
SLAC - PUB - 3901 

March 1986 

(T/E) 

TN, KN and KN Scattering: Skyrme Model vs. Experiment* 

MAREK KARLINER 
-C 

and 

MICHAEL P. MATTIS 

Stanford Linear Accelerator Center 

Stanford University, Stanford, California, 94305 

Submitted to Physical Review D 

* Work supported by the Department of Energy, contract DE - A CO 3 - 76s FOO 5 15. 



ABSTRACT 

_. 

-L- - - 

We present a comprehensive partial-wave analysis of the; processes rrN ---) &,I3 , 

KN + &B and TN + &., B in the 3-flavor Skyrme model, with c& an arbi- 

trary pseudoscalar-octet meson and B a h’ octet or g’ decuplet baryon. Overall, 

we find good, poor, and mixed agreement, respectively, between the model and 

experiment for these three types of processes. We pay particular attention to as- 

sessing the independence of our results from the details of the Skyrme Lagrangian. 

We also examine the effect of including a third light flavor on the linear relations 

between experimental TN + TN and rrN --) KA partial-wave amplitudes that 

are predicted by a-flavor soliton models of the nucleon. Although the emphasis 

throughout is on a detailed qualitative comparison with Nature, we also present 

Skyrme-model predictions for six processes such as TN -P KC* and EN + VC 

for which experimental partial-wave analyses are unavailable. 
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I. Summary and Outline 

In this paper we present a comprehensive partial-wave analysis of the pro- 

.- cesses TN --) t#+,, B , KN + c&B , and KN + c&B in the 3-flavor Skyrme 

model,lV6 with &,, denoting an arbitrary pseudoscalar-octet meson and B a 

1+ 
z octet or z 3+ decupl et baryon. As our approach to meson-nucleon scattering 

in both 2-flavor and 3-flavor soliton models of the baryon has been discussed in 

detail elsewhere, a fresh introduction hardly seems necessary (see Refs. 7-13 and 

also Refs. 14-15). Instead, this Section will serve as a summary of our principal 

results. We should, how-; underscore our two principal approximations: 

_. 

1. Our results are valid only to leading order in l/N,, where NC is the number 

of colors of the underlying gauge group; Ill 

2. Our group-theoretic formalism assumes unbroken SU(3)~avor;u2 further- 

more, our numerical phase-shift computations are carried out in the limit of 

massless mesons, i.e., exact chiral symmetry. 

In our work on the 2-flavor Skyrme model, we found excellent agreement with 

experiment for the mass spectrum of nucleon and A resonances7 (Masses of the 

nucleon and A resonances agreed on the average to within 8% of their experimen- 

tal values after optimizing the parameters jT and e that appear in the Skyrme 

Lagrangian, Eq. (1) b e ow; the results are summarized in Fig. lb in Section III.) 1 

However, given the severity of the second approximation above, we will refrain in 

the present 3-flavor analysis from making similar quantitative statements about 

the spectrum of strange baryons in the model. Such statements would be of du- 

fil See Section II of Ref. 8 for a detailed explanation of the large-N, approximation in the 
context of meson-baxyon scattering. 

g2 The opposite limit, corresponding to rn~ q m,, has been studied by Callan and Klebanov. l6 



bious value until a kaon mass is introduced. Instead, we shall concentrate here on 

the qualitative behavior of the .partial-wave amplitudes, and on patterns of size 

and sign alternation between amplitudes. Unlike mass predictions, such features 

are completely independent of the values of the Skyrme parameters fir and e: a 

different choice of parameters would not alter the shapes of the amplitudes, only 

their parametrization as a function of energy. 

We have located experimental data for 165 partial-wave channels17-42 cor- 

responding to the processes zN -+ TN , zN + rrA , rrN + qN , TN + Kh , 

=N-,KC,KN-,KN-,~N~KA,KN~KN-,KN~I~C,KN-,=~~, 

KN--+qA,KN-+zrC* andKN+KA. A detailed pictorial comparison to 

the Skyrme model is presented in Sections III-V. Several of these processes have 

been subject to more than one partial-wave analysis; in these cases we usually 

selected the most recent one to compare to the Skyrme model. This choice was 

not without repercussions: often there was serious disagreement between inde- 

pendent analyses, and a different selection would have modified the results of our 

comparison accordingly. We shall bring up differences between various experi- 

_. 

mental analyses when the Skyrme model sheds light on the issue. 

It is conventional to test models of the baryon spectrum by checking the 

signs of the various amplitudes against experiment. In view of the large number 

of channels involved in this study, we have summarized the results of this compar- 

ison in Tables I-XIII. In these tables, each inelastic amplitude has been assigned 

a + or - according to whether it first journeys appreciably into the upper or 

lower half of the unitarity circle, and a zero if this is unclear.n3 We have labeled 

da Our sign definitions differ somewhat from the traditional ones, whereby a + and - refer, 
not to the amplitude as a whole, but to its value at a resonance; specifically, they indicate 
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the channels in the standard fashion: rrN channels are denoted by J&J J whereas 

KN and KN channels are labeled by L1,2J, where L is the meson’s orbital an- 

gular momentum, and I and J stand for total isospin and angular momentum. 

For processes where the final baryon has spin-$ (Tables II, VII, XII and XIII), 

the initial and final meson angular momenta L and L’ need not be equal, but 

can differ by two; hence the notation LL’,,,,J or LLi,,J. 

In addition to signs, Tables I-XIII present numerical ratings from 1 to 4 

which represent our assessment of the degree of qualitative agreement between 

the Skyrme model and exptfrimed, with a “1” being the best and a-“4? the worst. 

The criteria we employed in arriving at such a score are the following: Does the 

Skyrme amplitude have the same general shape as its experimental counterpart? 

Does it point in the same ‘general angle in the unitarity circle? Are distinctive 

features (e.g., cusps, loops, repulsive behavior) mimicked correctly? Are the 

magnitudes of the curves comparable? Do the graphs share a + or - designation? 

To score a “1,” the answer must be “yes” to all of these questions, with sizes 

agreeing to within 30%. A “2” guarantees that the + or - assignments will agree, 

and that the shapes are similar, but the magnitudes can differ substantially (e.g, 

by a factor of 3 or 4); alternatively, the sizes might be in close correspondence 

while the shapes are rather different. For a “3,” the two graphs must lie in either 

the same or adjacent quadrants (so the signs can disagree); there is usually some 

additional feature of similarity, for example an energy range over which the shapes 

of the amplitudes are in rough correspondence, but on the whole the agreement 

whether the resonance occurs at the top (+) or bottom (-) of a circle. For resonant am- 
plitudes, our definition almost always coincides with the traditional definition as applied 
to the lowest-lying appreciably-coupled resonance in that channel; however, our broader 
definition allows us to characterire non-resonant (e.g., repulsive) amplitudes as well. 
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looks no better than random. For a “4,” the agreement is truly dismal; typically 

such graphs pointin opposite directions. The reader is encouraged to glance at a 

few plots chosen at random from Sections III-V in order to gain a “feel” for this .- 
(admittedly subjective) scoring system. 

TN processes. As is apparent from Tables I-V, the results for TN processes 

are, on the whole, surprisingly good. Elastic zN scattering as calculated in both 

the 2-flavor and 3-flavor Skyrme models (the two approaches differing even for 

non-strange processes) was examined previously. 7-15 In general, the S-flavor 

model constitutes an improvement over the 2-flavor model. However, in both 

cases there are serious discrepancies with experiment in the S and P waves, as 

reflected in the preponderance of 3’s and 4’s in these channels. The most severe 

of these is the failure of the model to reproduce the strongly resonant behavior 

observed in the Pri and P33 channels, associated with the Roper resonance and 

with the A, respectively. These problems are due to the fact that, in leading 

order in l/N,, certain states such as the Roper and the A are in fact degenerate 

with the nucleon, and hence could not show up as resonances above threshold. 

Thus, these are most likely failures, not of the model itself, but rather of our 

leading-order analysis. 

_. 

In contrast, for D waves and higher, with the exception of the 035, the 

agreement is quite impressive. The main source of disagreement in the high 

waves (L 2 4) is the overly large size of the Skyrme model curves, which is pri- 

marily due to the limited number of inelastic channels that we are allowing for 

bh=,B only); th is situation is improved when the Skyrme model is enlarged to 

the 3-flavor case.13 Significantly, both the 2- and S-flavor Skyrme models mimic 

the “big-small-small-big” pattern that characterizes the behavior of the four in- 
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Tables I-V. XN processes: Skyrme model vs. experiment. Inelastic channels are assigned a 
+ or - according to whether the amplitude first journeys significantly into the upper or lower 
half-plane, and a 0 if this is unclear. The values 124 represent the degree of qualitative agreement 
between the model and experiment, with a “1” being the best and a “4” the worst (see text for 
details). 
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Tables VI-XIII. KN and RN processes: Skyrme model us. experiment. See caption for Tables 
I-V. 



dependent experimental amplitudes {Lr,z~-r, Lr,z,5+1, L3,2~-1, L3,2~+1} for each 

value of pion angular momentum L > 0; for example, the Fr5 and 3’37 amplitudes 

take a much greater excursion through the unitarity circle than do the J’r7 and 

F35 curves. 7’8J3 We shall see this explicitly in Section III. 

For the inelastic processes IAN + 7rA , TN + QN , TN + KA , and IAN + 

KC, the sign agreement between the Skyrme-model and experimental amplitudes 

is, respectively, lOO%, 80%, 80% and 85%. Such numbers are certainly competi- 

tive with traditional algebraic coupling schemes such as SU(6), as well as with 

the nonrelativistic quark-~odel+although unlike the Skyrme model, which is a ., 

full-fledged dynamical model, these approaches concern themselves only with the 

behavior of the amplitudes at resonance energies. As in the elastic case, the 

_. lower partial waves in the Skyrme model are often in disagreement with experi- 

ment, whereas the F waves-which are the first not to mix with the skyrmion’s 

zero-modes-represent the model at its best. Clearly, a careful treatment of the 

zero-modes, which would enable us to trust our analysis in the lower partial 

waves, would be of the utmost importance. 

KN processes. The situation is quite the opposite for KN scattering 

(Tables VI and VII). The agreement for both KN + KN and KN -+ KA is 

dismal.n4 The reason for this is not hard to understand. KN processes occupy a 

special role from the point of view of the quark model, since resonances in these 

channels (unlike KN) cannot correspond to qqq, but rather qqqqq states. Not 

surprisingly, in Nature, the majority of amplitudes show no hint of a resonance, 

and are in fact repulsive (that is, curve clockwise). The existence of any such 

fi4 In light of the three-fold ambiguity in the experimental solution for KN -+ KA , we have 
not presented ‘scores” in Table VII; however, a comparison of the Skyrme model amplitudes 
to any one of these solutions would produce mostly 4’s. 
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resonances is still an open question, with the most recent analyses favoring such 

states in at least two channels. In contrast, there is nothing particularly “exotic” 

about KN scattering in the skyrmion approach, for reasons we shall discuss be- 

low. Consequently, most of the Skyrme-model graphs evince the usual resonant 

behavior: anticlockwise curves and Breit-Wigner peaks in the speed. In Section 

IV we shall speculate on whether the (apparent) existence of KN resonances 

in the real world might be construed as evidence for the soliton nature of the 

nucleon. 

KN processes. Finally, the_Skyrme model gives mixed results in describing 
-A- _ 

RN scattering (Tables VIII-XIII). On the level of individual graphs, the model 

works less well for KN than for TN scattering; this is perhaps a consequence of 

_. our having set W&K = 0, which is much more severe than setting m, = 0. Nev- 

ertheless, in certain important respects, the agreement is quite pleasing. Most 

notably, for the processes KN + KN and KN + 7rrC , the model successfully 

reproduces a pattern reminiscent of TN -+ TN that characterizes the four inde- 

pendent experimental amplitudes for each value of L: specifically, in the model 

as in Nature, the Per, 003, For, and Go7 amplitudes travel significantly further 

through the unitarity circle than -do their counterparts. We shall return to this 

“big-small-small-small” pattern in Sections V and VI. The sign agreement for 

KN--,?rC,KN-,~A,KN-+t7A,~N-,?rC* andKN+KAis65%,64%, 

67%, 67% and 55%, respectively. Agreement in the last of these processes is ex- 

tremely poor. 

