
SLAC - PUB - 3900 
March 1986 
P/E) 

.I GA~GESTRUCTURESBEYONDTHESTANDARD 
MODELANDlOO-GeVMASSREGION* 

M. CVETIC+ AND B. W. LYNN 

Stanford Linear Accelerator Center 

Stanford University, Stanford, California, 94305 

AJBSTRACT - r 

We study various forward-backward and polarization asymmetries evaluated 

near Z” resonance for theories with sum x U(l)= x U(l)y, and sum x 

-- Sum x U(~)B-L gauge structures. Extension to other gauge structures is very 

simple in our formalism. We construct a linear combination of polarized forward- 

backward asymmetry and polarization asymmetry with initial state electron lon- 

gitudinal polarization whose deviation from the value of the standard model can 

I=-- measure the effects of new currents directly. The analysis is exact at the tree 

level of the theory and enables one to study any model with any Higgs’ sector in 

terms of a fixed number of parameters. The results show that for a typical class 

of models the measurement of different asymmetries to 1% will impose a lower 

bound on MZI, the mass of an additional neutral gauge boson, to be of order 10 

Mz. Even much less accurate measurements will yield interesting information 

about new gauge structures. We also examine the implications of extended gauge 

structures for the precise value of the W* mass. 

Submitted to Physical Review D 

* Work supported by the Department of Energy, contract DE - AC03 - 76SF00515. 
+ Invited lecture at ‘Conference on Experimental Uses of the Mark II Detector at the SLC’, 

March 16-19, 1986, Asilomar, California 



1. INTRODUCTION 

.I 

The standard Glashow-Weinberg-Salam (GS W) [l] model of the electroweak 

interactions based on Sum x U(l)y has achieved important success in describ- 

ing neutral and charged current processes and determining the mass of W  and 

2 gauge bosons. However, this theory contains many undetermined parameters. 

If these parameters are not to be put in ad hoc but rather to be determined by 

theory, then we must look for a still more fundamental theory of electroweak 

interactions which reduces to GSW at low energies. These more fundamental 

theories in general predict the @stence of many new particles and the_ search r 

for these novel excitations has been a major preoccupation of physicists work- 

ing at the highest e+e- and pp colliders. In the late 1980’s, LEP/SLC and the 

Tevatron will explore the mass region up to about 100 GeV. Further direct ex- 

ploration must await the very high energy hadron-hadron colliders planned for 

the late 1990’s. 

*.r We may hope to evade the need to obtain increasingly higher center-of-mass 

energies by searching for indirect effects of the new particles. A previous paper 

[2] showed how to search for indirect effects of new heavy scalars and fermions 

which couple to the gauge bosons of SU(2)l x U(l)y; by studying the various 

polarization and forward-backward asymmetries on Z” resonance in e+e- + ff 

processes at the 1 percent level, experimentalists at LEP/SLC could see the 

virtual quantum effects of the new particles and place limits on the scalar and 

fermion particle spectrum in the 100 GeV - i TeV region. In this paper, we 

show how to look for indirect effects of new gauge bosons in the 100 GeV - 1 

TeV mass region. 

One of the more interesting theoretical proposals is the possibility of an en- 
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i larged electroweak gauge group structure. Some of the new gauge bosons arising 

from such an enlarged gauge symmetry can have a mass of order 2 to 3 Mz with- 

.I out contradicting present experimental bounds. One such class is a left-right 

symmetric gauge theory [3] b ased on Sum x Sum x U(~)B-L. A left-right 

symmetric theory is appealing since it allows for spontaneous breakdown of par- 

ity. [4] Another class has an extra U(1) gauge group, i.e., the gauge structure 

is Sum X U(l)y X U(l)y~. This might appear as a low energy electroweak 

symmetry [ 51 arising from string theories [6]. Both gauge groups can appear as 

an intermediate gauge structure within a grand unified theory. 
- -& r . 

Due to the new gauge structure there are new currents; the particles have 

quantum numbers under the new group. Further, the 2 and W* currents are 

-- modified because of the admixture of the new currents and gauge bosons, thus 

changing the physics even at the energy scales of the W and 2 masses. 

In this paper we show that a new gauge structure can be tested by measur- 

ing various asymmetries in e+e- ‘-r collisions at energies around the 2 resonance. 

Namely, the admixture of new currents changes the prediction of the standard 

model. Thus, SLC/LEP physics near 2 resonance offers a very important oppor- 

tunity to test for new gauge structures beyond the standard model. SLC/LEP 

experiments will be done with high precision, large statistics and good detectors. 

Also, e+e- physics is theoretically “clean”, since it minimizes theoretical strong 

interaction uncertainties. This could enable SLC and LEP to measure deviations 

of various asymmetries from the standard model to a precision of about 1% [7] . 

In the present work we evaluate various asymmetries in e+e- collisions for 

theories with a gauge group larger than the one of the standard model. In particu- 

lar we give results for the left-right symmetric group Sum x Sum x U(~)B-L 
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i and the gauge group with an extra U(l), i.e., sum x U(l)y x U(l)y~. However, 

_- this approach can be used for any gauge group beyond SU(2),5 x U(l)y . The 

.I fermionic currents and the gauge boson mass eigenstates are determined at tree 

level exactly. The results are valid for any Higgs field content and any vacuum ex- 

pectation value pattern which breaks the original symmetry via SU(2),5 x U(l)y 

down to U(l),,. We reparametrize the models in terms of a fixed number of 

parameters. Such an approach enables us to study any model within a proposed 

gauge group over the whole range of permitted values of MZI, the mass of an 

additional gauge boson. 
- -4 - . 

As A4z1 + 00 these models reduce to sum x U(l)y irrespective of the 

representation of the Higgs fields, i.e., decoupling takes place. Thus, by mea- 

-- suring a deviation of the polarization and forward-backward asymmetries from 

the standard model one can exclude a whole range of models with additional 

symmetries and impose a lower bound on Mz,. 

----- A particularly interesting quantity is Acyb (defined in Section 2), which is 

a particular linear combination of the deviation from GSW of the polarized 

forward-backward asymmetry for e-(L)e+ + EC, ?ctb and the deviation from, GSW 

of the initial state longitudinal polarization asymmetry for e+eiol + p+p-. An 

important observation is that Acpb measured on 2 resonance, is identically zero 

in sum x, U(l)y even when the oblique [2,8] quantum corrections due to new 

scalars and fermions are included. Thus, Acpb # 0 is a clear indication that new 

undiscovered particles couple to e, p, c, b, i.e., that there are new currents. At 

the tree level this can only be due to new gauge structures. 

Hollik [9] has considered the shifts in the left-right and forward-backward 

asymmetries in e+e- -+ ff, f = u, d, h, 7, for specific extended gauge groups 
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i with a very specific set of Higgs’ representations and symmetry breaking param- 

eters. We generalize on his work in the following ways: 

.I (1) We show the effects of new gauge structures on all neutral and charged 

current processes at all energies; it is then clear how to compare SLC/LEP 

experiments to low energy neutrino scattering or even production of new 

as yet undiscovered fermions at LEP2. 

(2) We show that th e number of new parameters entering these processes is 

fixed by the gauge structure alone and the quantum numbers of fermions 

under the new groups. We are then able to fix a subset of these (e.g. cy, G, - -4 r . 
and Mz ) in all models so as to display clearly the effects of new parameters 

and thus constrain them by experiment. 

-- (3) We display exact formulae for sum x sum x U(~)B-L and SU(2),3 x 

U(l)y x U(l)yr for any set of Higgs fields with any symmetry breaking 

pattern. The generalization to other gauge groups is then obvious in our 

formalism. 

(4) We show how to distinguish on 2 resonance, effects of new gauge struc- 

tures from quantum corrections in sum x U(l)y by studying specific 

combinations of asymmetries. We show further that a certain combination 

is only sensitive to the quantum numbers of e, p, c, b under G when the 

gauge group is sum x U(l)y x G. 

(5) There is another quantity which might be measured to high accuracy in the 

near future; the IV* mass. We also show how it changes in an observable 

way from the GSW prediction in an extended gauge structure. 

The paper is organized as follows. In Section 2 we define the measureable 

asymmetries. In Section 3 we summarize the results for SU(2),5 x U(l)y; we 
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i comment on the choice of measurable parameters of the theory, and the effect of 

radiative corrections. In Section 4.1 we present the exact form of the currents and 
:: 
‘,: determine parameters for a theory with an SU(2)l x U(l)y x U(l)yt local gauge 

group and in Section 4.2 the results for the various asymmetries are presented. 

In Section 5 we repeat the analysis of Section 4, but this time for theories with 

sum x sum x U(~)B-L gauge group. In Section 6 we summarize our results. 

2. MEASURABLES: ASYMMETRIES 

We shall study processes e%+ 3 fl at the center of mass energies around 

2 resonance. When the mass of the final state fermions f is much smaller than 

Mz helicity is approximately conserved even at the one-loop level at each gauge 

-~ boson vertex. This holds well for all the known fermions except the top quark. 

