformal generators 

LN=-; 2 P z 0) 
n=-co 

LO=-: P”-C a!, a+, p - a0 
n>O 

(3.4b) 

(3.5a) 

(3.5b) 

-- 

(and similarly for i’s which we don’t mention explicitly throughout most of this 
paper). Operator ordering ambigulities enter only in the definition of Lo, which we 
have written as a normal-ordered piece that annihilates the vacuum, plus an arbi- 
trary constant. If one adopts the symmetric definition Lo = -k cFrn a!!, a+, p, 
then cro = 9 as before since the zero-point oscillations of each time-like mode a:, 
exactly cancel those of a corresponding space-like mode, say a;. 

‘..-. 

Keeping for the time being are arbitrary, we can calculate the quantum al- 
gebra of the conformal generators. We may expect a difference, with respect to 
the classical algebra (2.12), only in the commutator [LN, L-N], since Lo may not 
appear with the correct operator ordering. Evaluating this commutator explicitly, 
using Eqs. (3.4), we find 

iLN, L-N] = -N 2 : a!!, a+, ,, : +f 2 n(N - n), 
n=--03 0 

= 2NLo + 12 D(N” -N) + 2Nao 

where double dots indicate normal ordering; thus the full algebra takes the form: 

[LN, LM] = (N -M) LN+M + ~N-44 (gN3+ (~cY~--;) N) (3.6) 

The presence of the C-number anomaly may lead us to think that the conformal 
reparametrization invariance of the string is broken at the quantum level in any 
number of dimensions. This is too naive, but for the moment let us simply point out 
that the anomaly certainly forbids our setting all LN = 0 as operator equations. We 
will therefore demand the weaker conditions, that the positive and zero-frequency 
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generators annihilate all physical states 

LN Iphys) = 0 (N L 0) P-7) 

which suffice to ensure that the expectation values of all generators in any phys- 
ical state vanish. Equations (3.7) are called the Virasoro1’21 gauge conditions; in 
particular, LO Iphys) = 0 is the mass-shell condition for the corresponding physical 
state. 

The Hilbert space is of course constructed by applying negative-frequency 
oscillators on the vacuum, IO,p), which is a physical state of mass iM2 = -a~. 
Due to the indefinite metric in the commutators (3.4a), however, some of these 
states will have negative norm. We must then make sure that no such negative- 
norm states exist in the physical subspace defined by the Virasoro gauge conditions. 

-A- - 
To simplify matters notice that states of the form 

. 

M: . . . ai:) (ii:, . . . it:,) 10,~) 

form an orthocomplete basis of the unconstrained Hilbert space. They can be writ- 
ten as the product of one “left-moving” state constructed out of the oscillators aK, 
an one “right-moving” state constructed out of the ?it’s. Furthermore, the Virasoro 
gauge conditions (3.7) apply only to the left-moving piece, while the correspond- 
ing conditions LN Iphys) = 0 apply to the right-moving piece. It is then easy to 
convince oneself that the physical Hilbert space also has an orthocomplete basis 
constructed out of products of one left- and one right-moving state, and it will 
therefore suffice to show the absence of negative norms in each sector separately. 
This simple observation, that the left and right sectors of a closed string separate 
naturally, is the basis for the beautiful construction of the heterotic string.[” Note 
also that one of the sectors alone, forms the complete Hilbert space of an open 
string. 

Now, the first excited left-moving state is 

I4 = ccr a-1 cc IO, P> 

and has a norm (c/c) = -&‘Q and mass fM2 = 1 - cyu. The constraint L1 1~) = 0, 
on the other hand, gives the transversality condition ESPY = 0, which shows that c 
cannot be time-like and hence (EIE) 2 0 as it should. Furthermore, if cue = 1, the 
momentum Pp is light-like, and there exists a longitudinal state (cc” = P”) with 
zero norm. 
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At the next mass level (:M” = 2 - a~), the most general state is: 

lGe> = -$ (cp f-2 p + WV a-1 p a-1 y) 10,~) 

. I  

with norm 

(+9) = -4 cp + epv e,, 

and we now have two non-trivial Virasovo conditions: 

(3.8) 

L2I4 =o=wp-e;=o 

where Pv is a symmetric tensor. Going to the rest frame, where -6. - - 

pp= ~ii@z&o,...,o 
( > 

-- 
we can solve for cp and go0 and then express the norm of the state [Eq. (3.8)] in 
terms of the remaining independent variables: 

(cle) = C(giiJ2 + (2(2 - ao) - 2) C(eoij2 

i#i i 

where i and j run from 1 to D- 1. The first term on the right-hand side is manifestly 
positive; the second is non-negative provided 

(3.10a) 

Finally one can easily show that the third takes its minimum value when 011 = 
622 = . . . = gD-1 D-1; hs t is minimum value is non-negative if 

D < t4c2 - Qo) + 1)2 + 1 
- (2(2 - ao) - 1) 

(3.10b) 