It should be kept in mind that, for most of the processes summarized in 

. 
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i these tables, the experimental curves do not represent the data directly, but 

result instead from a multi-parameter fit of the differential cross-section to the 

squared sum of partial-wave amplitudes. Such a fit involves a complex, model- 

dependent and frequently ambiguous statistical analysis, or “solution,” of multi- 

body final states. (For example, 7rA must be disentangled from pN.) In fact, 

for processes with relatively low statistics, not only can two experiments differ 

substantially from one another, but two solutions of the same data can disagree 

(cf. Table VII and Fig. 7, for example). In light of this, it is noteworthy that the 

Skyrme model does best for the processes that are relatively well established (e.g., 

~rN+wN,nN-t?rA,rN -- -+ KN ), and worst for those that seem the least 

well understood (e.g., KN -+ KA and KN + KA ). It would be interesting 

to see whether, ten years hence, there will be any noticeable improvement in 
. 

agreement between the model and experiment for these latter processes. 
_. 

Before proceeding to the specifics of our analysis, we would like, once again, 

to express our wonderment that so much detailed structure of the meson-nucleon 

S-matrix-much of it in reasonable accord with Nature-can emerge from a 

simple meson Lagrangian with no explicit quark or nucleon fields. The moral is 

that this structure must be largely determined by the symmetries of the effective 

Lagrangian alone. (By this we mean, not just the familiar chiral symmetries, but 

also the peculiar “K-symmetry” characterizing hedgehog solitons, as reviewed in 

Appendix B.) It is surprising that effective Lagrangians have so much to say far 

beyond the “soft-pion” energy regime to which they are normally applied. 

The remainder of this paper is organized as follows. In Section II we review 

the formalism for meson-nucleon scattering in skyrmion models of the nucleon. 

Sections III, IV and V are devoted to a pictorial comparison between the model 
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and experiment for ?rN, KN and KN scattering, respectively. 

_.. 

a.-- 

In Section VI, which we consider the theoretical heart of the paper, we ex- 

plore the degree to which the .predictions of the Skyrme model, both successful 

and unsuccessful, can in fact be considered model-independent (i.e., independent 

of the precise details of the Skyrme Lagrangian, but based only on the familiar 

“hedgehog” form of the soliton, as reviewed below). In particular, we shall fo- 

cus on sign predictions for inelastic processes, and on the “big-small-small-big” 

and “big-small-small-small” patterns mentioned earlier. The question of model- 

independence is a crucialene; for, if the soliton approach to baryon physics is 

ever to be honed into an accurate calculational tool, Skyrme’s Lagrangian will 

eventually have to give way to a more realistic model involving many more low- 

lying mesons. In the course of our investigation, we shall discover what we believe 

to be the secret behind much of the Skyrme model’s success in describing the 

scattering data. As a consequence, we shall be able to delineate a large class of 

models which, we believe, would enjoy comparable overall success. We hope that 

this might usefully constrain the model-building efforts currently under way. 

In Section VII we leave the Skyrme Lagrangian behind, and concentrate in- 

stead on the assumption that the optimal low-energy effective Lagrangian of 

Nature possesses solitons of the same “hedgehog” structure as in the Skyrme 

model. It has been shown in the context of 2-flavor skyrmion physics that this 

assumption implies the existence of energy-independent linear relations between 

experimenhl TN + xN and IAN + ?rA partial-wave amplitudes. 8J5 In gen- 

eral, these relations are well satisfied by the experimental data, with certain 

exceptions in the lower partial waves.8 Section VII examines to what extent in- 

clusion of a third light flavor modifies these relations; we focus, in particular, on 
. 
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i the peculiar role played by the Wess-Zumino term. We shall find that all but one 

of these relations emerge virtually unscathed in the 3-flavor formalism. We also 

discuss some new linear relations designed to test the conclusions of Section VI. 

In order to make this paper relatively self-contained, Appendix A depicts 

some intermediate results of our numerical analysis, Appendix B contains a 

derivation of the S-flavor scattering formalism first presented in Ref. 12, and Ap- 

pendix C gives explicit formulae for the group-theoretic expressions we have used. 

Finally, Appendix D contains the Skyrme-model graphs for the six xN --+ q&B 

and TN + q&B processes forwhich an experimental partial-wave analysis in 
-c- - 

the resonance region has yet to be done, namely: nN + VA , TN + KC* , 

EN -+ VC , KN + qC* , EN + KZ and EN + KZ* . We very much hope 

that this paper will provide fresh impetus for such work. 

II. Basic Notions 

In order to pave the way for the detailed comparison that follows between the 

Skyrme model and experiment, this Section is devoted to a brief review of the 

meson-nucleon scattering formalism in soliton models. (The casual reader eager 

-for results should skip directly to Section III.) S ince we shall be contrasting the 

2- and 3-flavor versions of the Skyrme model in Sections III, VI and VII, we shall 

sketch both formalisms here. 

The Skyrme Lagrangian is given -by: ‘-’ 

C = 5 Tr d,UaPUt + & Tr[(a,U)U+, (c%U)U~]~ + LWZ 

with U an SU(2) or SU(3) matrix in the 2-flavor or 3-flavor model, respectively. 

Here, the first term is the usual nonlinear sigma model familiar from soft-pion 

13 



* physics; the second serves to stabilize a finite-size soliton, or “skyrmion,” which 

is our candidate nucleon; and the third, the Wess-Zumino term, 3,43 reflects the 

presence of anomalies. It5 The traditional identification of the Goldstone fields 

comes from setting 

u= 

i 

exp EC:=, zIT”cP : ( > 2-flavor case 

exp % C”,=, +,A4 ( > : 3-flavor case 

in (1). 
-c- - - 

To study meson-nucleon scattering in this model, one simply breaks up the 

Goldstone fields 1~~ or 4” into two pieces: a spatially-varying c-number piece, i.e., 

_.. the skyrmion, and a fluctuating piece, which we identify with physical mesons. 

Calculating the meson-nucleon T-matrix” then reduces to a problem of potential 

scattering, from which partial-wave phase-shifts can be extracted in the usual 

manner. In addition, it is necessary to fold in a little group theory, as we now 

describe. 

Consider first the case of 2-flavor scattering, which suffices for. the study of 

the non-strange processes zN + %N , rrN + zA and 7rA + KA . The quantum 

numbers needed to describe such processes are the following: the initial and final 

pion angular momenta L and L’; the initial and final spin (or isospin) represen- 

tation of the baryon s and s’, which equal 3 for nucleons and $ for A’s; and 

the total pion-baryon isospin and angular momentum I and J. The T-matrix 

jJ5 The Wess-Zumino term is not present in the P-flavor model unless it is gauged.3 
g6 In order to facilitate comparison to experiment, we will present all our results in terms of 

T-matrix elements. The T-matrix is related to the S-matrix via T = (S - 1)/2i, where 1 
is the identity operator on the Hilbert space (which vanishes for inelastic scattering). 

14 



i describing such processes in the Skyrme model can then be shown to be:8915 

‘_ T({LsIJ} ---) {L&J}) .. 

= (-1)9/(2s + 1)(2s’ + 1) C(2K + 1) K {s:-;}{f--f}TKL’I. (2) 

The expressions in curly brackets are 6j-symbols, and the sum over K extends 

over all integer values consistent with IL - 11 5 K 5 L + 1 and IL’ - 11 5 K < 

L’ + 1. The quantities ‘TKLIL, which are functions of pion energy w, are the 

“reduced amplitudes” of-t% model, obtainable numerically from a -phase-shift 

analysis about the classical soliton solution of the Lagrangian. (In contrast, we 

shall refer to the bold-face T’s as “physical amplitudes.“) Although these reduced 

amplitudes have been presented previously,7,‘4 we display them in Appendix A 

in a form more suited to our purposes. 

*.-. 
Although, in Eq. (2), K plays the part of a dummy index, it actually has an 

interesting physical interpretation. Specifically, K can be viewed as the vector 

sum of the pion’s angular momentum and isospin in the unphysical frame in which 

the pion scatters, not from a nucleon, but rather from an unrotated soliton of the 

“hedgehog” form. (A hedgehog soliton is one in which the c-number piece of the 

pion field, an isovector, is proportional to 3; cf. Eq. (15) in Appendix B below.) 

This frame is “unphysical” in that a nucleon properly corresponds to a rotating 

hedgehog soliton in the skyrmion approach.4g More details on the meaning of K 

can be found in Refs. 7-15, as well as in Appendix B below. 

The 3-flavor analog of Eq. (2) is of the same general structure albeit a little 

more complicated. The 3-flavor scattering processes that we are focusing on are 

15 



special cases of the general quasielastic process 

.&sB -+ &.,B’, 

where C& and c#$, 1+ are pseudoscalar-octet mesons and B and B’ are z octet 

or 4’ decuplet baryons. The meson-baryon system in either the entering or 

exiting channel for such a process can be fully characterized by the following 

set of quantum numbers: the orbital angular momentum L of the meson; the 

spin s and flavor representation R of the baryon [i.e., (s,R) = ($,8) or (g,lO)]; 

the total meson-baryon angular momentum J; and the total SU(3)!,,, quantum 

numbers { Rtot ,7, Itot, &tot, Kot}. ” As in the 2-flavor case, the physical T-matrix 

can be expressed as a superposition of reduced amplitudes: 12,13 

T({LsR&ot&dztotK.,tJ} + {L’~‘R’&,t~‘&&t,tYt,tJ}) = 

(-l)8,-8JdimR. dimR’ 
dim Rtot 

c c x(2; + 1)(2K + 1) 
(1~) i K 

{ sf;J,) {z:} (3) 

This expression, whose derivation is reviewed in Appendix B, requires some 

explication. The quantities in parentheses are SU(3) isoscalar factors, tabu- 

lated by DeSwart.44 The pair {IY} is summed over {1,0},{0,0}, and {$,kl}. 

The index K assumes integral values when {IY} = {l,O} or {O,O} and odd-half- 

integral values when {IY} = {i, kl}, while th e index i assumes odd-half-integral 

g7 Here 7 is a largely redundant index whose only real purpose is to distinguish between 
degenerate representations that can occur in the product, of two SU(3) representations, 
as for example the S,, and Santisym in 8 x 8.44 As can be seen in ISq. (3), it is not in 
general conserved, even for exact SU(3)savor. To understand this, one need only consider 
the nonvanishing 8antisym ++ Ssym coupling Tr({B, Q}[B, 91) between the baryon octet B 
and the meson octet Q. 
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i and integral values, respectively, in these cases. In addition, these sums are con- 

. . 
strained by the various triangle inequalities implicit in the two 6j symbols, as a 

consequence of which we find the following contributing reduced amplitudes for 

physical processes: It8 

I&B + #,,B’ with L’ = L: 

q&B + 4’ B’ with LA* -L f-2: r 

only 7#iej I , K = (L + L/)/2, contributes. Furthermore, by time-reversal 

invariance, 7-8 it follows that 7i’;Fi = Tik’!. 
. 

Useful closed-form expressions for the group-theoretic coefficients in Eq. (3) 

that multiply these reduced amplitudes are given in Appendix C.” 

It turns out that the reduced amplitudes 7ik” and 7$ki1’ are numerically 

quite close to one another for all energies. ‘lo It is therefore convenient to introduce 

the linear combinations 

these are depicted in Appendix A. It happens that, in the Skyrme model, these 

are the only new quantities that one needs in order to pass from the 2-flavor to 

fl8 Parity precludes the case L’ = L f 1. 
d9 The analogous z-flavor quantities are tabulated in Appendix B of Ref. 8. 

dl0 In fact, they would be precisely equivalent to one another in the absence of the Wess-Zumino 
term; l3 that they are so close means that the Wess-Zumino term has a small effect on the 
meson-nucleon phase-shifts in the Skyrme model. 
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i 
the 3-flavor formalism. Specifically, the amplitudes T,IL”f} turn out to be trivial: 

while the quantities 7 090~ KL#L(W) are identical to the 2-flavor reduced amplitudes 

7KL’L(W) that appear in Eq. (2). 

From the discussion in this Section we can make the following observations: 

_- 

1. Since all physical amplitudes for processes with L’ = Lf2 are proportional 

to the single reduced am@itude r;l’;p,’ = 7i.‘i! with K = (L + L’)/2, it follows - 
that all such amplitudes for each value of K are necessarily proportional to one 

another. The group-theoretic coefficients of (2) and (3) furnish the relative mag- 

nitudes and signs of these amplitudes for the 2- and S-flavor model, respectively. 