Also when f # e-, v,, the t-channel scattering graph is absent. In the following 

we shall consentrate for simplicity on processes with f # e, u,, t with t the top 

I:-- quark. Also, we shall not include the effects of final state hadronization processes 

for individual f = u, d, s, c, b quarks. We will, though, consider the initial state 

polarization asymmetry for the total cross section e+epolarized + hadrons (for 

mtop >- F) since the hadronization for this process is understood [lo]. 

For the processes subject to the above approximations the reaction e+e- + 

ff can be cast in the following form [2]: 

da(e+e-(P) + ff (P’)) 
dfl (2.1) 

Here P, P’ denote longitudinal polarizations L or R. A kinematic factor, kgp,, 

is equal to (u/s)~ for P = P’ = L,R and to (t/s)2 for P = L, P’ = R and 
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P = R, P’ = L. Here, u, S, t are the Mandelstam variables. The matrix element 

: [M(q2)lff' PP, is a properly normalized invariant amplitude which carries all the 

.I nontrivial information about the coupling. We shall write [M(q )Ipp, 2 ff’ for the 

general case of three neutral gauge bosons-photon, 2 and 2’: 

[M(q2)];ff& = (Jem)i(Jem)h’ + (Jz,~(Jz,~~ 
!12 q2 + Mi - iIm~?&ooP(q2) 

(24 

+ (Jz&Qz~)g, r . 
q2 + M;, - iIm n&gpp(q2) 

-~ (The generalization to more than 3 neutral gauge bosons is obvious.) Here we 

have used the Euclidean metric, and (J)f P refers to a particular fermionic current 

with fermion f having polarization P. For example the electromagnetic current 

is written 
.-L- 

Jem = e JQ (2.3) 

JQ = 4 7,~ Q + (2.4 

(J& = (JQ& = Qb = -f (2.5) 

with $J a fermion, e 2 = 47ro and Q the electric charge operator so that Qe = 

-1, Qc = 213. J z and JZI are obviously the 2 and 2 currents analogous to 

(2.3). The tree level width of the 2 (which, of course, is the imaginary part of the 

1 - loop 2 self-energy), Im I-&200p, reduces in the case where only light quarks 
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and leptons are produced at q2 = --s = -Mi to the following form: 

. . Mzrz = Im ~~~oop(“-M~) = 7 c 
f 

{ [ ( J~)L + ( J~)L] 2 

+ [(Jz)i - (Jz,~]~ (l-4$)} 

112 
CQCD 

. 

(2.6) 
with CQCD = 1 for leptons and CQCD N 3(1 + “e’r”n<-Mi)) for quarks. We put 

in this width and a similar 2’ width (gotten by replacing Jz by Jzt in (2.6)) so _- 

that the 2 and 2’ propagators remain finite on resonance. 

Having the explicit form for the partial cross section (2.1) one defines the left 

right initial state polarization asymmetry, the forward backward asymmetry and 
‘_--. 

the polarized forward backward asymmetry in the following way: 

A$+..--f ‘( vS) j- dq5(S,’ - J:,) d cos Oda(e+;,‘rf) = 
a(e+e- + ff) 

AFB 
e+C-+f+) = j-dqS(J; -j-f,) dcosBdu(e-(L)e++Pfl d-l 

a(e-(L)e+ + ff) 

(2.8) 

(2-g) 

e+e---rx f f 
with 8 the angle between e and f. We also define A,, 

8 
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way: 

A CL+RC-+CfJ(-S) = Cf# e,v,,t [“(e-(.L)e+ + ff) - a(e-(R)e+ 3 ffl] 

. . Cf# e,v,,t [a(e-(L)e+ -+ ff> + +-We+ -+ !f)] 
(2.10) 

In Eq. (2.7) f = t is not included because of the mixing of helicity amplitudes 

in the cross sections for final state top quarks. 

Also of interest at SLC/LEP is the r polarization symmetry 

A = 
a(e+e- --) d-r-(L)) - o(e+e- + T+T-(R)) 

rp01 a(e+e- + T+T-(L)) + a(e+e- + T+T-(R)) 
(2.11) 

On 2 resonance this is equal todhe left-right polarization asymmetry if e - r 

universality holds. 

The above quantities can readily be measured in the SLC/LEP experiments. 

On the 2’ resonance these asymmetries take on particularly simple forms because 

the first and third terms in (2.2) are negligible and the 2 propagator in the second 

term drops out of the final expressions for asymmetries (which are ratios of cross 

*-I_- sections). For example, if we define the following ratio of left and right-handed 

couplings of fermion f to the 2 at q2 = --s = -Mi 

Af = KJ&lZ - KJz&12 
i(Jz)i12 + [(Jz&]~ 

A:;-+p+p- (-M;) = Af;--f ‘( -M;) f # e,ue,t 

= ALR 
e+e--thadrons (-Mi) 

(2.12) 

(2.13) 

= A” 

so that initial state left-right polarization asymmetries to any final state fermions 

(except t,e,v,) gives information on resonance only about the initial state elec- 
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i trons [lo]. This means that we can use all hadronic data, with the increase in 

statistics, to measure ALR, the quantity of most interest in this paper. 

.I Similarly, the forward-backward asymmetries factorize 

4-B 
“+““‘ff(-M;) N ;!f 

(2.14) 

(2.15) 

In this paper we will assume thaLa.11 ofthese asymmetries have been calculated 

in the GSW model with one Higgs’ doublet and three generations of quarks and 

leptons including all relative O(crem) corrections - initial and final states brem- 
-- strahlung and weak and QED one-loop effects - and that the GSW predictions 

are known to much better than 1% accuracy. Further, we will assume that the 

asymmetries could eventually be measured to 1% accuracy. These two state- 

am:-- ments are of course the object of much controversy in the literature. There is a 

small hadronic uncertainty even in purely leptonic processes [ll] from the photon 

vacuum plarization of Fig. 1. Also, we will be interested in the forward-bac.kward 

asymmetries for e+e- + CE and e+e- + bi; with and without electron polariza- 

tion. Although a measurement of the asymmetry to b quarks to high accuracy 

seems feasible, an accurate measurement of the asymmetry to c quarks could be 

very difficult because of the contamination of c due to b decay. We use the 1% 

accuracy figure here as a goal in measurement; the reader should be forwarned 

that the true experimental accuracy will only be known when the experiments are 

actually done. Also theoretical uncertainties in the hadronization of final-state 

quarks might result in large uncertainties. Nevertheless we will assume that the 
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various asymmetries are known to f.01 in what follows. 

This paper will concentrate on the shifts of the various asymmetries from 

.I their values in the GSW model. Thus we define 

SAe+e-‘ff = Ae+e-*ff 
LR LR 

_ Ae+C?--bff 
experimental1 y LR (2.16) 

measured GSW 

bAe+e-+ff _ Ae+e-*ff 
FB - FB 

_ AC?+e--ff 
experimental1 y FB (2.17) 

measured GSW 

e+e-+ff and similarly forward-backwardasymmetries with left-handed electrons 6AFBL 

and left-right asymmetry to hadrons GA~~-4hadrone. We imagine that ~ALR is 

due to new physics from beyond. the GSW model. We mention three possible 

sources of such physics: 

(i) one loop radiative corrections due to new scalars and fermions in sum x 

U(l)y in which the new particles do not couple directly to light leptons and 

quarks but only enter in W *, 2, and A (photon) self-energies, the so-called 

‘oblique’ loop corrections [2]: Fig. 1, 

(ii) one loop radiative corrections due to new scalars and fermions in sum x 

U(l)y in which the new particles couple directly to light leptons and quarks; 

the so-called ‘direct’ corrections [2]: Fig. 2, 

(iii) physics due to the existence of new gauge bosons in theories which are 

based on extended gauge structures like SU(2),5 x SU(2)R x U(~)B-L, 

SW)L x WY x WY I or even something more complicated. 

We will show in Sections 4 and 5 that the particular combination of shifts in 
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asymmetries evaluated on Z” resonance. 

with the definition in the GSW model 

sin2 8~ cos2 8~ E 
&i G,Ii;(l - .06) 

(2.19) 

and af and ae calculable in the GSW model 

-4sin2 Bw IIL(Qf)” (I,f, - sin2 6~ Qf) 
-3.8 u quark 

af = [(l,f, - sin2 8w Qf)2 +-pQf &i2 8w)2]2 N 
-.71 d quark (2.20) 

- . 
-7.5 e 

for Mz = 94 GeV is insensitive to the physics (i) and that a non-zero value 

-- for Af is a clear signal that some new undiscovered particle couples directly to 

e, p, c or b; e.g. that physics (ii) or (iii) is operative. We will further show that 

the quantity $$ depends only on the quantum numbers of b, c and e under the 

new gauge and further that its value can be used to distinguish between gauge 
-b-L. 

groups. 

So far we have concentrated entirely on s channel neutral current processes. 

It must be emphasized that (2.2) may be used to calculate any neutral current 

process. For example, the polarized Bhabha scattering cross section is easily 

written down: 

J& (e+e-(L) + e+e-) = c {ki, IM(-s)zL + M(-t)gL12 
(2.21) 

+ GR IM(-s)Z~FRI~ + IM(-t)i!~l~} 

The dominant weak effects on Z” resonance in Bhabha scattering occur for large 

angle e’s and if e - /J universality holds, these should be the same as for final 
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P+/.L- pairs, which will be discussed extensively in this paper. We therefore will 

not discuss Bhabha scattering further but it should be remembered that this . . 