When ~10 = 1 we must have D 5 26; here then reappears the critical dimension 
which we have found in the light-cone gauge from a completely different route. 
At the marginal values D = 26, ao = 1 (which, incidentally, are consistent with 
the symmetric definition of LO that yields CYO = $$, as already discussed), one 
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.I 

clearly has in addition to positive-norm states, several zero-norm states. Much like 
the longitudinal photons in quantum electrodynamics, these states can be shown 
to decouple, leaving a smaller space of physical excitations. We will not attempt 
to prove this here, nor shall we show that conditions (3.10a) and (3.10b) actually 
guarantee the absence of negative norm states at all higher mass levels as well.‘131 

Let us simply summarize, by saying that in the covariant quantization D = 26 
appears as the marginal dimension for which the physical Hilbert space becomes 
non-negative definite, and at which, furthermore, a large number of zero-norm states 
actually decouple from the theory. These results have been in fact understood 
in a different, very elegant way, proposed by Polyakov.‘“’ Starting from a first 
order formulation of the classical string action, he showed how covariant gauge 
fixing requires the introduction of Fadeev-Popov ghosts. When their contribution 
is taken into account, the c-number anomaly in the conformal algebra (3.6) cancels 
precisely in 26 dimensions, signaling the restoration of the string’s reparametrization 
invariance at the quantum&&. Fer lack of time, we will not go into the details of 
Polyakov’s approach, even though they are at the core of several interesting recent 
developments. ‘15’ 

-- 4. The Semi-, Fully- and Doubly-Super Strings 

‘-1%. 

We will, instead, attempt a blitz-review of the N = l/2, 1 and 2 super- 
symmetric extensions of the bosonic string, whose phenomenological merits are, 
incidentally, inversely proportional to their number N of (world-sheet) supersym- 
metries. Let us recall that in the covariant quantization, the bosonic string can be 
considered as a conformal two-dimensional field theory, with the constraints that 
the positive-frequency conformal generators annihilate physical states. By anal- 
ogy, we can construct the Neveu-Schwarz-Ramond (N = 1) superstring’16”71 as a 
superconformal field theory 

with the constraint that superconformal generators annihilate physical states. Here 
the @ ‘ are hermitean (Majorana) two-dimensional fermions, that move freely on 

lrface, while the ra are the two dimensional Dirac matrices, which we the world SI 
take to be: 

70 = (; ;) ; 7l=(J y) ; 75=7071= (; -4) 
Passing again to the coordinates I* = co f r$, $2 = (q)+p we can rewrite 
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the action (4.1) as follows 

S = --& 

.I 
which makes it obvious that $1 are the right- and left-moving components whose 
mode expansions are 

with canonical anticommutation relations 

{~~~~~~ = {4i34&} = -Vpu 4a+m,O - 

The superanalytic tr&$ormations that leave the-action (4.2)-invariant (up 
to total divergences) are: 

w- = f(C) 

and 

(4.3) 

(4.4 

where c is an anticommuting Grassman function of the variable c- alone. There 
are of course corresponding antianalytic transformaions of the right-moving fields, 
which we will not write explicitly. Note incidentally that unlike the scalar fields xp, 
the fermionic fields $JP transform non-trivially under the conformal transformations 
(4.3). 

The superconformal generators are: 

and the generalized Virasoro conditions become 

LN Iphys) = GM Ipb) = 0 (KM20) (4.5) 

The subtraction constant ~0, which gives the mass of the string’s unexcited ground 
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. . 

state, depends on the boundary conditions we choose for the fermionic fields. It 
is consistent with their hermiticity, to choose them either all antiperiodic, as they 
wind once around the string, or all periodic. These two choices are called the 
Neveu-Schwarz1’71 and Ramond”~’ boundary conditions, respectively, and we will 
here consider them both. Note, incidentally, that other (twisted) boundary con- 
ditions are also permitted if one allows the global SO(l, D - 1) symmetry to be 
explicitly broken.“” 

For antiperiodic fermions we find: 

cyFs = imo(D - 2) 
O”l 

+ c - ne 
0 2 

while for periodic fermions: 

-- 

as expected, since the zero-point oscillations cancel in a supersymmetric theory 
between bosons and fermions. The critical dimension can be derived in precisely 
the same way as in the bosonic string, i.e. by demanding all negative norm states 
to disappear from the physic.al Hilbert space at the second massive level. One finds 
D = 10, so that the Neveu-Schwarz ground state is a tachyon with mass iM2 = - f, 
while the first excited state E p -l/2 lo&S (with P - $J’” tz = 0) is a massless vector 
boson in the open string case, and a graviton, an antisymmetric tensor and a scalar, 
when combined with the corresponding right-mover, in the closed string case. 

For Ramond boundary conditions, the ground state of the string must be 
degenerate, since the fermionic zero modes T/J,“, which do not change the mass of a 
state, must act non-trivially on it. In other words, the Ramond ground state must 
be a representation of the Clifford algebra of the zero modes: 

i.e. a D-dimensional Majorana spinor, which we denote by IcY,P)~. 