‘.-% 

2. Processes with L = L’ are more complicated from a group-theoretic stand- 

point, since they are expressed as a superposition of eight reduced amplitudes. 

However, from the graphs in Appendix A, we see that, with a few exceptions in 

the lower partial waves, the three reduced amplitudes { 7iJ;siL, TLkf}, 7LT4 
2’ 

LL} 

vary much more dramatically as functions of energy than do the other five am- 

{l,O~ plitudes {7L+1,LL, TLLL , {WI 7+ - 
L+$LL’TL-f,LL’ 7Li$LL }, and consequently provide 

the dominant contributions to the physical Skyrme-model amplitudes. 

3. Lastly, we ought to point out that Eqs. (2) and (3) are valid for any 

soliton model of the baryon, not just Skyrme’s, in which the soliton is a “hedge- 

hog” configuration. The only model-dependent input is the precise values of the 

reduced amplitudes. 

We will make frequent use of these observations throughout the remainder 
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of the paper. We turn now to a channel-by-channel comparison of the Skyrme 

model T-matrix with experiment. 

III. TN Scattering 

We begin with the elastic case AN + TN . This process has been studied 

before in the context of both the 2-flavor’-12’14-15 and 3-flavor12-13 Skyrme 

models; in particular, the reader is referred to Ref. 7 for a discussion of the 

spectrum of baryon resonances in the 2-flavor model. Elastic TN scattering is -A- r - 
extremely well understood experimentally, as evidenced by the close agreement 

between the three principal partial-wave analyses (Refs. 17-19). As such, it 

_- represents a crucial test for the Skyrme model. 

-.-- 

Figure la displays the 30 experimental TN -+ ?rN partial-wave amplitudes 

for 0 2 L < 5 (Ref. 18) and 6 5 L 5 7 (Ref. 17) juxtaposed with both 

the 2- and 3-flavor Skyrme-model graphs.‘” For completeness, we have also 

summarized the results of our mass spectrum calculation 7,13 in Fig. lb. We 

consider the overall degree of agreement impressive. Obviously, for G waves and 

higher, the Skyrme model graphs are much too large;n12 this is primarily due 

to the fact that, in our formalism, we are not allowing for the large variety of 

inelastic processes that dominate these channels in Nature. In this regard, the 

3-flavor Skyrme model, which allows for final states involving strangeness such 

as KC, constitutes a clear improvement over the 2-flavor model. Inclusion of a 

fill In Ref. 7, in contrast, we compared the Skyrme-model curves solely to Ref. 17. Overall, the 
Skyrme model agrees somewhat better with Ref. 16 than with Ref. 17. The most recent 
experimental analysis (Ref. 19) only goes up to EC, = 1726 MeV and L = 3. 

t]l2 Note the magnification by a factor of 4 in the experimental graphs with L 2 4. 
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FIG. la. RN - rN : comparison between the 2- and the S-flavor Skyrme models and the 

experimental solutions of: (a) Ref. 18 for L 5 5 (1.08 GeV _< ECM 5 2.40 GeV); (ii) Ref. 17 for 
6 <_ L 5 7 (1.08 GeV 5 EC,., 5 2.50 GeV). The plots show Im(T) us. Re(T) for each channel. 

Channels are labeled by L~~JJ, where L is the pion angular momentum, 1 is the total isospin 
and J the total angular momentum. Note the change of scale for the experimental graphs with 
L 2 4. 
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FIG. lb. Spectrum of N and A resonances: Skyrme model us. experiment. The experimental 
masses (indicated by dots) and uncertainties are taken from Ref. 18, except for the N(1882) FIB 
and the four I- and K-wave states, which are taken from Ref. 17. The Skyrme-model predictions 
of Refs. 7 and 13 are indicated by crosses. In general, the 2- and S-flavor predictions are identical; 
the exceptions are the N(1882) Fla and the A(2350) F 
model. ‘s 

sr, which only exist in the 3-fiavor Skyrme 
Resonances have been assigned stars in accord with the Particle Data Group, ranging 

from four stars for the best established down to one star for the least weII established states. The 
most recent analysis” finds no evidence for the N( 1700) Pri, but instead finds a state near 1500 
MeV. Also shown are the four observed 3- or 4-star resonances which have no Skyrme-model 
counterparts in our analysis, namely the N(1650) Sii, the N(1440) Pri, the N(1675) Dis, and 
the A(l890) Ssr. The Skyrme-model values for mN and m,$ are obtained from R~I. (9) of Ref. 
49, using our “best fit” parameters {e = 4.79, fW = 150MeV). 
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i third flavor can also be seen to improve the agreement in the Prs, P31 and 013 

.- 
channels. 

The case of the F waves is more subtle. Although the S-flavor curves do 

not appear at first glance to be in quite so close correspondence with Nature as 

their 2-flavor counterparts, they actually constitute an improvement: a “speed 

analysis” ID3 reveals the emergence of a second resonance in both the Frs and 

the F37 3-flavor amplitudes, in agreement with Nature (see Ref. 13 for details). 

Most of the severe disagreement between the model and experiment is concen- 

trated in-the lower partiaLvaveqespecially the S31 , Prr, P33 and&s channels. 

As discussed in detail in Refs. 7 and 8, this is probably a failure, not of the 

Skyrme model per se, but rather of our leading order analysis in 1/N,.‘14 It is 
_. illuminating to summarize the situation for these four “problem” channels: 

(i) The A (i.e., the pss(1232)) is degenerate with the nucleon in the large-N, 

limit; they are split in mass only by terms that scale like 1/N,.4g Consequently, 

the A does not-indeed, cannot-show up as a resonance in a leading-order 2- or 

S-flavor analysis such as ours.“’ It is interesting that, beyond the energy range 

associated with the A, the experimental and Skyrme-model amplitudes appear 

-to be in quite reasonable agreement (note the cusp-like behavior in each case). 

(ii) Similar disagreement plagues the Prr channel, where the Skyrme-model 

amplitude stands in stark contrast to the classic resonant behavior that appears 

fll3 This entails looking for Breit-Wigner peaks in the function (dT/dEl plotted against energy. 
fl14 Specifically, the S, P and D waves can be shown to couple to the rotational and trans- 

lational zero-modes of the skyrmion, and therefore turn out to be extremely sensitive to 
next-order l/NC corrections. 7-s 

115 Skyrme himself recognized the lack of a P-wave resonance in his model:’ “The P-wave 
meson-particle interaction [is] repulsive on the average. There is no indication of the strong 
attraction observed in the pion-nucleon resonant state, but this would hardly be expected 
in a static classical treatment where the rotational splitting of the particle states has been 
ignored.” 
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in Nature, associated with the Roper resonance at 1440 MeV. In light of the qual- 

._ 
. . 

itative similarity between the P~J and P33 amplitudes in both the Skyrme model 

and experiment, we proposed somewhat optimistically in Ref. 7 that the same 

l/NC corrections that are expected to produce a low-lying Skyrme-model reso- 

nance in the P33 channel (i.e., the A) are likely to produce a low-lying resonance 

in the Pl1 channel too (i.e., the Roper). 

At the time, this scenario left us somewhat in a quandary, for the following 

reason. A speed analysis reveals that the Skyrme-model Pll amplitude in both 

the 2-flavor and S-flavor-case costains a weak resonance before the cusp, at r - 
approximately 1430 MeV. ‘ls On aesthetic grounds, it would certainly be hard 

to justify identifying this tenuous state with the robust Roper resonance seen 

in Nature; indeed, as just, mentioned, we preferred to equate the Roper with _- 

a Skyrme-model state that we hoped would emerge in the next order in l/N,. 

This left us no choice but to associate the Skyrme-model state at 1430 MeV with 

the next-excited state observed in this channel, which is traditionally assigned a 

mass near 1700 MeV. The large discrepancy between these two values stood out 

as one of the most disappointing results in an otherwise successful Skyrme-model 

spectroscopy (see Fig. lb). However, the experimental situation for this channel 

has since changed. Surprisingly, the most recent ?rN experimental partial-wave 

analysisl’ finds no evidence for a Pl1 excitation at 1700, but instead finds a 

second state nearly degenerate with the Roper-in much closer agreement with 

the Skyrme model.‘17 It is interesting that, from the point of view of skyrmion 

physics, these two nearly-degenerate states arise in very different ways: the Roper 

fl16 Note that the amplitude does in fact curve counterclockwise in this region. 
u17 The analysis of Ref. 19, which probes an energy range ECM 2 1726 MeV, is not sensitive 

enough in the upper region to exclude definitively the Pl1(1700). 
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A  ( l ike th e  A ) is spl i t  f rom th e  n u c l e o n  on ly  by  a n  e n e r g y  o f 0  ( l /NC), whi le  its 

. . 
par tner  h a s  a n  exci tat ion e n e r g y  o f 0  (1). T h e  obse rved  n e a r - d e g e n e r a c y  is a n  

acc identa l  c o n s e q u e n c e  o f th e  fact  th a t, in  th e  rea l  wor ld ,  N C  is n o t a  very  la rge  

n u m b e r . 

(ii;) A n o the r  a r e a  o f severe  d i s a g r e e m e n t b e tween  th e  S k y r m e  m o d e l  a n d  

e x p e r i m e n t is in  th e  Ssr  c h a n n e l , wh ich  is repu ls ive  n e a r  th resho ld  in  N a tu re  b u t 

a ttract ive in  th e  S k y r m e  m o d e l . A g a i n , th is  d isc repancy  is a n  arti fact o f ou r  

lead ing-o rder  l /NC analys is .  S p e c i f ically, th e  repu ls ive  th resho ld  behav io r  o f th e  

Ssr  ampl i tude,  p red ic ted  by  th e  W e i n b e r g - T o m o z a w a  two-sof t -p ion th e o r e m ,4 6  
-A-  - - - 

e m e r g e s  in  th e  S k y r m e  m o d e l  on ly  a t o rder  1 /Nc.8’4 7 - 4 t 

( iv) Final ly,  th e  p o o r  a g r e e m e n t b e tween  th e  m o d e l  a n d  e x p e r i m e n t in  th e  

_ . 0 3 5  c h a n n e l  deserves  s o m e  c o m m e n t. It is c lear  f rom Fig. 1  th a t, in  th e  S k y r m e  

m o d e l , th e  0 3 5  ampl i tude  is near ly  as  b ig  as  th e  D 1 3 , whi le  in  N a tu re  it is by  

fa r  th e  smal les t  o f th e  fou r  D-wave  ampl i tudes.  Fur thermore,  th e  r e s o n a n c e  

m a s s e s  o f th e  fou r  D -wave  states a re  near ly  d e g e n e r a te  wi th o n e  a n o the r  in  b o th  

th e  2-  a n d  3- f lavor  S k y r m e  m o d e l s ,7 ’1 3  wh i le  in  N a tu re  th e  0 3 5  state a t 1 9 4 0  

M e V  is 2 0 0 - 3 0 0  M e V  h igher  in  m a s s  th a n  its th r e e  par tners.‘1 8  It is in terest ing 

to  specu la te  as  to  th e  r e a s o n  fo r  th e s e  d isc repanc ies  b e tween  th e  m o d e l  a n d  

e x p e r i m e n t. 

It h a p p e n s  th a t th e  0 3 5  ( 1 9 4 0 )  is o f par t icu lar  interest  f rom th e  quark  p o i n t o f 

v iew, s ince,  in  th e  l a n g u a g e  o f SU(6) ,  it is th e  on ly  state p r e s e n t in  th e  .& u a r k  =  1  

5 6  th a t is n o t c o n ta i n e d  in  th e  j&a rk  =  1  7 0 ; as  such,  it serves  as  a  “marker” 

fo r  th is  m u l tiplet.  ‘lg  N o w , in  N a ture,  th e  j&a rk  =  1  5 6  is substant ia l ly  h igher  

1 1 1 8  It is notewor thy  that the 0 3 5  ampl i tude is c lear ly resonant  (hence  qual i tat ively c loser to 
the Sky rme mode l )  in  the exper imenta l  analys is  of Ref. 18,  as  o p p o s e d  to that of Ref. 17.  

f i19 W e  thank B o b  Jaffe for a n  i l luminat ing d iscuss ion o n  this point.  
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. . 

in mass than the j&ark = 1 70. However, there is a well-known problem that 

plagues naive bag-model spectrum calculations:45 namely, the physical quark 

excitations corresponding to this multiplet turn out to mix with the (unphysical) 

translational zero-modes of the center of mass of the system, which also generate 

an Lquark = 1 56. The result of this mixing is to lower the predicted mass of the 

multiplet to a phenomenologically-unacceptable level. 