.I process could give bounds which can also be used to constrain enlarged gauge 

groups. 

Similarly, low-energy neutral current neutrino scattering is easily written 

down in terms of (2.2); this is important in understanding the limits on MZI from 

present neutral current data [12]. In future, CHARM II will measure low energy 

uPe scattering, thus avoiding hadronic uncertainties. Of course the processes 

VI*e + ucce and DPe -+ DPe are easily wriJten in terms of M(-t)& and M(-t)fteL -& * . 
and so our analysis is easily extended to this case. 

We now address four-fermion charged current processes. It is clearly simple 

-- to write an effective charged current matrix element in analogy with (2.2) in 

terms of the charged current Jw and W* mass and W* width [2]. In the case of 

sum x sU(2)R x U(~)B-L we would obviously add a second charged current 

=‘-- Jw I and W ‘* mass and width. Thus our analysis will suffice for all four-fermion 

charged current processes as well. 

The spirit of this paper is then the following. We will first identify the full 

set of parameters describing the interaction of fermions and vector bosons in 

an extended group gauge theory after spontaneous symmetry breaking. We will 

keep a, G,, Mz fixed by experiment. Note that Mz is not allowed to vary with 

the other parameters; we will use the value Mz = 94 GeV in the numerical work. 

We will also choose MZI as an input parameter (the second mass scale). We will 

then calculate the neutral and charged currents Jz, JZI, Jw, Jwf as functions 

of the parameters cr, G,, Mz, MZI, . . . (where the dots represent other parame- 

ters of 0 (1)) thereby allowing precise experimental determinations of neutral and 
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e+e--bp+p- charged current processes such as AL, to give constraints on e.g. Mzt. 

. Note that we will not use the charged current masses Mw , Mw I as input param- 

‘!: eters but rather calculate them also as functions of CX, G,, Mz, Mzt,. . . This 

will allow a precise experimental determination of Mw to separately constrain 

the extended gauge theory. 

3. sum x U(l)y Gauge Structure 

The purpose of this section is primarily to orient the reader to our method 

and notation so that our treatment of enlarged gauge structures will be more - 

transparent. In the SU(2),5 x i(y)y 
- ” 

model the interaction of the gauge bosons 

with fermions is given by the interaction Lagrangian (we suppress Lorentz four- 

_. vector indices ~1 in the currents Jp): 

l = gL J+L W- + gLJ-LW+ + gLJ3LW3 + gyJyB (3-l) 

with gL, W*, W3 the SU(2) L coupling constant and gauge fields and gy and B 
*--- 

those for the U(l)y hypercharge group. The currents are 

J+L = - ;z 4 7p I+L + 

J~L = 6 7p 13~ 'b 

(3.2) 

(3.3) 

JY = $7,.4 f + (34 

t and J-L = J+L. Fermions $J have a definite helicity, I*L are the isospin raising 

and lowering operators, 13~ and Y are the operators for the third component 
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of isospin and hypercharge, respectively. Following the notation of Section 2 we 

write 

(J~L); = -;, (J3& = o (3.5) 

(JY); = ;, (Jy); = -5 (3.6) 

with obvious extension to other fermions e, ~1, c . . . . In order to completely 

define the matrix elements arising from (3.1) we are missing only the W* and 
- 

2 masses. These of course com<‘om the Higgs’ gauge boson coupling sector in 

which the ith scalar develops a vacuum expectation value (v.e.v.): (~$i) 

-. fz - c ( lWi12) 
i 

x(1( fB 

2 
= sddb + sy 

i ) 1) 4 

+Cs2(h (a-e) gw+w- 
i 

The identity of the photon is supplied by the equations 

Q = 13~ + f 

Q I 4) = 0 for (h> # 0 

and so clearly 

WC = !-IL (m - (CL)) 

15 
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(3.10) 



with definitions 

(3.11) 

(3.12) 

= c (4i IL (IL +1)~J (3.13) 
i 

-- 
Clearly, then, all fermion-gauge boson processes can be written in terms of the 

four parameter 

These must be 

set (besides fermion masses and mixing angles) 

SL, SY, <m GL> (3.14) 

written in terms of experimentally measured quantities in order 

to define the model. We choose the set 

a, G,, Mz, PL (3.15) 

~1! and G, are the best known electroweak parameters of Nature. Mz will be 

measured to &.l% by LEP/SLC. The parameter 

pL = 1+ @I) - GL) 

2@L) 
(3.16) 

is different from 1 at tree level only if Higgs’ fields which are not sum doublets 

develop a v.e.v. In the case where only Higgs’ doublets get v.e.v.‘s, there is an 
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.- additional global sum x SU(2) R custodial isospin symmetry at the tree level 

in the effective low energy Lagrangian for fermion-gauge boson interactions, and 

. . so pi = 1. It is known experimentally that pi N 1 to f.05 and so we will treat 

pi - 1 as a small parameter from now on. 

It is now a simple matter to write the currents in terms of the set (3.15). We 

have 

L: = JwW+ + JJW- + J,,A+ JzZ (3.17) 

with Jem as before and 

JZ = e Mif2 ( J~L - 2 JQ) (3.18) 

A i = tiGp;lO-!- o.o6) = (38.7 GW2 

Jw = sL 

and 

J+ 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

Note that as pi + 1, $ goes to the GSW value of sin2 6~ in Eq. (2.19) (a 

number which can be calculated knowing only CII, G, and Mz) and, of course, 

$ goes to cos2 8~. 
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We now discuss the factor of 1 - .06 appearing in Eqs. (3.20) and (2.19) 

which comes from one-loop radiative corrections. This large correction is due to 

. . the renormalization of oern from q2 = 0 to q2 = -Mz (where experiments are to 

be done) from the QED vacuum polarization graphs of Fig. 3. This is a universal 

l-loop quantum correction in any unified electroweak gauge theory containing 

QED. We therefore define our Born terms (2.2) to include it. 

In order to understand experimentally the small effects due to new gauge 

structures considered in this paper, we must understand all effects of O(l%) 

which might affect the asymmetries. The GS W one-loop radiative corrections 
-&. - . . 

to these asymmetries have been calculated [13], but what about shifts in the 

asymmetries from their GSW values due to the existence of new particles (mirror 

-- fermions, SUSY stuff, etc.) which still transform under sum x U(l)y with 

quantum numbers 13~ and Q. These effects might be mistaken for the existence 

of new gauge structures when in fact only SU(2),5 x U(l)y is operative. These 

corrections have also been calculated [2] and are divided into two classes. 
=-. 

(i) Oblique corrections in which the new scalars and fermions couple only to 

vector particle A, 2, W* self-energies as in Fig. 2. It has been shown that 

the effects of oblique corrections on neutral and charged current processes 

can all be thought of as renormalizing the various coupling constants. In 

particular, for SLC/LEP physics their effect is to change the 2 current 

Jz=c[J,,-$JQ] 

==+ (c + 6c) [ - [$+6($)] 'Q] J3,5 

(3.23) 

The effects of 6c will cancel in SLC/LEP asymmetries which of course 
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.I 

are ratios of cross sections so the entire effect of oblique corrections for 

SLC/LEP physics is contained in 6 . The asymmetries on 2 resonance 

(2.13), (2.14) . ‘. and (2.15) will thus be shifted by small amounts 

e2 
6Af = af ii 2 

( > gL 
(3.24) 

with af calculated in (2.20). Thus shifts in SLC/LEP asymmetries due to 

oblique sum x U(l)y corrections will all be proportional to each other 

no matter what representations of scalars and fermions are responsible. For 

- example the small shifts --) r . 

6Ab N 2 sffe (3.25) 

-- 
so that the quantity 

Ab = gAe+e-+P+cl- 
LR (3.26) 

for all oblique radiative corrections due to any new imagined scalar or 

fermion particles in sum x U(l)y . Similarly AC defined in (2.18) with 

final state c quarks is insensitive to oblique corrections. Oblique one loop 

quantum corrections tend to be very small (< l/2%) unless they break 

the global SU(2)i x SU(2) R isospin symmetry (which kept pi = 1 at 

tree level for Higgs’ doublets) and thus feed into the pi parameter at the 

one loop level. This can occur e.g. via a new fermion doublet (i) whose 

Yukawa couplings generate a large mass splitting mU > md after local 

symmetry breaking. When this doublet is included in the one-loop vector 

particle self-energies the effects can blow up quadratically like - cy: “‘$$. 2 
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In fact large mass splitting within any representation of sum can lead 

to large corrections; otherwise quantum corrections tend to be small. Of _ 

.I course all of these effects have been analysed for SU(2),3 x U(l)y [2]. We 

will need this intuition about global symmetry breaking and the size of 

radiative corrections in the next sections when we comment on quantum 

loop corrections in SU(2),5 x U(l)y x U(l)y , and SU(2),5 x SU(2)R x 

U(l)%L. 