It turns out that a consistent theory of interacting strings can be constructed 
by putting together both the Neveu-Schwarz and Ramond Hilbert spaces, and then 
projecting out the states of even two-dimensional fermion number 

# Idw) = + Iphys) (4.6) 

This is called the GSO”” projection. In the Neveu-Schwarz sector it amounts to 
keeping only states with an odd* number of fermionic oscillators, for which iM2 is 

* For reasons that can be explained only by introducing the Polyakov ghosts, the Neveu-Schwarz 
ground state of a superstring has odd world-sheet fermion number. “” 
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an integer; in particular, the tachyon has been eliminated. In the Ramond sector, 
(-)F must anticommute with all zero modes t#, and is therefore proportional to 
the space-time chirality operator, so that (4.6) is a chiral projection. 

Hence, in the end, the massless right-moving states of the superstring are a 
lO-dimensional vector $E1,2 IO, p)NS and a Weyl-Majorana spinor (1 - (-)F) Icy, P)~; 
both have 8 physical degrees of freedom, so that the spectrum is space-time super- 
symmetric! For closed strings we should in fact combine the identical left and right 
sectors; what we obtain is the spectrum of N = 2 ten-dimensional supergravity.“’ 
This emergence of space-time supersymmetry is one of the beautiful features of 
string theories. It is actually an open and very interesting problem, to find a 
formulation in which both Lorentz invariance and space-time supersymmetry are 
mainfest. ‘ao’all 

-- 

Though mathematically beautiful, the closed superstring theory discussed 
above has little chance of describing the known low-energy phenomenology, since 
all its massless particles a;e-in the supermultiplet of the graviton: It would be 
easier to imagine interesting compactifications, if the theory already contained chiral 
fermions and a gauge group in ten dimensions. This can be achieved by putting 
appropriate sources at the endpoints of open superstrings which, as shown by Green 
and Schwarz,“’ can be consistently done only for the gauge group SO(32). An 
elegant alternative is the heterotic (N = l/2) superstring,“’ whose construction is 
based on the observation that the left- and right-moving modes of a closed string 
do not interact and can, therefore, be treated asymmetrically. Consider then a 
hybrid theory, whose left-moving sector contains the excitations c3-xp and T+!J~” of 
the ten-dimensional superstring, while its non-supersymmetric right moving sector 
contains in addition to the bosonic partners a+x p, 32 extra positive-metric fermions 
XT (a = l,... ,32). The number 32 can be explained if one notes that 32 free 
fermions are equivalent, in two dimensions, to 16 free bosons, so that the right 
sector contains the excitations of the consistent 26-dimensional bosonic string. 

‘-1%. 

Consistency of the interacting theory can, again be achieved by taking both 
Neveu-Schwarz and Ramond boundary conditions and then making a GSO projec- 
tion onto euen fermion number. This can in fact be done separately, for different 
groups of the x-fermions. If Np of those fermions are periodic, and all the rest 
antiperiodic, the subtraction constant eye is 

Qo = 
P - 2) NP + (32 - NP) _ 1 NP -- 

- 
-- 

24 24 48 16 

and hence the masses of right-moving states are given by iM2 = - (1 - g)+ 
integer. These can only match the masses of the left-movers of the superstring 
($M2 = integer) if Np = 0, 16 or 32, which leaves us with two options: 

(a) Put all 32 fermions in the same group. The massless right-movers then come 
entirely from the antiperiodic sector. They are ?lfr lO,p)NS and 
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&,2&,2 lo, P)NS- The latter transform in the adjoint of SO(32), so that 
when combined with the superstring left-movers they yield the spectrum of 
an SO(32) super-Yang-Mills, coupled to N = 1 supergravity. 

(b) Separate the -fermions into two groups of 16, say x’ and x’~. Apart from 
Gic4, lo, P)NS, the massless right-movers and their transformation properties 
under the symmetry group SO(16) x SO(16) are: 

X<I/Z xL1j2 IO,P)NS-NS : (120, 1) 

x!$p x!~,) IO,P)NS-NS : (1, 120) 

I%P)R-NS : (128, l) 

-6 I > dp NS-R : (,1, 128) _ 

_- 

where IQI, P)R-NS is the ground state for periodic x’ and antiperiodic x’j, and 
thus transforms as a (Weyl) spinor of SO(16), and similarly for Io’,p)NS-R. 
Now 120 + 128 can be combined to form the adjoint of the exceptional group 
Es. The spectrum of this heterotic superstring is therefore that of N = 1 su- 
pergravity coupled to & x Es super-Yang-Mills in ten dimensions. This model 
is the starting point for several, phenomenologically viable, compactifications. I31 

We will here quit, by suggesting an instructive exercise. One can consider 
complex string coordinates xp, and %dimensional Dirac-fermionic partners I+!+‘. The 
action (4.1) then has an N = 2 world-sheet supersymmetry which can be used to 
eliminate all negative-metric states.“al The reader could constructively review the 
material we have discussed here, by deriving the generalized Virasoro conditions, 
the critical dimension and the spectrum of this theory. 
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