It is likely that a similar phenomenon is taking place in our Skyrme-model 

calculations. One would therefore expect that a proper “factoring-out” of the 

skyrmion’s translationalxao-modes would raise the mass of the Skyrme-model 

prediction for the mass of the 035, improving the agreement with experiment. 

Hopefully, the overall size of the Skyrme-model curve in this channel would be 

diminished as well. (Of course, the other S- and D-wave states would also be 

expected to be modified, to the extent that they, too, contain admixtures of the 

L quark = 1 56.) 

_.. 

‘..L. Fortunately, the other TN + TN partial waves pose no such problems. It 

is particularly striking that both the 2- and 3-flavor Skyrme models reproduce 

the “big-small-small-big” pattern found in Nature, whereby, for instance, the Fl5 

and F37 amplitudes take much larger excursions through the unitarity circle than 

do the Fl7 and F35 curves; n20 furthermore, in the model as in Nature, the first 

amplitude is almost always bigger than the last: Fl5 > F37, etc. We shall return 

to this phenomenon in Section VI, where we shall argue that both the Skyrme 

model and the optimal 2- and S-flavor effective Lagrangians of Nature (which we 

do not know) lie in a large class of models which can be expected to display a 

fi20 The pattern emerges even more sharply if the experimental curves are cut off at the natural 
resonance scale for each value of L.’ 
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big-small-small-big pattern. 

. . 

A technical aside is in order concerning our parametrization of energies. Each 

of the Skyrme-model graphs depicted in Fig. 1 extends from threshold to an 

excitation energy of 2efir, where e and jr are the two independent parameters 

that enter into the Skyrme Lagrangian, Eq. (1). It is not clear to us how best to 

convert this energy into GeV’s, especially in light of our having set m, = mK = 

0 in our phase-shift calculations. However, for purposes of comparison with 

experiment, an excitation energy of 2e jiF can be thought of as corresponding 

roughly to a total center-of-mass-energy of 2.5 GeV.7 We emphasize once again -A- - - 
that the shapes of the Skyrme-model curves are completely independent of the 

values of e and fiF, apart from the issue of determining precisely where the tails 

_. of the curves should be cut off. For simplicity, we shall cut off all Skyrme-model 

graphs presented in this paper at 2e jx (although the experimental cutoffs vary). 

Let us turn to the process TN + TA . Of all the inelastic processes that 

we shall survey, this one is by far the best understood. As a measure of this, 

the recent partial-wave analysis of Manley et ,1.,2o which is based on a quarter- 

million TTN events, is in good overall agreement with the three principal analyses 

that preceded it. 21-23 

Figure 2 displays the experimental TN -+ ?rA solution drawn from Ref. 20 

compared with the 2- and 3-flavor Skyrme-model predictions. As in the elas- 

tic case, the agreement is surprisingly good. In fact, there is 100% agreement 

between both the 2- and S-flavor models and experiment in the signs of the 

TN + rA amplitudes. n21 We find the correctly-rendered minus-sign in the 0013 

fl21 The reader is referred to Ref. 20 for a .survey of sign predictions made by competing 
theories. 
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channel especially gratifying, in view of the fact that all other PP, DD and FF 

- 
graphs lie in the upper-half plane. It is also noteworthy that, in both the model 

and experiment, the FFl5 amplitudes circle around much more than the FF35 

and FF37 curves. 

For channels where L = L’, it is clear that the 3-flavor model improves signif- 

icantly on the 2-flavor model as regards the magnitudes of the curves. However, 

the reverse is true when L’ = L f 2: in these channels, the 3-flavor curves are 

uniformly smaller by a factor of 5m/36 = .4 than their a-flavor counterparts, 

which were already smaller than-experiment. We shall see when we discuss the -A- - - 
processes KN + KA , KN + ?rC* and KN -+ KA .that the Skyrme model 

systematically underestimates the sizes of the amplitudes with L’ = L f 2 com- 

_. pared to those with L’ = L. . 

In the remainder of this Section, and in Sections IV and V to follow, we shall 

examine processes that involve strange particles. As a result, whenever we refer 

i.l to the Skyrme model, we shall mean the 3-flavor version necessarily. 

Figures 3 and 4 display the Skyrme model juxtaposed with experimental so- 

lutions for the processes ?rN + VN 24 and ?rN + KA .26 In general, the Skyrme- 

model graphs are too small for. the former, but too big for the latter. For 

TN + VN , the agreement is poor for the lower partial waves (L 5 2) but quite 

respectable for the higher waves (L 2 3). Probably, this is largely due to the 

fact that the S-, P- and D waves in the model are highly sensitive to l/NC cor- 

rections, as mentioned earlier. However, the issue is clouded by the fact that the 

two most recent experimental analyses for this process are themselves in severe 

disagreement with one another for these waves.24-25 

The overall degree of agreement is somewhat better for TN + KA . Here, 
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the most noticeable feature of the model is the sign alternation characterizing 

the plots; this pattern appears to be present in Nature as well, albeit in a more 

ambiguous manner. 

Figure 5 depicts the process TN + KC .27 Despite the scale difference be- 

tween the Skyrme model and experiment in the D, G and H waves, the agreement 

generally is quite good. It is interesting to compare the experimental graphs of 

Ref. 27, which are the ones displayed in Fig. 5, with the results of previous 

partial-wave analyses. 28-30 These’earlier analyses, based on an order of magni- 

_. 

tude fewer events, require&several additional strongly-coupled resonances in the 

lower partial waves. Furthermore, the four solutions presented in Ref. 29 and 

the two solutions given in Ref. 30 are all characterized by positive F35 and F37 

amplitudes, and they predict that the F35 amplitude should be larger than the 

F37. On all of these counts, the Skyrme-model results argue strongly in favor of 

Ref. 27. 

Unfortunately, the analysis of Ref. 27 is restricted to isospin-% channels. In 

the isospin-3 sector, there is no visible agreement among the previous studies, 

although on the whole the Skyrme-model graphs seem closest to those of Ref. 

30. 

The comparison with the Skyrme model sheds light on an interesting ob- 

servation made by the authors of Ref. 27. They regard the fact that their 

partial-wave amplitudes lie almost entirely in the lower-half plane as compelling 

evidence against the existence of “exotic” 27-plet resonances in these channels. II22 

This claim is based on the observation that, in the isospin-g channels, the 27 

fl22 Such states are called “exotic” because they cannot be formed from three quarks; see Section 
Iv. 
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couples to rrN -+ KC with a sign opposite to that of the 10; a strongly-coupled 

- 
. . 

exotic resonance would therefore be expected to spoil the observed homogeneity 

in sign. However, the Skyrme model provides a counterexample to this claim! 

For, as we shall see in the following Section, the model actually features an 

overabundance of resonances in the 27. Nevertheless, in the isospin-t channels 

of TN + KC , these exotics are outweighed by the stronger resonances in the 

10, which are nearly degenerate with those in the 27.0z3 The net result is that 

the Skyrme-model amplitudes, too, favor the lower-half plane, as can be seen in 

Fig. 5. - .&- - - 

The issue of exotic resonances in the Skyrme model is the topic of the fol- 

lowing Section. 

IV. KN Scattering 

We turn, next, to the case of KN scattering. The isospin-0 and isospin-1 

channels of KN correspond to pure 10’s and 27’s of SU(3),,,,. Consequently, 

a KN resonance, although not forbidden, cannot be composed of three quarks, 

-but must consist instead of four quarks and an antiquark in the simplest case. 

The existence of such resonances has been the subject of considerable contro- 

versy over the last two decades. n24 The most recent partial-wave analyses33-35 

tentatively favor such states in the Pl3 and 003 channels, and perhaps in the 

. 

fl23 This near-degeneracy is simply due to the fact that both sets of amplitudes are built from 
the same reduced amplitudes in the skyrmion formalism. 

fl24 On opposite sides of the spectrum, Martin and Oadessl claim that there are no bona fide 
poles on the second sheet for such processes, while Amdt, Roper and Steinbergs seem to 
find poles in almost every channel; however, in Arndt and Roper’s later analysis” , most 
of these poles disappear thanks to a different choice of parametrization. 
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Per, Prr, Do5 and D15 channels as well. It is interesting to see what the Skyrme 

model has to say on the matter. 

. . Figure 6 illustrates elastic KN scattering in the Skyrme model juxtaposed 

with the results of the two latest partial-wave analyses. 33’34 The overall degree 

of agreement between the model and experiment is poor. This should not come 

as a surprise, for the following reason. It turns out that the S-flavor Skyrme 

model with NC = 3 contains as rotational excitations of the canonical “hedgehog” 

soliton (Eq. (15) below) an infinite tower of baryon multiplets beyond the usual 

spin-3 octet and spin-i decupleA4 This tower includes, in particular, a spin- -d.- - - 
8 m and spin-3 and spin-i 27’s. Each of these multiplets would naturally be 

expected to have excitations of higher angular momentum, just as the usual octet 

_- and decuplet have; such states would manifest themselves as resonances in KiV 

scattering. In short, there is nothing exotic about KN processes in the Skyrme 

model; this is confirmed by the multitude of obviously resonant Skyrme-model 

amplitudes in Fig. 6. 

It is instructive to consider an analogous situation involving the 2-flavor 

Skyrme model. It is well known that this model contains states with I = J = 

1352 2’2’2’2’“’ that emerge as rotational excitations of the hedgehog.4g The two 

lowest-lying multiplets are naturally identified with the nucleons and A’s, re- 

spectively, while.the states with I = J 2 E are traditionally labeled “artifacts 

of the model” and swept under the rug. Thankfully, isospin conservation forbids 

these states from appearing in the s-channel of TN scattering, so that they do 

not really cause a problem. n25 However, one can consider the gedanken ex- 

fl25 Note that an isospin-5 baryon B) can be produced in the Skyrme model in the process 
TN + I~B% and is therefore required for uhitarity. 
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periment of 7rr+A++ scattering, which is pure isospin-t. From the quark point 

of view, this is an exotic process just like KN scattering, and we would expect 

to see a high proportion of repulsive amplitudes. In contrast, in the skyrmion 

approach, there is nothing exotic about this channel, since isospin-t states exist; 

we have, in fact, explicitly verified that nearly all the Skyrme model graphs for 

T+A++ + ,+A++ evince the usual resonant behavior. 

The moral is that the skyrmion approach can hardly be expected to yield 

accurate information about KN scattering, as these processes directly probe 

those states that one wouLdsrefer-to dismiss as unphysical artifacts_ of the model, 

This having been said, it is interesting to speculate about whether those exotic 

states that do seem to be present in Nature reflect in any way the “skyrminess” 

_. of the nucleon. We offer the following cautious observations: 

1. Although the four P-wave Skyrme-model amplitudes appear to be re- 

pulsive, close inspection reveals that the Per and Pr3 amplitudes actually curve 

anticlockwise before the cusps. Therefore, they might be interpreted as very weak 

resonances superimposed on a strongly repulsive background. It is interesting to 

note that these are the same two P-wave amplitudes that curve anticlockwise in 

Nature. 

2. The Do3 channel is the most prominent of the D-wave curves in the Skyrme 

model, and it is the most plausibly resonant D-wave channel in Nature as well. 

3. Interestingly, there appears to be some unexpected resemblance in the P- 

and the D-wave sectors between the four KN + KN experimental amplitudes 

and their TN + TN counterparts (compare “Experiment I” in Fig. 6 to Fig. 1). 

In particular, in the P waves, the first and fourth amplitudes for both processes 

curve anticlockwise, while the second and third curve clockwise. Likewise, the D 
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waves are characterized by a pattern of “decreasingly resonant behavior” across 

the four graphs in each process. Consequently, it is conceivable that the same 

l/NC corrections that are expected to improve the agreement in these waves 

between the Skyrme model and experiment for TN + AN will do likewise for 

KN+KN. 

4. Finally, we have come to expect reasonable agreement between the Skyrme 

model and experiment in the F, G and H waves. It is unfortunate that the 

only such channels for which experimental KN -+ KN amplitudes have been 

presented, namely the Frs, Gr7 a_nd Hlg, are predicted by the Skyrme model to -&- - . 
be small and rather featureless (Fig. 6). A much more critical test of whether the 

model has anything relevant to say about KN scattering would be the appearance 

_- of resonances in the Fcs, Go7 and Hog channels. An analysis of these channels 

can be expected in the not-too-distant future. It26 

The process KN + KA is understood much less well than the elastic case. 