(ii) Direct corrections in which new particles couple directly to e, CL, b, c 

fermions such as in Fig. 3. Examples are corrections due to SUSY scalar - -& ” 
electrons, and gauginos. Of course these cannot all be absorbed into 6 ( > $ 

and so the combinations Acsb will not be zero for direct corrections although 

_- they tend to be small since they do not diverge as the masses of new parti- 

cle in internal loops m2 >> 1q21 and they do not break global isospin badly. 

We will show in the next section that Acsb are also non-zero for corrections 

due to new gauge structures and that they can be large in that case. 

It is easy to calculate the W* mass in terms of the set (3.15). The result is, 

of course 

(3.27) 

with pi given in Eq. (3.16). Note that Mw is not a free parameter of the theory. 

In (3.27) we have included the largest radiative correction in those from Fig. 3. 
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4. SU(2)L x U(1) y x U(l)yt GAUGE SYMME’I’RY 

4.1 CURRENTS - 

In this section we will study a theory with an extra U(l)y I gauge symmetry 

and with the symmetry breaking pattern which preserves the charge relation & = 

1s~ + Y/2 of the Weinberg-Salam Theory. This gauge symmetry is interesting, 

since it can arise from string theories [6] as an effective low energy symmetry [5]. 

The extension to other symmetry breaking patterns with different relations for 

the charge within this gauge group is obvious. 
-rc- - - 

The charged currents are the same as in Section 3. However the neutral 

currents have a new form. The part of the Lagrangian which includes neutral 

currents has the following form: 

L: =gL J3L WsL-+gy JY B+gy, JY, B’ (44 

-*sm. where gyf, Jyt and B’ are the coupling constant, current and gauge field of the 

new U(l)yr. The current 

JY’=~ (4.2) 

includes the new hypercharge operator Y ‘/2. A simple extension of our notation 

in analogy with Eq. (3.6) would have us write (Jy ))i = l/2 Ye: with Ye: the 

hypercharge of left-handed electrons under the new U(l)y I. In the string model, 

Ye: = l/3. There are, of course, now three neutral gauge bosons and their masses 

are gotten by studying the Higgs-gauge boson coupling with Higgs’ v.e.v.‘s (&) 

~(IW il”) = (I( Y’ 
gL kc W3L+m $ B+wT B’ (4.3) 

i 
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Now use 

&I&) = 0 for (h> # 0 

The first relation identifies the photon while the second ensures that U(l),, will 

be unbroken and the photon: 

A = (si +-ii?)-‘/” (gy W~L + gL B) - - (4.6) 

remains massless. Then we have 
-. 

c(lwi12) = &L (gLW3-gyB)+gY’ q B’ (4.7) 
i 

*.i_ so that in the basis (gi+g$)-1/2 (gLW3 - gyB) and B’ the neutral mass matrix 

is 

M2=2 (92 + s;, <QL> (9; + s;)“2sY q3Ly) 

(9; + s;)1’2sY ‘(13L%) &f(y) 
(4.8) 

The two physical eigenstates 2 and 2’ and masses Mz, Mzt are gotten by 

diagonalizing (4.8). The 2’ is a new massive neutral gauge boson which we take 

heavier than the 2 : MZI > Mz. In analogy with (3.12) and (3.13) we have 

defined 

(4-g) 

22 



(4.10) 

‘I where the summation is over all Higgs’ with non-vanishing v.e.v.‘s (q&). It is clear 

that all the interactions of fermions and gauge bosons for any sum x U(l)y x 

U(l)yt theory with any Higgs’ structure are given in terms of seven parameters. 

(Here we assume zero at tree level a possible U(l)y x U(l)y I mixing term F,,Fi, 

with FPV and Fiy the field strengths of the B and B’. The coefficient of this if 

included, would be the eighth parameter. Such a term would of course appear 

at one-loop unless there was imposed some global symmetry, to prevent it.) .The 

seven parameters are 

SL, SY, SY', PL, <&>, (&L$ (q) (4.11) 

Basically, these are the three gauge couplings, W* mass and three entries in the 

2 x 2, 2 - 2’ mass matrix. We replace these by the seven parameter set 

Q, G,, MT, PL, E= M2 , - -9 PY’ 
2’ SY 

with pi as in Section 3 and pyt being 

PY’ = 
(13~ 37) 

(I&) 

(4.12) 

(4.13) 

a measure of the 2 - 2’ mixing; this parameter will be very important for 

seeing effects of the heavy 2’ while doing experiments on 2 resonance. Once the 

fermion representation under the gauge group is chosen the theory is completely 
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determined by the four quantities (3.15) which determine the sum x U(l)y 

model and the new three parameters: 
: 

. I  

E  SY' 

' SY 
, PY’ (4.14) 

We now rewrite all of the neutral and charged currents (and matrix elements) 

in sum x U(l)y X U(l)y I in terms of this set of parameters. The 2 x 2 2 - 2’ 

mass matrix is diagonalized by the unitary matrix 

- Sin eN 

COS eN > 
= 

with 

tan eN = -27~ 

(Pi - 1) + +Fq 

with 

72 = -E ; pyt (4.16) 

We get the ratio fi by solving the algebraic equation 

(4.15) 

(4.17) 

(2) (l-2) = 2;;pL (&+1-d-) (4.18) 

The currents are 

Jz = c 
e2 

J~L-~JQ+~ i taneN Jyt (4.19) 
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.I 
Jz,=c (-tane,(&+$p) +E; Jy,} 

with the overall constant 

c= 
e COS eN 

l/2 

(4.20) 

(4.21) 

and e2/g% is the solution of Eq. (4.18). 

The parameter E is always-&ller<han one and actually has a strict up- 

per bound which is determined by noticing that the diagonal elements of the 

Hermitian 2 - 2’ mass matrix are real. Thus 

(4.22) 

is real. One can show that this bound is always stronger than the bound which 

arises from the constraint that MiM‘& > 0 and is of the following form 

with 72 defined by Eq. (4.16). Therefore Eq. (4.23) has an interesting feature 

that for each particular model there is a lower bound on the value of Mzt arising 

simply from the self consistency of the model. Note that if (I3Y ‘) = 0 (for 

example if the Higgs with nonvanishing v.e.v.‘s have at least one of the quantum 

numbers Is, Y’ zero) 72 = 0 and the constraint (4.23) becomes trivial. 
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In order to complete the discussion of all four-fermion charged and neutral 

current processes, we need to calculate the W* mass. 

. I  

(M; cm2 eN + M;, sin2 ON) 

with e2/gi from Eq. (4.18) and taneN from Eq. (4.15). Note that we have 

calculated Mw as a function of the parameters in (4.12); it is not a free parameter. 

Further, the W* current Jw is still given by (3.21) with gL given by (4.18) so all 

charged current processes are now calculated. 

For E < 1 the theory reduces to-he Sag x U(l)y theory with corrections 

of order E. In this case ON and $ are determined through 

-- 
-$(1-g =& [l-r%+W)]. 

(4.25) 

(4.26) 

Thus, as E + 0, ON ---) 0 and the SU(2),5 x U(l)y model is recovered. 

The value of gy ‘/gy is undetermined in general. However in string theories 

with the grand unified gauge group E6 the relationship between the coupling 

constants determines gy’ = gy at some mass scale. 

The value of the parameter py I depends on the particular representations 

and magnitudes of the vacuum expectation values of the Higgs fields. In general 

pyt is of order one. In particular, for the model based on the string theory py I 

can assume a range of values from -4/3 to +1/3. In this theory with quantum 

numbers (I, Y, Y’) the two doublets H - (l/2, -1,1/3) and H’ -(l/2, 1, 4/3) 
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contribute to ay in a way that py -+ l/3 when (H’) -+ 0 and py + -4/3 when 

.- (H) --) 0 [14]. 

.I In the following subsection, we will be studying the response of the various 

asymmetries to the deviation from sum x U(l)y. These will be quite small 

and the reader may worry that we properly should include one-loop quantum 

corrections in the full SU(2),5x U(l)y x U(l)y I theory in order to fully understand 

the response to the new gauge group at the - 1% level. We now address the 

question of radiative corrections in sum x U(l)y x U(l)yt. 

We will consider here only oblique corrections. Imagine that we want to write - . 

down the effect of some new fermions and scalars in the extended gauge group 

which enter as oblique quantum corrections as in Fig. 3. These particles have 

-- quantum numbers 13~, &, Y’ and couple via the parameters discussed in (4.12). 

There is, however, a decoupling theorem, good at tree and one-loop level [15,16], 

which says 

SU(2)L x U(1)y x U(l)yc -+ 
a.-+0 

Sq4L x WY (4.27) 
MZ’ 

Thus the oblique quantum corrections to the deviation from GSW of some 

asymmetry A at LEP/SLC which is evaluated at low energy q2 N -Mi can be 

separated into two parts 

6A oblique = 6A 
SU(S)~XU(l)yXUwyf 

(4.28) 

If we are willing to drop the 0 (a/x Mi/Mi,) terms (as we will in this paper; 

they will be studied later [IS]) we may compute all oblique quantum corrections 
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.~ by studying the transformation properties of the new and old scalars and fermions 

under sum x U(l)y. To compute these, we need only the parameters listed in 

r-1 Section 3, (in (3.15)) and the particles’ quantum numbers IL, Q. No knowledge 

of the quantum number Y’ is necessary. 