In fact, due to the dearth of data, the authors of the only existing partial-wave 

-analysis 36 were unable to decide among three possible solutions, each of which 

gives a mediocre fit to the data (X~/DOF = 2.33,2.33, and 2.68, respectively, for 

Solutions A, B and C). We have depicted all three solutions in Fig. 7. Evidently 

the Skyrme-model graphs bear no resemblance to any of the three solutions, 

apart from a reasonable sign correlation with Solution B. Particularly disturbing 

is the fact that, while those channels in which the kaon jumps by two units of 

angular momentum contribute appreciably to the experimental T-matrix, they 

jj26 R. A. Amdt, private communication. 
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are suppressed in the Skyrme model by roughly a factor of 25 compared with the 

channels in which L does not change. 

All in all, it is unclear to what extent, if any, the Skyrme model has anything 

valid to contribute to our understanding of KN scattering. 

V. KN Scattering 

We turn, finally, to an examination of KN scattering. The elastic case 

TN + TN is considered very well established, with excellent agreement be- 

tween the two most comJJehensive partial-wave analyses (Refs.- 3.7 and 38). 

Figure 8 presents the Skyrme model versus experiment37 for this process. As 

in the case of TN scattering, there is poor agreement for the S and P waves, 

_- but reasonable agreement for the D waves and higher, with the F waves be- 

ing the best. The most obvious feature of the Skyrme-model graphs is the 

“big-small-small-small” pattern characterizing the four independent amplitudes 

i.‘. {.Le,z~-1, LoJL+~, Lr,2~-r, Lr,z~+r} for each value of L > 0; for example, the Fo5 

curve is larger than its Fo7, Fl5 and Fl7 counterparts. In general, this pattern 

characterizes the experimental graphs as well. The Pc3 and 015 curves appear 

from Fig. 8 to be semi-exceptions to the rule; however, if one cuts off the en- 

ergies at the “natural” resonance scale for each value of L (which we take to 

be the average value of the masses of the prominent resonances formed in these 

channels), then the big-small-small-small pattern shows up much more clearly. n27 

This point is illustrated in Fig. 9 for the P and D waves. 

d27 As mentioned earlier, the same phenomenon occurs for elastic AN scattering, where the 
“big-small-small-big” pattern likewise emerges most clearly’ when the graphs are cut off at 
the natural resonance energies. In fact, if instead one goes out to ~34 GeV uniformly, then 
the pattern disappears completely, and all four ?rN amplitudes for each value of L approach 
the same va1ue.s 
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A subsidiary pattern apparent from the Skyrme-model graphs of Fig. 8 is a 

relative size ordering among the three “small” amplitudes for each value of L 2 2: 

for instance Do5 < 013 < 015, and likewise for the F and G waves. And indeed, 

with the glaring exception of the G~Q, this ordering holds for the experimental 

curves as well (Figs. 8-9). 

We turn next to the inelastic processes KN. + zrC and TN -+ TA . Here 

there are areas of serious disaccord between competing partial-wave analyses.37’3Q 

As can be seen in Figs. 10 and 1.1, the agreement with the Skyrme model is 

likewise less good than for elastic scattering. Particularly disappointing in the 
-&- - - . 

case of KN + rrrC (Fig. 10) is the discrepancy in the sign of the 013 channel. 

In contrast, the agreement in the F-wave sector is excellent. Moreover, the 

_- Skyrme model successfully predicts a big-small-small-small (or, perhaps more . 

descriptively, a big-small-medium-small) pattern for FN + TX , just as for the 

elastic case. 

‘.i 
In Fig. 11 we have juxtaposed the Skyrme-model graphs for EN ---) TA 

with the results of two independent experimental analyses. 37,39 Clearly the 

model is in better agreement with Ref. 39 (“Experiment I”) than with Ref. 

37 (“Experiment II”) in the P and D waves, although in either case the 015 

amplitude is in complete disaccord. Conversely, the agreement is much better 

with Ref. 37 than with Ref. 39 in the S and F waves; however, for the Fl7 

channel, this is simply due to the fact that the authors of Ref. 39 have cut 

off their analysis before the effect of the X(2030) resonance could be felt. It is 

pleasing that the Skyrme model renders correctly the relative signs between the 

two graphs for each L for this process. 

Figure 12 displays the Skyrme-model curves for EN + VA . Although an 
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experimental partial-wave analysis for this process has never been published in 

graphical form, Rader et al.quote couplings at resonance of approximately -.04, 

-.l, and -.05, respectively, for the 005, Fo5, and Go7 amplitudes.40 Note the sign 

disagreement with the Skyrme model in the first of these channels. 

Finally, Figs. 13 and 14 present the graphs for the processes RN + XC* 41 

and KN + KA .42 Here the agreement with the Skyrme model is mediocre. In 

both cases the Skyrme model underestimates the importance of the amplitudes 

with L’ = L f 2 compared to those with L’ = L, as before. For EN -+ zrC* 

the most serious discrepancies are the signs of the DDl5 and PFo3 channels; 
-+- - - 

interestingly, the PFo3 channel is also the site of greatest experimental disagree- 

ment with SU(~)W.~~ There is also sign disagreement in the DG channels, but 

the authors of Ref. 41 consider these waves to be less well established. As for 

RN + KA , the comparison to the Skyrme model is hampered by the fact that 

the experimental solution finds only two clear resonances, the D13(1940) and the 

Fl7(2030), in the narrow energy-range probed. Disappointingly, the 0013 curve 

has the opposite sign of its Skyrme-model counterpart. It is noteworthy that 

a negative experimental amplitude in this channel disagrees, not just with the 

Skyrme model, but with the nonrelativistic quark model as we11.50 

In sum, although EN scattering in the Skyrme model works less well than 

TN, it is much more successful than KN. Many sign and size patterns are mim- 

icked correctly. The agreement in the elastic case is particularly impressive, and 

on a par with ?rN + TN and TN + zA . It is an open question whether inclu- 

sion of SU(3)-breaking terms (i.e., meson masses) into the effective Lagrangian 

would improve the agreement with experiment for the scattering data, as it does 

for the static properties of the model.6 
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VI. How model-dependent are these results? 

In the last three Sections, we have presented a detailed comparison of the 
. I  Skyrme model with experiment covering 165 rrrN, KN and EN channels. Despite 

areas of deep disagreement, such as “exotic” KN scattering, and S and P waves 

in general, we consider the overall degree of accord obtained from such a simple 

model to be powerful evidence for the validity of the soliton approach to baryon 

physics. 

In some people’s view, the surprising successes of the Skyrme model indicate 

that the Skyrme Lagrangian, EQ; (l), must be extremely close to the optimal 

effective Lagrangian of Nature, f&t, which is derivable in principle from QCD: 

We do not share this opinion. In our view, the Skyrme Lagrangian is not much 

more than a convenient testing-ground for soliton dynamics; it is, in a sense, the 

“minimal” model. A more realistic starting point would necessarily involve many 

more low-lying mesons and higher-derivative interactions; there has already been 

progress toward extending the Skyrme model along both these lines. 

In light of this, it is crucial to determine to what extent the Skyrme-model 

results presented here (both good and bad) can be expected to survive such 

modifications. This is the topic of ‘the present Section. In the course of the 

discussion; we shall discover what we believe to be the key to the Skyrme model’s 

success in describing meson-baryon scattering. This will enable us to define 

implicitly a large class of models which, we believe, would enjoy comparable 

overall success. 
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We shall focus at first on processes where the initial and final meson orbital 

angular momenta are equal. In our eyes, a particularly striking achievement of 

the Skyrme model in both its 2-flavor and 3-flavor incarnations is the big-small- 

small-big pattern characterizing the four elastic zN curves for each value of 

L > 0 (cf. Fig. 1). Let us start by reviewing the 2-flavor analysis of this pattern 

presented in Ref. 8. We will find it convenient to represent the zN + zN partial- 

wave amplitudes by the notation TLyJN with I = f, $ and J = L f i. From the 

formula for 2-flavor scattering, Eq. (2), we obtain:n28 

rNrN 

= &7LLL -I- sTL+l,LL, w 

T 
rNxN 

L%*L-i = 6L(2L+l) 
(2L-1)(L-1) 7-L-1,LL + y&L + z7L+I,LL, 

T 
rNnN 

Lg,L++ 
= E$TL-l,LL + ETLLL + (L+2)(2L+3) 

(6L+6)(2L+l) 
7L+l,LL. (44 

To make progress, let us make use of the fact that, in the Skyrme model, the 

variation of ~L+~,LL from the origin is essentially negligible compared with that 

of TL-~,LL and 7~,5~ (cf. Appendix A). Accordingly, let us make the simplifying 

approximation 

7L+l,LL(4 = 0 

in Eq. (4). The big-small-small-big pattern then emerges as a natural conse- 

quence of the group-theory: it is simply due to the large group-theoretic coeffi- 

cients multiplying TL-~,LL and TLLL in Eq. (4~) and (4d) compared with (46) 

fl28 Although TKL’L and T’>$) refer to the same quantity, we shall employ the former notation 
when we are invoking the P-flavor formalism. 
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and (4~). In this way, the pattern in the 2-flavor Skyrme model results from an 

elegant interplay between group-theory and dynamics. 

How model-dependent is this argument? Recall that, as noted in Section II, 

the group-theoretic structure of Eq. (2), and hence of Eq. (4), is completely in- 

dependent of the details of the meson Lagrangian that one starts with, but relies 

only on the “hedgehog” structure of the underlying skyrmion. The only specific 

dynamical input from the Skyrme model that we needed to formulate the argu- 

ment was the presence of a two-tiered “hierarchy” among the reduced amplitudes. 

We can therefore assert that>he Kg-small-small-bigpattern will characterize any . 

Z-flavor skyrmion model for which the reduced amplitGde ~L+~,LL was negligi- 

ble compared with TL-~,LL and 7~,5,5 As such, the pattern can be considered a 

quasi-model-independent result. In particular, since the pattern characterizes the 

experimental amplitudes (apart from the D waves), it is a safe bet that the op- 

timal effective Lagrangian of Nature, which we do not know, itself falls into this 

class of models. Further evidence for this claim will be put forth in the following 

Section. 

There is a natural way to extend this line of reasoning to the. 3-flavor for- 

malism. Recall that, in the 3-flavor Skyrme model, the variation of the reduced 

amplitudes 7&ciL, 7ilg1, TLzl. LL, 7;-’ LL, and TLJL LL is small in compar- 

ison to 7j$!;o)LL, ‘72:;‘, and 7L;:,,. , If o,‘,: neglects the dormer, Eq. (3) implies 

the following approximate expressions for the physical TN amplitudes: 

rNnN 
T N W--1)(49L+W 7{1,0} 

L&L-$ - 135L(2L+l) L-&J= + 135L 
25L+24 7 (1,~) + 27L+lO 

LLL 45(2L+l) TL’- i LL’ (5a) 2’ 

rNxN 
T 

2L-1 

Li*L+i z 135(2L+l) 
w 
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rNsN 
T N (2L-1)(13L-12) 7{1,~) 

L$L--4 - 135L(2L+l)  L-l&L + 135L 
25L-12 7{l,o} +  12L-5 

LLL 45(2L+l) TL+-+,LL$ (5c) 

.I 
T 

rNrN - 37 2L-‘T(l,o} ‘. +  25L+37 --- 
Lg,L+; - 135  2L+l L-l,LL 135(L+1) 

7L;tI + 22L 
45(2L+l) 7L’ 2  LL’ (54 

Although these expressions are more complicated than their 2-flavor counter- 

parts, the big-small-small-big pattern reveals itself, as before, in the relative 

sizes of the group-theoretic coefficients. 

-- 

In addition, despite the different coefficients involved in Eqs. (4) and (5), the 

first of the “big” ampli tudes in each instance is predicted to be “bigger” than 

the last: -&- - - 

T  
rNrN rNrN 

L&L-i ’ TL$L+; 

This is manifestly the case in the 2- and 3-flavor Skyrme models; and indeed, 

with the exception of the P waves, it is true for the experimental ampli tudes as 

well. 