Having reduced the calculation of oblique quantum corrections to sum x 

U(l)y , we wonder whether such corrections can be large for the particles which 

enter naturally in the extended gauge group theory. These corrections have been 

studied extensively elsewhere [2,8,15]. As discussed in Section 3 such quantum 

corrections are large when theyz2tribute to pi at the one-loop level by break- - . 

ing the custodial global sum x su(2)R symmetry. This occurs when there is 

large mass splitting within a local sum representation of scalars or fermions. 

- Clearly, we must introduce new ,particles (at least new scalars) into a theory 

with an extended gauge group. The question is; will these have large mass split- 

ting within the representations ? We might naively expect so since there are two 

‘.- very different scales Mz and MZI in the problem; will for example the Higgs 

fields which break the local symmetry at the large scale Mzt transform under 

the custodial global symmetry into those which break the local symmetry at the 

lower scale Mz ? We see immediately that if they are to avoid a gauge hierarchy 

problem they cannot since the new Higgs’ structure must be engineered such 

that sum x U(l)y is a good local symmetry from the scale MZI all the way 

down to Mz where, of course, it breaks. Thus, a solution to the gauge hierar- 

chy problem in the scalar sector will simultaneously give Higgs’ representations 

whose masses respect the custodial global sum x sum symmetry and thus 

quantum corrections from the new Higgs’ scalars will be small in the extended 

gauge group. All of this discussion of course applies to the charged currents and 
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Mw as well. 

If the gauge hierarchy problem is unsolved in the extended theory, LEP/SLC 

. asymmetries (or the W* mass) could receive oblique quantum corrections of 

O(c+ M$,/M;) [15,16]. W e will assume in the rest of this paper that the 

gauge hierarchy problem in the scalar sector for the mass scales Mz, MZI has 

been solved by some means (fine tuning, supersymmetry) and thus that oblique 

quantum corrections from the Higgs’ sector are small. We will therefore display 

results in this paper for extended gauge groups considering only tree level effects. 

4.2 PHYSICAL IMPLI~ATIOM - * 

The experimental values of the 2 width and total cross section, ALR (left- 

- right polarization asymmetries) and AFB’S (forward-backward asymmetries) can 

be determined from SLC and LEP measurements [7]. The deviation of these 

values from the GSW theory can thus indicate new gauge structure, i.e., the 

existence of new currents such as Jyt, =.--- and can impose a lower bound on M& 

for any particular model. The various cross sections, widths and asymmetries 

can be evaluated by using the definitions in Section 2 and expressions (4.1?) and 

(4.20) for the currents. The asymmetries are studied for a range of parameter 

space and are presented in Figs. 4 to 8. The calculations are exact at tree level. 

Note that all asymmetries go to their GSW values as MZI -+ 00. 

Figure 4 represents A~>e~p+p- evaluated on the 2 resonance as a function of 

l/G = Mzt/Mz. The fermion representations are chosen as suggested by string 

theories [14] to be those of the 27 of E6 with quantumnumbers (&L, Y, Y ‘): Q - 

(1/2,1/3,-z/3), UR - (0, -4/3, -2/3), dR - (0, z/3, l/3), L - (1/2, 1, l/3), 

and eR - (0, -2, -2/3). Th e numerical results are given for Mz = 94 GeV, 
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.~ pL=landgy’= gy , while py ’ is chosen for two extreme values py ’ = -4/3 and 

py ’ = l/3 as also suggested from the string theory. The consistency bound (4.16) 

implies that the theory is defined for Mzt 2 2Mz for a wide range of models. 

One observes that by measuring A~>sdp+p- to within 1% the effects of new 

gauge structures can either be seen or the lower limit Mzl/Mz 2 O(l0) can be 

imposed for a wide class of models. But even a 10% determination of ALR would 

set interesting bounds on a new 2 mass Mzt/Mz 2 3 to 4 for some models. 

Note that since A<i-+ff (with f # e, Ve) is independent of final states [lo] on 

2 resonance SLC/LEP data including final state hadrons could be used to study 
-A. - . 

these shifts thus making full use of the increased statistics. These effects could 

then be visible with relatively few (- 104) 2’ s when e- polarization is available at 

SLC [7]. Note further that comparison of ALR with Arpol (see Eq. (2.11)) could 

yield information about the universality of the coupling of new gauge structures 

to e and 7. 

In Fig. 5 we give results for the forward-backward asymmetry without ob- 

servation of longitudinal polarization in e+e- + f f for pi = 1, Mz = 94 GeV, 

SY’ = SY, PY’ = l/3 as a function of MZI. The solid lines are for final state 

muons, the dashes for final state c quarks, the dots for final state b quarks. Note 

that Ae+e-*p+p- ’ 
FB IS much less sensitive to new gauge structures than ALR. This 

e+e;+p+p- can be remedied in part by forming A,, with electron beam polariza- 

tion. These are displayed in Fig. 6 for final state p, c, b with the same set of 

parameters and conventions as in Fig. 5. 

Another possibility for seeing effects of the new gauge structure would be 

in studying the s dependence of the various asymmetries and, in particular, the 

slope near s N Mg. This is plotted for Ai>---‘p+p- in Fig. 7 with dots, dot- 
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. . dashes, dashes and solid lines corresponding to Mzt/Mz = 2.5, 3.0, 3.5, oo 

respectively; the solid line is clearly the GSW tree level prediction. Here we have 
: 
,: used py t = l/3, Mz = 94 GeV, pi = 1 and gy’ = gy. Note that the slope 

depends substantially on the presence of the new currents via their interference 

with the photon exchange diagrams because the sum x U(l)y vector couplings 

of e, JL to the 2 is suppressed by the factor 4 e2/gi - 1 N 4sin2 Bw - 1. 

In Fig. 8 we plot AL, e+e-+Cff f # e, ye, t as a function of fi including the 

leading QCD corrections for final state hadrons. The dependence of the slope 

near 2 resonance is somewhat washed o_ut here because final state quarks’ vector -&- . 
coupling to the 2 are not suppressed. We have also studied the fi dependence 

e+e-+fP of forward backward asymmetries for individual final state fermions A,, 
e+et-+f f - and A,, but did not display it here because the dependence of the slope 

near 2 resonance on new gauge structures is not very pronounced. The most 

interesting quantity then turns out to be A<i---tP+P- because its slope changes 

significantly as the value of Mz#/Mz changes. Therefore the measurement of 
=.-- 

the initial state polarization asymmetry into h pairs around the 2 resonance 

would be a sensitive test of new currents, especially when the mixing angle ON 

is relatively small. Thus even when bAER(-Mi) < 1, the fi dependence of 

AfLv+P+P- can be significantly changed due to new contributions from the Y’ 

currents and the 2’ boson exchange. 

Finally, we calculate Mw in the sum x U(l)y x U(l)y I theory and display 

the results in Fig. 9 for the the choice of parameters above. Note that, with a 

projected experimental error of AMw = f50 MeV it will be possible to either 

set very strict bounds on Mzt 2 10 Mz (and the other parameters) or see the 

effects of new gauge structures. Less accurate measurements will be interesting 
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. . once the precise 2 mass is known [7]. 

Note that the behavior of e.g. Mw in sum x U(l)y x U(l)y 1 in Fig. 9 is not 

.: the most general; Eq. (4.24) is. It should be numbered that for (13Y ‘) = 0 the two 

neutral heavy bosons sectors decouple and we are left with the sum x U(l)y 

results. Thus Figs. 1 to 10 indicate only a possible outcome of experiments 

although the most general outcome can be easily extracted from this section. 

All of the above calculations were done exactly at tree level. We now want to 

study the particular combinations of shifts in asymmetries from their GSW values 

Ab, AC in the approximation tha&-M~~M2 z, = c < 1 keeping only the leading 

terms in Mi/M2 z, and dropping terms of 0 (a/r Mi/Mi,). The 2 current is 

then 

(4.29) 

where $]zXr is the value of e2/gi computed in sum x U(l)y at tree level, 

S(e2/gi) includes oblique quantum corrections in sum x U(l)y as well as 

O(Mi/Mi,) corrections to e2/gi in sum x U(1)y x U(l)y~. X is a model 

dependent 0 (1) p arameter of the extended gauge group. In the theory with an 

extra U(1) it is 

~=sy’. e 
SY G py’ (4.30) 

Clearly, asymmetries on 2 resonance are insensitive to the model-dependent con- 

stant c. If we calculate the combinations of shifts in asymmetries AC and Ab in 

Eq. (2.18), th ese will be insensitive to S(e2/gi) as proved in Section 3. Thus, ne- 
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glecting terms of 0 (Mi/M$ ‘) and 0 (ar/?r M$/M&) a simple calculation yields 

Ab = -ap M.i M2 X sin2 ew 
{ 

’ (JY& - (JY& (JYdk - 
Z’ (J34 CJ& 

(4.31) 

sin2 ew 
(JYJ)~ - (JY’)~ - 

(J3L)i 
+ (JY'E? 