‘.- - 
W e  can profitably apply this mode of analysis to a  wide range of other pro- 

cesses. Most notably, for KN + EN we find: 

-- 
T 

KNKN N w-lmoL+g) 7{l,o} 11L+9 {l,O} 
L&L--i - 90L(2L+1) L-1,LL + goL TLLL + 

14L+6 
15(2L+l) ‘LA 2, LL’ 

-- 
T 

KNKN 2L-1 

M,L+i =  45(2L+l) 

T 
ZNEN N (2L-1)(2oL-3) 7{1,~j 23~3 {l,o} 

L1,L-+ - 27OL(2L+l)  L-lvLL + 270L TLLL + 
22L-4 

45(2L+l) 7Li,LL’ 

T 
RNRN 

L1,L++ 
N 13  2L-1 7{l,o} +  23L+26 -- 
- 135  2L+l L-1,LL ’ 27O(L+l) 

Similarly, the T-matrix for EN + ?rC is determined ,by 

(64 

w 

(64 

(64 

T 
ENIC 

jyJJ+ z - 

(2L-1)(44L+21)~7{1,0} 
L-1,LL - 

(23L+21)JE;7{1,0} 
54OL(2L+l)  54OL LLL 

. 
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+ w+wT+ 
45(2L+l) L-i,LL’ (74 

T 
ENIC (23L+2)6 Ld 
M,L+i = - 540( L+l) 45(21;+1) ‘i&L (7b) 

T 
EN*C 

Ll,&.; = - 
w--1w3L+1) T{“o} 

L-l,LL 
7L+l 7{1,~) + 2L-3 -- 

90L(2L+1) QOL LLL 45(2L+l) ‘:’ LL’ (74 2’ 

T 
STN*C 2L-1 
Ll,L-ti = - 15(2L+l) 

(74 

For both these processes, as a moment’s inspection of the coefficients confirms, 

we can expect to see a big-s-all-small-small pattern-which is precisely what we - - 

found in the previous Section for both the Skyrme model and experiment (Figs. 

8-10). In addition, the group-theoretic coefficients appearing in Eq. (6) suggest 

_. a relative size ordering among the three “small” physical amplitudes, 

ENKN 

T, L+~ 
ENEN 

< TLI,L--1 < T 
ZN~TN 

, 2 2 Ll,L+i’ 2 

which we also noticed in Section V. 

The same type of quasi-model-independent analysis successfully predicts the 

signs of many inelastic amplitudes, as well. As an example, consider the Fr5 and 

Fr7 channels for the process RN + 7rA (Fig. 11). Eq. (3) tells us: 

F15 : T = [- .O372&o’ + .03 T3(3k”’ - .087g;3] 

+ .157$“) - .047$“) - .037G3 - .03Td,, + .2075, (84 
2 2 

F17 : T = [.08T,,, {“‘) + .O773&o3 - .027;;3] 

- .ooTd,‘;O) - .047&O) - .097;;, + .157?;, + .027;;, . w 
2 
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If we assume that the reduced amplitudes enclosed in brackets dominate these 

channels in Nature as they do in the Skyrme model, we correctly predict the - 

and + signs for the Frs and FIT, respectively; nor are we surprised to find a l:3 

ratio in the magnitudes of the experimental curves (versus 1:2 in the Skyrme 

model). n2g 

In sum, we have outlined a methodology that successfully explains many of 

the observed features of the experimental meson-baryon partial-wave T-matrix. 

Moreover, we have seen that the general success of the Skyrme model can be 

largely explained by the hypothesis that the Skyrme Lagrangian shares with the 
-&- - - 

(unknown) optimal effective Lagrangian &,t: (i) the “K-symmetry” character- 

istic of hedgehog solitons, and (ii) a plausible two-tiered hierarchy among the 

reduced amplitudes. 

This hierarchy defines a large class of models which we expect to enjoy success 

comparable to that of the Skyrme model in explaining the experimental scattering 

data. It would, however, be a mistake to conclude that all predictions made by 

the Skyrme model are likewise quasi-model-independent. As a counterexample, 

consider once again the process EN + 7rrC (Fig. 10). The Fc5 and Go7 channels 

are governed by Eq. (7~2)) with L = 3 and L = 4, respectively. Note that, taken 

together, the first two coefficients (which are negative) are comparable in size to 

the third (which is positive). Thus, the overall sign of the physical amplitudes 

will be determined by the detailed dynamical question of whether 7J!;0)LL and , 

7j3 outweigh r,T, LL or vice versa. One would expect the answer to this 
2’ 

question to depend crucially on our particular choice of Lagrangian. (The reader 

fl29 This analysis also works for the G17 and G~Q channels but fails for the Dla’and D15 channels. 
This suggests that, for the D waves, the two-tiered hierarchy that we have postulated for 
the reduced amplitudes runs into trouble; we shall return to this shortly. 



should contrast this example with that of Eq. (8).) In light of this, it is not 

surprising to find disagreement between the Skyrme model and experiment in 

the Go7 channel. 

As a somewhat different example, consider the Fo7 and Gag amplitudes for 

the same process. Here, the coefficients given in Eq. (7b) are so small to begin 

with that it was probably an unjustified approximation to have dropped the 

contributions of the other reduced amplitudes. (Even a “small” amplitude, after 

all, can make a significant contribution if it is multiplied by a sufficiently large 

number.) In particular, the coefficients of 7itfiL and TL’+’ LL for these channels 
-+- - , 

turn out to be an order of magnitude bigger than those thxt appear in (7b), and 

of opposite sign from one another in addition. As a result, we can no longer with 

any degree of confidence make a quasi-model-independent sign prediction about _- 

the physical amplitudes, and should not be surprised to learn that the Skyrme 

model disagrees with experiment over the sign of the Fo7. 

We can summarize the discussion so far in this Section by the following 

statement: Whenever a Skyrme-model prediction follows from (i) the two-tiered 

hierarchy among the reduced amplitudes and (ii) group theory, as illustrated in 

j%s. (41-09, th ere is a high probability of agreement with experiment. Con- 

versely, in all other cases the agreement is much less reliable. In particular, we 

can certainly expect that specific details about the shapes of amplitudes will vary 

significantly from model to model, as will the precise values of masses and widths 

of resonances. In all of these areas, there is significant room for improvement over 

the Skyrme model. 

One specific recipe for improvement is suggested by the observation that 

fully 35% of the channels with L’ = L for which the sign of the Skyrme-model 
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amplitude disagrees with experiment are D-wave processes. This leads one to 

suspect that the hierarchical hypothesis probably does not work very well in the 

D-wave sector of L&t-a conclusion bolstered by the violation of the big-small- 

small-big pattern in that sector (Fig. 1). (We will supply a further piece of 

evidence for this conclusion in the next Section.) Unfortunately, it is not clear 

how best to modify the hierarchical assumption for the D waves in order to 

predict the signs more accurately. However, an analysis similar to that used in 

Eq. (8) suggests that the reduced amplitudes T,~~l, T2go} and 7g,2 probably 
2 

cannot be neglected in Nature, as they can in the Skyrme model. 
-rc- - - 

It is interesting to note that, in the Skyrme model, the two-tiered hierarchy 

(i.e., the unexpectedly small size of five of the eight reduced amplitudes for each 

L > 0) actually comes about for three independent reasons: 

(i) The reduced amplitudes 7LlL are small because they only 
2’ 

LL and 7Li 1 
5, 

LL 

receive contributions from the Wess-Zumino term. 13 

(4 ?i$$L7 7,-,&L, and 7&,LL are small because the differential equa- 

tions that determine the phase-shifts7”3’14 contain attractive terms proportional 

to factors such as (L(L+ 1) -K(K+ l)]; such terms therefore give a net repulsive 

contribution to these three reduced amplitudes, which have K > L. (Note that 

7Li&LL is thus “doubly small.“) 

(iii) 7~~~1 vanishes identically in the Skyrme model because of the commu- 

tator in the middle term of Eq. (1). 

In our opinion, conditions (i) and (ii) will almost surely survive the addition 

W) of extra terms into the Skyrme Lagrangian. In contrast, the size of ILLL can 

be expected to vary greatly from model to model. In fact, it is possible that 

this amplitude might not be completely negligible in the “optimal” 3-flavor ef- 
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fective Lagrangian of Nature, and that this might partially account for some of 

the disagreement with the Skyrme model. 

Thus far in this Section, we have focused on processes in which the initial 

and final meson orbital angular momenta L and L’ are equal. The analysis has 

involved an interplay between group theory and dynamics, the former providing 

the numerical coefficients, and the latter enabling us to focus on only three of the 

eight contributing reduced amplitudes. In contrast, processes with L’ = L f 2 are 

much simpler to analyze, since, as discussed in Section II, the physical amplitudes 

are proportional to a single redused amplitude 7 -rC- i>FL = 7i>i! with K = (L + - - 

L/)/2. Thus all PF and FP ?rN, KN and EN amplitudes, for instance, are 

predicted to be proportional to one another in the skyrmion approach, regardless 

_- of the details of the effective Lagrangian that one starts with. Predictions of 

relative signs and sizes between such amplitudes thus reduce immediately to 

questions of pure group theory. 

Tables XIV summarizes the situation for the 20 zN --) 7rA , KN + KA , 

EN -+ KA and KN -+ TX* channels with L’ = L ZIZ 2 for which we presented 

experimental partial-wave data in Sections III-V. The column labeled “Coeff.” 

gives the group-theoretic coefficients from Eq. (3) (rounded off) that multiply the 

reduced amplitude 7$i?i, K = (L+ L’)/2. (S’ mce, in the Skyrme model, these re- 

duced amplitudes lie in the lower half plane, the resulting physical Skyrme-model 

amplitudes will have opposite sign to the indicated coefficient.) The column la- 

beled “size” gives our rough estimates of the global sizes of the experimental 

amplitudes (admittedly an ill-defined concept), together with the observed signs. 

The five channels in which the Skyrme-model graph disagrees in sign with the 

experimental analysis are marked by asterisks. 
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CHANNEL COEFF. SIZE CHANNEL COEFF. SIZE 

SD11 (TN + ml) -.44 .2 FP15 (TN + z-A) .33 -.3 

SD31 (TN --) xA) .14 -.3 FP35 (TN + ?rA) -.lO .15 

DS13 (TN + zA) .31 -.2 PFo3 (KN --) xX*) -.27 -.15* 

DS33 (TN + rA) -.lO .2 FPo5 (KN + rrC*) .22 -.15 

SDll (KN + KA) .04 .l?” FP15 (TN + rrC*) -.08 .Ol 

DS13 (KN + KA) -.02 .l FP15 (TN + KA) .03 ? 

SDr,l (KN + dC*) -.30 .05 

SDll (EN -+ TX*) .ll -.2 DGo5 (KN + nrC*) -.27 -.03* 

DS13 (EN ---) dC*) =fl? - .15 DG15 (KN 3 TIC*) - .09 .03* 

SDll (KN --) KA) - .04 .04 GD17 (KN + RA) .03 .02* 

DS13 (KN + KA) .02 -.l 

Table XIV 

The relative sign and size information contained in the “Coeff.” column 

within each of the three categories SD/DS, PF/FP and DG/GD is completely 

model-independent. Unfortunately, the size predictions do not seem to correlate 

well with experiment, and no SU(3)-preserving modification of the Skyrme La- 

grangian can improve matters. In particular, the KN + KA and RN + RA 

curves are predicted to be an order of magnitude smaller than the corresponding 

TN + 7rA amplitudes, whereas if one trusts the experimental solutions they are 

almost as big. In contrast, the questions of the relative sizes between the three 

categories, as well as the relative sizes uis-his the amplitudes with L’ = L, are 

highly model-dependent; in both these areas, the latter especially, the Skyrme 

model can be improved upon greatly. 

As for signs, there is of course no way to bring about agreement with the 

. 
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experimental analyses regarding the sign of the SDll(KN -+ KA ) and the 

‘. .i 

PFo3 (KN + rrC* ) graphs without destroying the agreement for the other SD/ DS 

and PF/FP channels. On the other hand, one might imagine constructing a 

model in which the reduced amplitude T,I214”1 lies in the upper half plane, as op- 

posed to the lower half as in the Skyrme model; such a model would then agree 

with the experimental sign predictions for the three DG and GD channels listed 

in Table XIV. It is reassuring that the Skyrme-model sign predictions agree fully 

with the experimental solution for. ?rN -+ 7rA , which we can trust much more 

than the other three processes. 
-4,. - 

VII. Linear Relations Between Experimental Amplitudes 

_. In order to assess the validity of the 3-flavor scattering formalism that .we 

have developed, it is crucial to verify that the successes of the 2-flavor approach 

are retained. In Section III and in Ref. 13, we showed that, in fact, including a 

third flavor improves the agreement between the Skyrme model and experiment 

for the process TN 4 TN . In this Section we consider the effect of incorporating 

strangeness on the model-independent linear relations between experimental ?rN 

amplitudes that were analyzed in. Ref. 8. In addition, we shall supply evidence 

for the “hierarchical hypothesis” put forth in Section VI. 