(Jdb 

with a similar expression for AC with substitution b + c in Eq. (4.31). Note 

that the expression in brackets depends only on the quantum numbers Y’ of 

the b quark and electron under the new U(l)y ’ gauge group; sin2 Bw and al, are 

calculated in terms of Q, G,, MZ&ne in Eqs. (2.19) and (2.20) and the .JaL.and 

JQ quantum numbers are known. The only model dependence is in the parameter 

Mi/Mg,X. Further, Ab is zero unless b or e have Y’ quantum numbers. Thus 

.-- Ab is directly sensitive to the new gauge current. (Remember though that we 

saw in Section 3 that it is also sensitive to the direct quantum corrections of Fig. 

3 of SU(2)L x U(l)y). Thus Ab # 0 is a clear, unambiguous experimental signal 

=.- that e- and/or b couples directly to some new as yet undiscovered particle! 

We plot in Fig. 10 (dotted line) Ab from Eq. (4.31) as a function of Mzt/Mz 

for pi = 1, py I = l/3, gy’ = gy and Jyt quantum numbers gotten by requiring 

that e,- b appear in the 27 of & as suggested by string theories. We also plot 

AC (solid line) there although we expect this to be experimentally more difficult 

to measure. Those shifts can be huge for MZJ N 3Mz which is not ruled out by 

other low energy experiments. We expect [15] direct SU(2)L x U(l)y quantum 

corrections to be small (2 l/2%). N evertheless, they will be standard elsewhere 

[16]. If so, observation of such a large Ab or AC would probably indicate the 

existence of a 2’ just above LEP/SLC energies. Note that one can easily form 

At for the top quark by taking final phase space into account [17]. We expect 
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.- that for 2Mtop 2 Mz - 10 GeV there is enough phase space left so that the results 

of this section for the various asymmetries to c quarks should be qualitatively 
: 
.I good for t quarks as well. 

It is easy to form a similar quantity for muons 

(4.32) 

The expression for Ap is gotten from Eq. (4.31) by substituting b + ,X so this 

would be zero if e - p universality held fo_r the extended gauge group. The ‘direct’ . 
quantum corrections in SU(z)lxu(l), would also largely cancel [15,16] (except 

small quantum correction ‘box’ diagrams with new heavy particles in virtual 

- states) if e - ~1 universality held so observation of Ap # 0 would be spectacular 

indeed, probably signaling a breakdown of e - p universality coupling to a new 

Z’! Remember that there is already a check on such physics; the comparison of 

‘L-- ALR and ATpol on 2 resonance. 

It is amusing to imagine that both Ab and AC # 0 experimentally. The ratio 

is insensitive to the parameters of the sum x U(l)y x U(l)y~ model because 

the factor X Mi/Mi, cancels in the ratio. Thus 

Ab ( )b-+b 

ac=x 
(4.33) 

with the bracket written in Eq. (4.31). This depends only on the quantum 

numbers of b, c, e under Jy I. It is also independent of the symmetry breaking 

pattern and the relation & = I3 + Y/2 could also be changed without affecting it. 

Once the quantum numbers of b, c, e under Jy I are known, it can be calculated 
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with no other information from beyond GSW. For the 27 of Ee we get 

Ab ’ co57 
ac 

. 
i&f Ea 

(4.34) 

for Mz = 94 GeV. Thus, this ratio allows us to probe at SLC/LEP directly for 

the quantum numbers of b, c, e under new gauge groups even if all the new 

structure is too heavy to produce directly. 

We have used e- beam polarization in A b, AC, Ap in order to avoid factors 

of 4 e2/gi - 1 N 4 sin2 8~ - 1. It is easy to see that we can form similar quantities 

without beam polarization, all ofaich will be proportional to Ab, AC or Ap.- For 

example the following combination of unpolarized forward-backward asymmetries 

=-- i 2 A” Af 
P 

for f = b, c, p with Af, A” calculated at tree level in SU(2)2 x U(1) Unfortu- 

nately, ob/ocl is a small number (- .l) as is ff e(~ .3). So A&,olarized is quite 

insensitive to this new physics. We note from the figures that asymmetries with- 

out observation of longitudinal polarization are also less sensitive to new physics. 

Thus, longitudinal e- beam polarization is crucial to observation of eflects which 

could reveal the existence of new gauge structures beyond sum x U(l)y at 

SLC/LEP. 
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5. SU(2)L x W(2) R x U(l)B-L GAUGE SYMMETRY 

5.1 CURRENTS . 

We here repeat the study of Section 4 for left-right symmetric theories [3, 

41 with spontaneous symmetry breaking patterns which determine the electric 

charge as Q = 13~ + 13~ + (B - L)/2; the so-called standard one [4,18] with 

certain interesting phenomenological consequences. Extension to theories with 

breaking patterns which determine Q in a different way is obvious. 

Due to this extended gauge_sy,rflme&ry the charged and neutral currents are . 

changed. The part of the Lagrangian with charged and neutral current coupling 

of fermions to gauge bosons has the following form: 

C = gLJ+LW; + gLJ-Lw,+ -t gRJ+RWi + gRJ-Rw,+ 

*.-- 
where gL,R and W,?R, W3L,3R are the SW)L,R gauge coupling constant and 

gauge fields while gB-L and B are the coupling constant and the gauge field for 

U(~)B-L. There are new neutral and charged currents defined as 

J+L,+R = $ 4 ?p I+L,+R$ 

J~L,~R = 4 7~ 13L,3RV5 

B-L 
JB-~=h/l z+ 
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-- t and J-L,-R = J+L,+R. Here I+L,+R, 13~9 and B - L refer to the isospin raising 

operator for SU(2)L,R, the third component of the isospin for SU(2)L,R and the 

quantum number of U(~)B-L, respectively. 

There are two charged and three neutral gauge bosons whose masses are 

obtained by studying again the Higgs-gauge boson coupling with Higg’s v.e.v. 

(4i). The relations 

Q = 13~ + 13~ -I- (5.5) 

-6. - - .  

&IA) = 0 for (4;) # O (5.6) 

ensure again that U(l),, is preserved with photons remaining massless: 

A=e W3L W3R B 
-+- +- 

SL SR gB-L 
P-7) 

Here, the electric charge is 
=;I 

e = &‘B-L gR !i’L [i&i& + $I-,(& + &)l-“2 (5.8) 

Using (5.6) and (5.5) one obtains: 

~(lDP~i12)=c(/[ 13L(gLw3L 

i i. 

- SB-LB) -k 13R(gRW3R - gB-LB)] di12) 

$i [$‘;I-Ll+Lw;w; + SLgRI-RI+LWR+w; 

+ gRgLI-LI+RwLwi + g$I-RI+Rwiwi 6i 
I > 

(5.9) 

We choose W; and Wi as basis states for the charged sector and the charged 
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mass matrix is: 

M& = iz ((a) - (GL)) 

2SRgL (I-LI+R) 

In analogy with Sections 3 and 4, where we have defined: 

(I+LI-R) = c (dir+LI-Rdi) = (I-LI+R) 
i 

@L,3R > = c (h1iL,3Rh) (5.12) 
i 

(&f,R) = c (9kIL,R(IL,R + l)h> (5.13) 
i 

.;... For the neutral mass-squared matrix we must choose an orthonormal basis. With 

basis vectors 21 and 22 

21 = Nl(gRw3R - SB-LB) 

with constants 

eN1 
22 = NmWL - - gL (gB-LW3R + SRB) 

(5.14) 

Nl = (g; + g;-L)-1’2 

(5.15) 
N2Nl = 

e 
SLgRgB-L 
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. . the neutral mass-squared matrix M$(i, j = 1,2) becomes 

M222 = ?- ((13~ +s;-~N,~IsL)~) 
N? 

Mf2 = M& 

(5.16) 

= &((I3R +&-L@I~L)I~L) 

where we define 
-A. - 

(I3LI3R) = x(hI3LI3Rh) (5.17) 
i 

The two physical charged eigenstates W and W’ are gotten by diagonalizing 

(5.10) while the two neutral eigenstates 2 and 2’ are obtained by diagonalizing 

(5.16). 

Thus, the interactions of fermions and gauge bosons in sum x SU(2)R x 

U(~)B-L gauge theory with any Higgs structure is given in terms of nine param- 

eters: 

gL, SR, gB-L, (I:), (I:L), (I;), (I:R)y (13LI3R)9 (I+LI-R) (5.18) 

Essentially, one has three gauge couplings, three entries in the W - W’ mass 

matrix and three entries in the 2 - 2’ mass matrix. We replace them by the 

following nine parameter set: 

M; $'R 
a, G,, Mz, PL, E= ~2) -3 PR, O-I-, 03 

Zl SL 
(5.19) 

Therefore in addition to the four quantities (3.15) which determine the sum x 
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U(l)y model there are five new parameters: 

where we introduce the parameters: 

PR = (%> - (‘:R) 

2 (‘iR> 

CT+ = (I+LI-R) 

( > GL - -A * 

a3 = t13L13R) 

( > IiL 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

Note that all but E in the set (5.20) are O(1) parameters. We now reexpress all 

the currents (and matrix elements) in the basis of mass eigenstates. 