Our analysis in this Section is predicated on the assumption that Eqs. (2) 

and (3) are applicable, not only to the specific case of the Skyrme model, but also 

to the optimal effective Lagrangian f&t, to which the Skyrme model is at best a 

crude approximation. (Of course, the reduced amplitudes will differ.) With this 

in mind, we now leave the Skyrme model behind, and apply Eqs. (2)-(3) directly 

to the study of the real-world TN amplitudes. In short, we are assuming that a 
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skyrmion interpretation of the baryon is legitimate, and that the simultaneous 

approximations of large-N, and exact SU(3)fl,,r (both of which enter crucially 

in the derivation of (3)) are physically relevant. 

If we represent the physical amplitudes for TN --) TN by TLyJN as before, 

then Eq. (3) can be shown to imply: 

(4L + 2)T;y;-~ 
29 2 

- (L - l)T;y;-i 
2, 2 

- (3L + 3)T;:;+l 
2’ 2 

13L-5 
= 

qgTLT-’ LL 2’ 
+- 

23(L+1) 7- 

45 L-+$,LL 

(94 

and 
-rC- 

(4L + ~)T;‘;+L - 
2’ 2 

3LT;y;s 1 - 
2’ 5 (L + 2)T;y;+I 

2’ 2 

$7L:L LL + y7L;l LL. 
w 

= 
2’ I’ 

These equations relate the experimental TN amplitudes to reduced amplitudes 

which can presumably be extracted from a phase-shift analysis of &,t. Unfortu- 

nately, &,t, obtainable in principle from QCD, is unknown. Thus, without some 

further approximation, Eq. (9) is entirely without predictive power; 

However, using the 3-flavor Skyrme model as a guide (cf. Appendix A), one 

can expect the right-hand sides of (9) to be extremely small (note that they would 

vanish identically were it not for the Wess-Zumino term). Accordingly, let us ex- 

amine the linear relations between experimental amplitudes that result from set- 

ting the right-hand sides of (9) to zero. Here we find a surprise: these are precisely 

the same relations that follow, without any such dynamical approximation, II30 

fi30 Recall that the Wess-Zumino term vanishes in the a-flavor case. 
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from the 2-flavor formalism!8915 In general, these relations work quite well, with 

the exception of severe problems in some of the lower partial waves, for which a 

leading-order l/NC analysis is inadequate; the reader is directed to Ref. 8 for full 

details. The logical conclusion is that the Wess-Zumino term must make only a 

small numerical contribution to the real-world meson-baryon T-matrix. tl31 

It should be emphasized that, a priori, we had no right to expect any re- 

lations, approximate or not, between physical TN + TN amplitudes to emerge 

from the 3-flavor formalism. The reason is the following. In the 2-flavor ap- 

proach, the four physicalzN amplitudes for each L > 0 (i.e., J = L f ) and - 
I = i, 9) are expressed through Eq. (2) as superpositions of only three reduced 

amplitudes. Consequently, at least one nontrivial relation between physical am- 

_- plitudes is guaranteed for ,each value of L (in fact, there are two). In contrast, 

in the 3-flavor approach, these same four amplitudes are linear combinations of 

eight reduced amplitudes. That the relations turn out to be the same in both 

formalisms is cause for further surprise, since the group-theoretic factors multi- 

plying the 7i;L}’ s are completely different in the two approaches. 1132 
‘.‘- 

We can also extract from (3) information about TN + TA . &et us repre- 

sent the physical amplitudes for this process by TLgTJ with L’ the exiting pion 

angular momentum (which can differ from L by two). For the case L = L’, Eq. 

(3) implies: 

3 -- (L+1)(2L+3)(2L-1) . TrN~A 

2L+l 1OL LL&L-+i 

fl31 This conclusion differs from that of Ref. 16. 
032 Compare Table XVI of Appendix C to Appendix B of Ref. 8. 
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and likewise 

Setting the right-hand sides to zero as before, we again recover precisely the 

%-flavor predictions of Ref. 8. Similarly, for the case L’ = L f 2, Eq. (3) can be 

shown to imply the simple proportionality relations 

Y - -rNx4’ - -a,- 

which are identical to the 2-flavor results, with no “Wess-Zumino corrections.” 

In the 2-flavor case, there was, for each L, one further (fairly successful) 

model-independent prediction relating the processes TN + TN to TN + TA :8 

T 
rNnN rNrN 

L&L-i -TL;,L+; 

(12) 
rNnA rNmA 

= 
TLL$,L+i 3 

but this is completely lost in the S-flavor approach. 

In sum, we have shown that, with the dynamical assumption 

7- Lf’ LJW) = 0 
2’ 

suggested by the 3-flavor Skyrme model, the 3-flavor formalism yields almost 

all .the model-independent linear relations between experimental TN scattering 
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amplitudes that emerged from the 2-flavor approach. It is natural to explore the 

consequences of making additional dynamical assumptions about the optimal 2- 

and 3-flavor effective Lagrangians of Nature. 

A natural set of such assumptions is suggested by the “big-small-small-big” 

and “big-small-small-small” patterns exhibited by the experimental TN and KN 

amplitudes, respectively. As reviewed in detail in the previous Section, we can 

expect the big-small-small-big pattern to occur automatically for a broad class of 

2-flavor models for which the reduced amplitude 7iJ$)iL are negligible compared 

with 7L?FiL and Ti$). , Similarly, we saw that the same pattern would char- -&- - 
acterize 3-flavor models if, out of the eight reduced amplitudes for each L > 0, 

the amplitudes 7~~~~L, 7ilf}, TLii LL, and TL’tL LL are small compared to the 
2’ 2’ 

others. We have seen that these conditions are met in the 2- and 3-flavor Skyrme 

models. Fortunately, we have the means of testing whether these dynamical 

assumptions are valid approximations for the optimal 2- and 3-flavor effective 

Lagrangians of Nature as well. For, with these additional approximations, the 

2-flavor formalism (Eq. (2)) and the S-flavor formalism (Eq. (3)) can be shown 

to imply the extra relations: 

3LT;y;-, 
2’ f + CL + w;y;++ 

+ (1OL + 11) 

and 

3LT;;‘;+ + (L + ~)T;?;+I 
2’ 2 

r32L 
rNmA 

(13) 

(14 

respectively, which relate the processes TN + TN and TN + rA . 
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‘.- FIG. 15. Test of F& (13) and (14). The upper and lower expressions in braces, which refer 
to the process IAN + nA , are the 2-flavor and 3-flavor predictions, depicted by dot-dash and 
dotted lines, respectively. The expressions to the left of the equalities, which refer to nN -+ 7rN , 
are depicted by solid lines. 
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Figure 15 tests these relations as applied to the experimental TN + ?rN l7 

and TN + ?rA 2oLP-, D- and F-waveamplitudes.n33 Clearly, there is no substan- 

tial difference between the 2- and 3-flavor predictions in the degree of agreement. 

It should be noted that the agreement in the signs of the amplitudes is in itself 

a nontrivial result. For the P and F waves, the relations appear rather well 

satisfied. In particular, Eqs. (13) and (14) work roughly as well as Eq. (l2), 

which likewise relates ?rN + TN and TN --$ IDA . Equation (12), however, was 

derived from the 2-flavor approach without additional dynamical approximations 

(cf. Ref. 8 and Fig. 7 therein). In other words, incorporating these extra ap- -6. - - 
proximations does not noticeably worsen the agreement for the P and F waves. 

Unlike Eq. (12), however, there is poor agreement evident in Fig. 15 in the 

D waves-which is consistent with the fact that the big-small-small-big pattern 

itself does not work well for the D waves (cf. Fig. 1.) 

Our conclusion, suggested by the big-small-small-big and big-small-small- 

small patterns and reinforced by Fig. 15, is that the dynamical assumptions 

stated above are (with the probable exception of the D waves) good descriptions 

of the effective Lagrangian derivable, in principle, from QCD. We hope that, 

-as such, they will prove to be useful constraints on the current model-building 

efforts in skyrmion physics. 

d33 In order to make use of the available curves for TN -+ aA , 2o we have combined Eqs. (13) 
and (14) with a. (10) for the P and F waves. As discussed in Ref. 8, it is not obvious how 
best to relate energies when comparing processes such as TN -+ nN and ?rN --) TA with 
different thresholds; following the practice adopted there, we have para- 
metrized the amplitudes in Fig. 15 by fexcitation energy” AE,,, measured from the 
average of the rrN and IDA thresholds. 
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APPENDIX A. Reduced Amplitudes of the Skyrme Model 

.I 
This Appendix depicts the reduced amplitudes of the 3-flavor Skyrme model. 

The amplitudes 7#‘;2 are identical to their 2-flavor counterparts, and were pre- 

sented previously in a less transparent form. 7~14 It is convenient to present the 

results for the linear combinations 

The differential equations$om which the 7$;z’s and 7~~‘1),B are extracted - 
are given in Refs. 7 and 14 and in Ref. 13, respectively..n34 

_. 

It is clear from Fig. 16 that, with some exceptions in the lower partial waves, 

the reduced amplitudes { 7Jt<iL, 7iki1, T+ L-i,LL} vary much more dramatically 

as functions of energy than do the other five amplitudes { TL(:;s)LL, 7iif), Tt’+ 1 
II 

LL, 

7- L-&LL TLi’ 29 LL). 

d34 N.B. The reader should exercise caution in applying the formalism presented in Section 
II of Ref. 7 to processes with L’ = L f 2: On the one hand, there ought to have been 
a minus-sign in the off-diagonal elements of SK defined in Q. (16) of Ref. 7 due to our 
Bessel-function conventions. On the other hand, Fig. 6 of Ref. 7 is in error and should be 
disregarded. 
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FIG. 17. The reduced amplitudes of the Skyrme model for the case L’ = L f 2. See text of 
Appendix A for details. 
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APPENDIX B. Formalism for S-Flavor Scattering 

In this Appendix we review the derivation of the 3-flavor scattering formula, 

Eq. (3), given in Ref. 12. We shall be focusing on Lagrangians such as Eq. 

(1) where U E SU(3). The key assumption is that the Lagrangian admits a 

“hedgehog” soliton solution Ue that lives in the conventional isospin subgroup of 

SU(3), viz : 

UO = exp{iF(r) ei+x’j, 
i=l 

(15) 

with Xa, a = 1, . . . . 8, the Gell-Mann matrices. We shall refer to Uo as a skyrmion -rC- - 
in its canonical orientation. 1135 

_- 

Of course, other orientations of the skyrmion are possible. In fact, by virtue 

of the assumed SUM,,,, invariance of the Lagrangian, one can construct a 

family of degenerate solitons simply by taking 

UA = AUoA-‘, A E SU(3). (16) 

However, let us forget for the moment about the existence of these degenerate 

configurations, and concentrate on the simplified problem of mesons scattering 

from UO. This entails lettingn36 

u. --+ exp{iF(r) 5 F’X’ + F t d”X”) 
i=l T a-l 

(17) 

and expanding the Lagrangian to quadratic order in the 4’s. Higher-order terms 

fi35 The results of this Section would be unaffected if the q field had a radially-dependent 
expectation-value as well, although this is not the case for the particular example of 
Skyrme’s Lagrangian. 

fl36 For calculating on-shell amplitudes, this parametrization of the meson fields is equivalent 
to the one advocated by Schnitzer. 

48 
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are suppressed by powers of l/fr - l/a, and are therefore ignored in our 

lowest-order treatment. 