The mixing angle 6)~ for the neutral gauge boson is determined by the same 
=.I-- 

equation (4.15) with /3z and 7~ given by 

rz= (l-2) [$(I-$) -$‘2 [~(1-~)-1+~~3] ‘(5.24) 

and again (compare with (4.17)) 

The mixing angle of the charged gauge-boson mass matrix is 

(5.25) 

tan0+ = -27~ 

(Pw - 1) + j/yiiFFF& * 
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with 

PW = 2 pRaR/pL 

7w = E 4PL 

(5.26) 

(5.27) 

Here OR is not an independent parameter, but it is actually determined in terms 

of parameters (5.19) in the following way: 
-A. - 

(5.28) 

Now the ratio e2/gi is determined for heavy right handed neutrinos by the fol- 
=.-- 

lowing algebraic equation: 

4 Pz+1-@z-1)2+47; 

~M;PL 
X 

k-;/4pLpRoR) 
(5.29) 

Then, the charged currents assume the following form: 

JW = cw ( J+L + tan 8+ J+R) 

Jw 1 = cw (- tan 8+ J+L + J+R) 

(5.30) 

(5.31) 
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and 

‘_ 
.I 

cw = gL cos e+ 

Similarly, the neutral currents are of the following form 

with 

x SineN] [$ (I-$-) -$]w1’2 (5.35) 

(5.32) 

(5.33) 

(5.34) 

c2 = e (-f-)w1(l-$1’2 [$J(1-$-)-$-1’2$ SineN (5.36) 

cl=e (~.--‘(I-$-)~‘~ [2(1-s) --$-]m1’2$ COSeN (5.38) 

The parameter E is again smaller than one and could be used as an expansion 

parameter of the theory. By noticing that the diagonal elements of the Hermitian 
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2 - 2’ mass matrix are real one obtains the upper bound (4.23) for E, with 7~ 

defined in (5.24). Similarly, one can obtain an upper bound on rw = M$/M&, 

” from the constraint that the diagonal elements of the hermitian W - W’ mass .I 

matrix are real. The bound is the same as in Eq. (4.23), however E and 7~ are 

now replaced by cw and 7~ which is defined in Eq. (5.27). 

One can again see that for E < 1, the theory reduces to the sum x U(l)y 

theory with corrections of order E. In this case the mixing angles 8+ of the 

charged mass matrix (5.25), the mixing angle eN of the neutral mass matrix 

(4.15), assume the following form 
-&. - . 

(5.39) 

hieN=- l- ( $) [$(l-2) -;]-1’2 [$ (dJ-1+$73] E+O(2) 

(5.40) 

=-- and the algebraic equation for e2/gi for heavy righthanded neutrinos is of the following form 

~(1-~)=&{l+(1-~)2[~(l-~)-~]-1 

. x [~~~-[~(l-~)-l+~-l']yLO(yl)) . (5.41) 

Thus one can again explicitly observe that as E + 0, 8+, ON 4 0 and 

e2/gi(1 - e2/gi) -+ Az/Mip~, i.e., the standard model is recovered. 

The ratio of coupling constants gR/gL is a quantity of order one. In manifestly 

left-right symmetric theories one chooses gL = gR at some mass scale. For the 

recently proposed theories with the left-right symmetric group incorporated in a 
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bigger gauge group, SO(10) [19] or SU(8),5 x sum [20], MZI is permitted to 

be light; i.e. Mzl 2 o(lO)Mz. In these theories it turns out that gR < gL, and 

,: typically one has gR RG 0.7 gL. 

Parameters PR, 03 and Q+ can assume the following range of values: PR = 

{OJ), 03 = {-LO), Q+ = {O,l}. The particular value of these parameters 

depends on the pattern of the Higgs’ field v.e.v. In the standard left-right sym- 

metric theory with triplet fields one has the Higgs field multiplets with quantum 

numbers (IL, IR, B - L): AL - (1,0,2), AR - @,L,2) and 4 - (l/2,1/2,0) 

with the vacuum expectation patterns: -A. - . 

(AR) Z+ (4) B (AL) (5.42) 

with 

(4) = lc O i 1 0 If.’ ’ lc<<n’ . (5.43) 

Also, the quarks transform as QL - (l/2, 0, l/3), QR - (0, l/2, l/3), and 

leptons transform as LL - (l/2, 0 - 1) and LR - (0, l/2 - 1). In this case 

PR = l/2, 03 N -1 and Q+ < 1. 

In the following subsection we shall study the effects of the left-right sym- 

metric structure on the various asymmetries: these effects are of the order 

O(Mi/Mi,) compared to the one of the SU(2),5 x U(l)y . As already explained 

in the previous section radiative corrections arising from the new gauge structure 

are at most of O(CYM~/M~,) and therefore they can be neglected. 

Finally we consider the W* mass as a function of the set (5.19) in left-right 

symmetric theories. Note that neither Mw or Mwt is to be considered a free 

44 



parameter, but rather are to be calculated. In the case where all right-handed 

neutrino masses are larger than the muon mass we have 

M&=PL 

We will display numerical results for this in the next subsection. For complete- 

ness, we display the W*’ mass here as well 

M& = pL 

Here pw, 7w, pz, 7~ and e2/gi are defined by Eqs. (5.26), (5.27), (4.17), (5.24) 

and (5.29) respectively. 

There is a particularly simple relation among the masses 

pi1 [M$ + (M&, - M$) sin2 8+] 

(5.46) 

which clearly reduces to the SU(2),5 x U(l)y relation (3.27) between the W* 

and 2’ masses as Mzt, Mw, + 00 since sin2 ON and sin2 e+ are 0 (e2). 

5.2 PHYSICAL IMPLICATIONS 

We evaluated various SLC and LEP asymmetries (see Section 2 for defini- 

tions) in the case of left-right symmetric gauge structure. They are presented in 

Figs. 11-16. 

Figure 11 represents AL2d*P+P-, evaluated at s = MY& as a function of 

l/,/ii = Mzt/Mz. The results are given for Mz = 94 GeV, pi = 1 while other 
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choices of parameters are: gR/gL = 1, 0.7, PR = 0.5, 03 = -1, -0.5 and 

o+ = 0,l. We chose only one value of the pi parameter because asymmetries do 

.I not depend significantly on PR. Note that ON does not depend on PR in the leading 

correction of order c. The upper bound (4.23) f or E implies that for a wide range 

of models the left-right symmetric theory is defined for Mzt 2 2.5 Mz. From 

Fig. 11 we find that for A~~-*p+p- measured to 1% the limit Mz,/Mz 2 0 (10) 

can be imposed for a wide class of models. Note that even for measurements of 

order 10% one can still set interesting bounds on the 2’ mass Mzt 2 (3 - 4)Mz 

for most models. Further, we may use the hadronic data on 2 resonance in - . 
A;+$-+hadrons t o augment the szistics. Also comparison of ALR and Arpol on 

the resonance will provide a check on e - r universality coupling of new gauge 

structures. 

In the following we use for illustration a typical set of parameters Mz = 94 

GeV, pi = 1, gR/gL = 1, PR = 0.5, 03 = -l,o+ = 0. In Fig. 12 the forward 

L-7. backward asymmetry without longitudinal polarization A$i-*ff is given for 

the final fermion state f = /.L (solid line), f = c (dashes) and f = b (dots). 

Note again that A$j-‘“+p- is much less sensitive to the new gauge structure 
e+e,-+p+p- than ALR. However, APB with electron beam polarization is much more 

sensitive to the effects of new currents than A$ie’p+p-. 
e+e,+p+p- We present A,, 

in Fig. 13 (solid line) along with A,, e+eL+ff with f = c (dashes) and f = b (dots). 

The s dependence of A~~---‘p+p- is tested in Fig. 14 for Mzf/Mz = 2.5 

(dots), 3.0 (dot-dashes), 3.5 (dashed), 00 (solid line). The slope is very sensitive 

to the effects of the new currents and thus even when 6A~~-‘“‘“-(-M~) < 

1, the fi dependence of Ak>-hp+pm can be significantly changed due to new 

contributions from the new currents and the 2’ boson exchange. We have also 
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e+e--*ff studied the @  dependence of A$isdff and AFBL and note here that the 

dependence of the slope near 2 resonance on new gauge structures is again not 

. I  very pronounced. 

In Fig. 15, AL, e+e-*C ff, f # e, Ue, t as a function of fi is plotted with the 

leading QCD corrections included. The slope changes less drastically when the 

ratio Mzt/Mz changes because the final state quark vector couplings to the 2’ 

are not suppressed by a factor N- 4sin2 Bw - 1. 

We shall now exhibit Ab,c, the particular linear combinations of shifts in 

asymmetries from their GSW &es, in the approximation,c < 1 i.e., keeping 

only terms up to 0 (Mi/Mi,). In this approximation Jz is of the following form: 

e2 
2 
gL 

,i,,,+6($)-si$ ,,+J3, 
> 

(5.44) 

with i being: 

A simple calculation yields a similar expression for Abpc as in Eq. (4.30). 

(J3~)k _ (J3R)& -sin2ew (J3R)k + (J3R)h 

w (J~L); (J& (J3L)i (Jdk 
(5.46) 

with obvious notation (JAR); = l/2 and (Js~)h = -l/2. A similar expression 

for the charmed quark (or top quark) asymmetry AC is gotton from (5.46) by 

the replacement b ---) c. The bracket in expression (5.46) depends only on the 

quantum numbers of the b quark and electron under the new gauge group su(2)R. 
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i Thus Abnc are again directly sensitive to the new gauge currents and they are 

presented on Fig. 16 with dotted and solid line, respectively. For MZI N 3Mz 
: 
,: this effect is again huge. Of course AbJ are also sensitive to direct radiative 

corrections of Fig. 2 in sum x U(l)y . H owever since these effects are usually 

small [15,16] (5 l/2%), the observation of Abjc > 1% would probably indicate 

the existence of a new gauge structure. 

Another interesting observation is that if both Ab and AC # 0 the ratio 

Ab/Ac would again depend only on the quantum numbers of b, c and e under 

the new gauge group sum; the dependence on g i is cancelled in the ratio. - -6 2’ . 
Thus the value of Ab/Ac has a characteristic value for a particular gauge group. 

For the left-right symmetric gauge group one has for Mz = 94 GeV: 

Ab 
TG 

= 1.24 
SU(2)LxSu@)RxU(l)B-L 

(5.47) 

This to be compared with Eq. (4.34). Th us SLC/LEP physics would allow us 

to probe directly the quantum numbers of b, c, e under the new gauge group, 

providing a clue as to the nature of the new gauge group. 

Finally, we display in Fig. 17 the W* mass as a function of Mzt/Mz, with 

fixed iz = 94 GeV, pi = 1, pi = 0.5, gR/gL = 1, Q+ = 0, 03 = 1 and note that 

the effects can be large, A precise experimental determination of the W* mass 

would give very serious constraints on left-right symmetric models. 
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6. CONCLUSIONS 

: We analysed the effects of extra gauge symmetries sum x U(l)y x U(l)y I 

.’ and sum x sum x U(1) - B L on polarization and forward-backward asym- 

metries as well as cross sections and 2 width readily measured on and around Z” 

resonance at SLC/LEP. Th ese theories are treated exactly at the tree level and 

depend only on a fixed number of parameters. A particular linear combination 

of the polarized forward-backward asymmetry and the polarization asymmetry 

is constructed. A deviation of this quantity from the standard model might be 

due to new currents only and shoxs unambiguously that some new undiscovered 

heavy particle couples directly to e, b or c. 

The numerical results show that the qualitative results are similar for SU(2),5 x 

.- U(l)Y x WY f and SU(2),5 x sum x U(~)B-L gauge groups, thus making 

it difficult to distinguish between different gauge groups. However, we observe 

that the effect of the additional gauge symmetry citn be significant, i.e. much 

larger than radiative corrections in SU(2),5 x U(l)y, and the measurement of 

the asymmetries to 1% can clearly exclude a wide range of models and put a 

lower bound on MZI to be of order 10 Mz. Measurements to 10% accuracy 

also yield interesting limits on Mzj 2 3 to 4 Mz. Another important observa- 

tion is that A$v4p+p- (-s) changes slope drastically as the ratio of Mzt/Mz 

is changed, even when the mixing angle 8~ is very small, because the contribu- 

tion from the 2’ propagator can be significant. Therefore studying the precise 

W* mass and the various asymmetries on and around the 2 resonance would 

either put stronger bounds on Mz and the mixing angle 8~ than bounds recently 

derived [12] f rom experiments at lower energies, or betray the existence of new 

undiscovered particles lying above SLC/LEP energies. 
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FIGURE CAPTIONS 

.:’ Fig. 1. One-loop radiative correction due to the new scalars and fermions in 

SW)L x WY in which the new particles do not couple to light leptons and 

quarks; the so-called oblique corrections. 

Fig. 2. One-loop radiative corrections due to the new scalars and fermions in 

SqqL x U(l)Y in which the new particles couple directly to light leptons and 

quarks; the so-called direct corrections. 

Fig. 3. The vacuum polarizationd-loop-graphs for QED. - 

Fig. 4. A,, e+e-*p+p- (and A~.2+-+hUdrOt~ ) evaluated on 2 resonance as a function 

of Mzt/Mz is given for SU(2),5 x U(l)y x U(l)y~ gauge structure with Mz = 94 

GeV, pi = 1 and for two typical values of py~ = 0.33 (solid line) and py = -1.33 

(dotted line). 

Fig. 5. A,, e+e--rff on 2 resonance as a function of Mzt/Mz for SU(2),5 x U(l)y x ‘.- - 
U( 1)y I gauge group is given for f = /.L (solid line), f = c (dashes) and f = b 

(dots). We chose Mz = 94 GeV, pi = 1, pyr = 0.33. 

e+e,+ff Fig. 6.. A,, on 2 resonance as a function of Mz,/Mz for SU(2),5 x U(l)y x 

U(l)y I gauge group is given for f = p (solid), f = c (dashes) and f = b (dots). 

We chose Mz = 94 GeV, PL = 1, pyt = 0.33. 

e+e--++p- Fig. 7. A,, as a function of fi for sum X U(l)y x U(l)yt gauge 

group is given for M,s~t/Mz = 2.5 (dots), 3.0 (dot-dashes), 3.5 (dashes), 00 (solid 

line - standard model). We chose Mz = 94 GeV, pi = 1, pyt = 0.33. 

e+e-+C ff 
Fig. 8. A,, with f # e, v,, t as a function of fi for sum X 
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U(l)y x U(l)y~ is given presented for Mzt/Mz = 2.5 (dots), 3.0 (dot-dashes), 

3.5 (dashes), 00 (solid line). Mz = 94 GeV, pi = 1, pyt = 0.33. The leading 

corrections from QCD are taken into account. 

Fig. 9. Mw as a function of Mzt/Mz with the parameters Mz = 94 GeV, 

pL = 1, py’ = -1.33. 

Fig. 10. AC** (solid line, dots) is plotted as a function of Mzt/Mz for sum x 

U(l)y x U(l)y f gauge groups. We chose Mz = 94 GeV, pi = 1 and py t = 0.33. 

Fig. 11. ALR evaluated on 2 r_eynanc_e as a function of Mzt/Mz is given for . 
sum X sum X U(~)B-L gauge structure with Mz = 94 GeV, pi = 1 and for 

the following typical values of the parameters: gR/gL = 1, CT+ = 0,~ = -1 (solid 

-- line), gR/gL = 1, CT+ = 1, 03 = -1 (dashes), gR/gL = 1, CT+ = 0, o = -0.5 (dot- 

dashes) and gR/gL = 0.7, a+ = 0, u3 = -1 (dots). For all the cases PR = 0.5. 

Fig. 12. A,, e+e---rff on 2 resonance as a function of Mzt/Mz for SU(2),5 x 

‘<-- su(2)R x u(l) B-L gauge group is given for f = p (solid), f = c (dashes) and 

f =b(dots). W e c h ose Mz = 94 GeV, pi = 1, and PR = 0.5, gR/gL = 1, CT+ = 0, 

a3 = -1. 

e+e;+ff Fig. 13. A,, on 2 resonance as a function of Mzt/Mz for sum x 

su(2)R x U(~)B-L gauge group is given for f = 1~ (solid), f = c (dashes) and 

f =b(dots). W e c h ose Mz = 94 GeV, pi = 1, and pR = 0.5, gR/gL = 1, CT+ = 0, 

a3 = -1. 

e+e---rp+p- Fig. 14. AL, as a function of fi for su(2)L x sum x U(l)B-L gauge 

group is given for Mzl/Mz = 2.5 (dots), 3.0 (dot-dashes), 3.5 (dashes), 00 (solid 

line). Parameters are Mz = 94 GeV, pi = 1, and PR = 0.5, gR/gL = 1, cr+ = 0, 
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03=-l. 

e+e---rC f f 
Fig. 15. AL, with f # e, ZJe, t as a function of @ for sum X SU(2)R X 

.’ U(~)B-L is presented for M ,FJI/M,SJ = 2.5 (dots), 3.0 (dot-dashes), 3.5 (dashes), 

cc (solid line). Parameters are Mz = 94 GeV, pi = 1, and PR = 0.5, gR/gL = 

1, CT+ = 0, 03 = -1. 

Fig. 16. AC,’ (solid line, dots) evaluated on 2 resonance is given as a function 

of Mz#/Mz is given for sum x SU(2)R x U(~)B-L gauge group. We chose 

Mz = 94 GeV, pi = 1 and PR = 0.5, gR/gL = 1, CT+ = 0, as = -1. 
-&- - . 

Fig. 17. Mw as a function of Mzl/Mz for the same parameters as in Fig. 16. 
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Fig. 13 
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Fig. 14 
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Fig. 15 
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Fig. 16 
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