What will the resulting quadratic Lagrangian look like? Thanks to the hedge- 

hog structure of the skyrmion, it will consist of a sum of terms in which all isospin 

and spatial indices have been contracted together in all possible ways to form sin- 

glets under the “hybrid” angular momentum K, which is the vectorial sum of 

isospin and angular momentum. Also, since the skyrmion commutes with X8, 

the Lagrangian will embody hypercharge conservation. Consequently, kaons will 

be coupled only to kaons, and antikaons to antikaons. There will be 7~ and qq 
-&- - - 

couplings as well, but rq terms are forbidden by G-parity. In other words, the 

T-matrix T” characterizing the process 

t#~” + canonical skyrmion -+ r#~* + canonical skyrmion, 

which is a priori an 8 x 8 matrix in the flavor-space of pseudoscalar-octet mesons, 

actually block-diagonalizes into a 3 x 3, a 1 x 1, and two 2 x 2 pieces, corresponding 

to 7r, r], K and K scattering, respectively. 

We have not yet made full use of the K symmetry of the canonical skyrmion. 

To do so, we first expand 4” and q5b in spherical harmonics YLM and YL,M,, 

with primes henceforth denoting final-state quantities. These orbital angular 

momenta are, in turn, added to the mesons’ isospin Ia and Ib by familiar Clebsch- 

Gordanry to form states IK2.KZUa > and IK’2KL,5’lb >. The K symmetry of 

the canonically-oriented skyrmion then implies K = K’ and Kz = KL; likewise, 

thanks to the block-diagonal nature of T*a, we must have Ia = I*. In contrast, 

L and L’ will not necessarily be equal, but can differ by two. Scattering in these 

K-channels will then be described by the reduced amplitudes 7$>2, T#iz and 
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. 
+&‘) defined in Section II (just as scattering from a spherical potential can be 

characterized by reduced amplitudes 7~). In equations, the T-matrix will thus 

be given by: 

Tba = 61,1a&.ys c < &z’)IL’M >< LMIba(s) > 
LML’M’ 

x c < L’IbM’Ib .IKK, >< KKzILIaMI,a > ?--L:;a’ 
(18) 

KK, 

where {la, I,“, Ya} and {I*, It, Y*} are the SU(3) quantum numbers of the in- 

coming and outgoing meson, respectively. 
-&- - - 

This formula is easily generalized to account for the scattering of a meson, 

not from a canonically-oriented skyrmion Uo, but rather from a rotated skyrmion 

_- UA as defined by Eq. (16). The prescription is simply 

Tba d c D(8)(A)bd Tdc P’8’(A);a 
cd 

(19) 

with Dc8)(A) th e adjoint representation of A. Armed with Eqs. (18) and (19), 

we are finally prepared to tackle the scattering of a meson off a physical baryon, 

which, in the soliton approach, is characterized by a superpositioiz of VA’S for 

-aI1 values of A E SU(3), weighted by appropriately-constructed wavefunctions 

x(A). The physical T-matrix is then given by: 

J ‘A Xfi,,l(A) C Dc8)(A)bd Tdc D(8)(A)iaXinitial(A) (20) 

SW) cd 

The final ingredient that we need is an explicit expression for the baryon 

wavefunctions x(A) describing a baryon with spin, isospin and hypercharge quan- 

tum numbers {s, sZ, i, i,, Y}. Unfortunately, the S-flavor wavefunctions given by 
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Guadagnini,4 which are often used 

standard transforplation properties 

. I  correct wavefunctions are, instead, 

in the literature, are characterized by non- 

under isospin and angular momentum. The 

. (-l)- (21) 

where cy = {s, -sZ, l}, /? = {i,i,,Y}, R denotes the SUM,,,, representation of 

the baryon, and dimR is its dimension It37 

As in the 2-flavor ca%e3- , the-integration over A can be carried out in closed 

form, thanks to some standard identities. The resulting expression simplifies 

greatly if, as indicated in Section II, we project the initial and final meson- 

baryon systems onto states of definite total angular momentum and SU(3)&,,. 

(The latter projection is accomplished with the help of an SU(3) Clebsch-Gordan 

coefficient 

-:-- 

(~1~1w5; R2i2iz2Y2IRtotr~ttotIztotYtot) 

which can be factored conveniently into the product 

~ili2izliz2IItotIztot) - 
RI R2 

GY, i2y2 

of an SU(2) Clebsch-Gordan coefficient with a so-called isoscalar factor. 44 ) With 

fl37 See, for example, Manohar. ” The fact that the “left-handed hypercharge” is unity is a 
nontrivial quantization condition arising from consideration of the Wess-Zumino term. 

4 

Our normalization in (21) is such that IsU(31 dA = 27?. 
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quantum numbers defined as in Section II, we find, after some manipulation: 

T({LsRRt,trIttot~~totYtotJ} + (L’s’R’R,‘,tr’It6tI~totYt~tJ’}) = 

(-1)s~-8J 
dimR-dimR’ 

dimRtot C GC(2i-t 1)(2K “) 
{IY} i K 

{ s:‘fI} { :-:) (22) 

The long string of Kronecbr G’s-expresses the reassuring fact that total angular 

momentum and SU(3)a,,, are conserved in the scattering process. This is Eq. 

(3). 

Note that the derivation of this formula is independent of the particular 

Lagrangian that we started from, apart from the requirement that it admit a 

hedgehog soliton as in Eq. (15). 

76 



APPENDIX C: Explicit Formulae 

for SU(3) Scattering Coefficients 

In this Appendix we present explicit formulae for the group-theoretic coeffi- 

cients multiplying the reduced amplitudes in the SU(3) scattering formula, Eq. 

(3). For fixed initial and final baryon representations, these depend only on the 

total meson-baryon representation Rtot and the total angular momentum J. We 

will restrict ourselves to the physically relevant cases when the initial baryon is in 

the spin-k octet, and the final baryon is in either the octet or the spin-g decuplet. 

Table XV presents th@coefIGients of the reduced amplitudes for the case 

when the initial and final baryon are both in the octet. The decomposition for 

both the initial and final meson-baryon states is given by: 

where (following DeSwart 44 ) the 81 and 82 are synonymous with ssy,,, and 

8 antiaym, respectively. Note that, from Eq. (3), 

< 81182 >=< 82/81 > . 

Of course, for most physical processes, one is interested in a superposition 

pure SU(3)fl,,, representations. Consider, for instance, the case EN -+ 7rrC 

of 

in 

the isospinil channel. With the help of the table of isoscalar factors given in Ref. 

44, the initial and final states can be written as 

I* ‘in= 5 -$127>+Sjm> -+llO>-g181>+$182 > 
6 6 
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8x8-8x8 

.(27[27) 1 14L-1 16 L-t1 

-- (lOjl0) -- 15 1 2L-1 L h&p 0 6 1 a 6 0 -- 15 1 2L-1 2t+1 -- 16 4 2L+1 L+l 

(lOjl0) & "&yy1;" $ y 5 w 0 0 0 -- 15 1 2L-1 2t+1 -- 15 4 2L+l L+l 

(81181) &y - 20 3 - L+l L 0 75 l 0 0 -- 10 1 IL-1 2L+1 -- 3 5 2L+1 L+l 

(82 182) 2L-l 12L t+l 12L 0 1 4 0 0 -- 1 4L+1 -- 1 L+l 
G 2I.+1 3 2L+l 

-- 
(8,182) 2L- 1 L+l gz m -6-o -1 7= 0 -0 !QZ&Tii ‘722% 

w 0 0 0 0 0 0 1 0 

J=L+; 

1 14L+15 
135 2L+l 135-zTi 

(iirji0) 0 -- 1 L 
15 t+1 

15 1 2LS3 L+l 1. 5 0 2 5 -- 15 4 2L+l L -- 15 1 2L+3 PL+l 

(lope) g-m - 2 - 2L+3 15 L+l ix 2 (L+2)(2L+3) (L+1)(2L+l) 0 0 0 -- 15 4 2L+l L -- 15 1 2L+3 2L+l 

(8481) 0 3 L 
20 L.+1 

- 20 3 - 2L+3 L+t L 20 0 0 3 -- 5 2L+l L -- 10 1 2L+l 4t+5 

(82182) 0 - L - 2L+3 
12(L+l) lz(L+l) 

I 4 0 0 3 -- 1 PL+l L G -- 1 2L+l 4L+3 

(81182) 0 2L+3 -1 0 0 -L -1 
gzij7z Ji;i; Ji;o qzizii 

(111) 0 0 0 0 0 0 0 1 

Table XV 
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98L”-L-24 
135L(2L+l) 

25L+24 I I 135L i$Eij 1 15 

2L- 1 
135(2L+ij 

25L+l 98La+lQ7L+7\ & 
135(L+l) 135(2L’+3L+l 

[ZGL’-37L+12) 25L- 12 37 2L+3 1 
135L(2L+l) 135L 135 PL+l is 

37 2L-1 25L+37 2GL”+8QL+75 1 
135 2L+l 135(L+l) 135(2L’+3L+l) is 

4L 58L+33 17L 
-itzpGijm195(2L+Tj 

2(2L-1) 8(L+l) lGL-5 
27(2L+ijj mj i-j 

2(2L+3) 2GL - - 
27(%+1) 27(2L+l) 135(2L+l) 

TW’) J 
L+ &LL 

I 
I 

17(L+l) L- 1. 1 
i?iqzx- 2 5 

swj L+i i 

lGL+21 
135(2L+l) L+i ; 

-&- - 

Table XVI 
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t’ 
/. 

/ 
/ 

I 

8x8-410x8; L’ = L 

Jr&-$ 

R tot TIim 
L-l.LL 

+o) 
LLL 

+.o) 
L+l,LL 

(27127) (3-4L)&W+l)W-l) -(L+G) 5(2L-1) 
135L(2L+l) -imJZ $%i)dW O 

-2dlo(2L-l)(L+l) 2\/10(2L-l)(L+l) 2&2L-l)(L+l)/lo 
27(X+1) 27(2L+l) 27(2L+l) 

(101 10) 2(1-L)d(2L-l)(L+1)/5 -(L+4) 
&J$z+ O 0 -y/(2L-l)(L+1)/5 

3L(2L+l) GL @$j 3(2L+l) 

(8181) 
-4L+1)(2L-l)/lO ~(L+1)(2L-1)/10 

2L 2L 0 0 0 I 0 -4L+1)(2L-l)/lO 
2L+l 

031%) 
- 2(L+1)(2L-l) 2(Lt1)(2L-l) 

12L 12L 0 0 
0 

I 
0 J2(Lt1)(2L-l) 

Gl2L+l) 

. 

J=L+; 

-2d10L(S?L+3) 2 lOL(2L+3) 2 L(2L+3)/10 
27(2,Ltl) G <7(2L+l) 

L-3 
If--- 

z!Jz 2(Lt2)JL@L+3)/5 6(L+1j 3(L+1)(2Ltl) 0 0 o 

Table XVII 



8x8 - 10x8; L’=Lzk2 

R tot (L, L’) = (K - 1, K + 1) (L, L’) = (K + 1, K - 1) 

(27127) 1 
6 J- 

px+1 
30K 

:lo(lo) =%F 

Wl) 

(S/82) 

--rLr- %ble XVIII 
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and 

Out 

The amplitude for this process is thus given by 

-- 
out <\El\k >in=-5 <10110> -f <10110>--1 

d 
<&18r > +; <82182 > . 

Each term in this expression can, in turn, be expressed in terms of reduced 

amplitudes using Table XV. 

As an important example ofthis procedure, Table XVI gives the-coefficients 

for the case of TN elastic scattering in the 3-flavor formalism. These coefficients 

can be directly compared to their 2-flavor counterparts presented in Appendix B 
_- 

of Ref. 8. 

Table XVII presents the relevant coefficients when the initial and final baryons 

are in the octet and decuplet, respectively, and when the initial and final meson 

angular momenta are the same (L = L’). Th e relevant decomposition of the final 

state is now: 

10x8=35+27+10+8. 

Table XVIII lists the coefficients for the analogous 8 x 8 + 10 x 8 processes 

when IL- L’I = 2. Note that these coefficients all multiply the single contributing 

reduced amplitude T#iyL = 7iiL!, where K = (L + L’)/2. 

82 



APPENDIX D: Skyrme-model predictions for additional processes 

In this Appendix we display the Skyrme-model amplitudes for the six 

q&N --) q&B processes for which we were unable to find experimental partial- 

wave analyses in the literature, namely: TN + VA , TN ---) KC* , RN + QC , 

KN + qC* , KN + KE and KN + KS* . As always, the plots are from 

threshold to an excitation energy of 2e fir. On the basis of the results of Sec- 

tions III and V, we would expect good agreement for the F and G waves, mixed 

agreement in the D waves, and poor agreement in the S and P waves. 
-&- - . 

-:-. 
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