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ABSTRACT 

The notions of phase transitions and causality, combined with the standard 

cosmological model, lead to the appearance of topological defects in the early 

universe. The most familiar types of defects are solitons, strings and domain 

walls. Another type - textures - can exist when the spatial universe is compact. 

When these appear the whole universe takes on a winding number, and the 

consequences are quite amusing. 
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1. Prologue 

Topological defects - the solitons, vortices and domain walls - have a vast 

literature concerning them.“’ Here we will look at another variety - textures. 

These are stable, non-localized solutions to the classical equations of motion on 

a spatial manifold with compact dimensions. 

In this letter I will always be considering homogeneous spatial manifolds 

with the topology of a three sphere, the closed Robertson-Walker spaces. In the 

language of homotopy theory, textures may appear when there is a symmetry 

breaking G + H and Q(G/H) # 1; that is, when there are topologically non- 

trivial mappings from the_@ree sphere into the manifold of degenerate vacua.“’ 

_. 

In the next section we will see that a field configuration with a non-zero 7r3 

winding number need not be a texture: because textures are not topologically 

stable. Nonetheless, there exists a texture with winding number one which is 

stabilized by curvature. 

-i= 

Next, I look at the effect of a texture on the cosmological solution to Ein- 

stein’s equations. I reach the bizarre conclusion that spatially compact universes 

with global textures can be indistinguishable from open or flat universes without 

textures. Thus our universe, which appears to be open, but nearly flat, could 

very well be tightly bound up. Even when this effect does not occur, the pres- 

ence of a global texture leads to a-size to the universe which is different from the 

standard picture. 

Last, the case of gauge textures is discussed. I consider two examples. In the 

first there is no residual gauge symmetry and the texture is non-physical in that 

it has no associated energy density. In the second example there is an unbroken 

subgroup of the gauge symmetry. The non-abelian magnetic field of this residual 

symmetry has a vacuum expectation value at all points in the universe. 



i 2. Textures From Global Symmetries 

The simplest model in which textures may appear in a Robertson-Walker 

universe is the breaking of a global symmetry O(4) + O(3). Then the possible 
.- 

textures are classified by 7r3 (0(4)/O(3)) = 2. We take a single scalar fourplet 6 

with Lagrangian 

L = 
/ 

[a”&- a,&+ A(& r& v2)2],/=ijci4x. 

To begin we must choose coordinates. For a closed Robertson-Walker universe 

the appropriate spatial coordinates are periodic, so we use angular variables 

E,e,p for the spacelike coordinates and t for the cosmic time parameter. The 

metric which is homogeneous and isotropic is 

d7 = dt2 - a2(t)[de2 + sin2 t(d02 + sin2 Bdp2)] 

Let us suppose that the universe cools and goes through a phase transition, 

‘ir and that r$ gets a vacuum expectation value (VEV). The true vacuum is then 

described by a constant vector of length v, which by choosing a gauge can be 

written 

In contrast, a texture exists when this vector maintains its length but varies from 

point to point in space. The texture with winding number one is 

f&l 

cos (0 sin 0 sin < 
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3 
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i which can be pictured as a vector normal to a 3-sphere embedded in a 4 dimen- 

sional Euclidean space. 

The first thing to notice is that the texture-solution is not topologically stable. 

We can smoothly deform 6, without ever taking it out of the minimum of the 

potential, making it constant everywhere on the three sphere except for a region 

that is essentially flat. The energy of this configuration is 

E = f 
/ 

ak&dkJd3z, k = x1,x2,x3 

where we have switched to a flat coordinate system, appropriate to the flatness of 
? _ 

the region where the gradi;t terms are non-zero. A simple scaling x -+ cyx gives 

E + aE, which means that the configuration wants to shrink. In this model 

there is nothing to prevent its collapse.[31 * 

However, the configuration (2.1) will not collapse because it is stabilized by 

curvature. Suppose that 

This has winding number one and smoothly interpolates between (2.1) and total 

* What happens to this topological configuration ? The probability for tunneling to undo the 
wind in a texture gets larger as the volume that contains it gets smaller. The texture will 
shrink until it vanishes by quantum tunnelling. 
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collapse as cy ranges from 1 to 0. The energy is 

Aa . 

E = 4m2a 
/[ 

-J&+2 
sin2[ E/&j 

sin2 E 1 sin2 (d( = 2m2a sin 27ro + rar 1 . 
0 

There are two interesting limits to this formula. First, as cy --+ 0, E oc cy, which 

recovers the argument just made for topological instability. The second limit is 

a + 1, where E cc [l+ (1 - CX)~ + . ..I. S ince this energy decreases as a! + 1 and 

as CY + 0 there must be an energy barrier between the two extremes, and there 

will be a stable minimum at Q = 1. 

What about textures w&h higher winding numbers? These will-not be stable 

by the following argument. An n-texture spread out over the three-sphere is 

really a superposition of n individual l-textures, each confined to a different 

patch of the universe. The preceeding remarks showed that if these patches are 

small enough then the individual l-textures are unstable to collapse. Since the 

patch size goes down as n goes up, there will be some maximum value of n for 

which the n-texture is stable. I beleive but will not attempt to prove that this 

maximum value is 1. 

3. Global Textures in Cosmology 

- The configuration (2.1) h as a unique stress-energy tensor: 

3 0 0 3 0 0 0 0 

0 0 1 1 0 0 0 0 

cw cw = = $ $ i i I I 0010' 0010' 

0 0 0 0 0 0 1 1 

(3.1) 

This may appear familiar. But unlike the stress energy tensor for massless ra- 

diation, which is traceless and has p = 3p, in this case p = -3~; the pressure is 

negative; and TL = 2~. 
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i Einstein’s field equations and the Cosmological Principle yield 

2 

---=-, 
87rGp k 

3 
k= iI ; E;), (3.2) 

where G is Newton’s constant and k is the trichotomic constant determining the 

global property of the spatial universe: For our purposes we must have k=l. p is 

the total energy density, consisting of radiation or matter, in or out of thermal 

equilibrium, and, as we have seen, possibly a component due to the winding of 

(cp) around the universe,Note that the cosmological constant is assumed to be - _ 
zero here and in the following. 

Early in the Hot Bang curvature effects were negligible, every degree of free- 

dom was relativistic, and the energy density redshifted as - aS4. Usually we say 

that near a phase transition some fraction of this energy density will freeze out as 

matter and begin to redshift as - ae3, eventually coming to dominate. Now let 

us suppose that a texture freezes out at some temperature as well. Thus, before 

the phase transition p redshifts as aV4 and aT3, and afterward it also has a part 

that redshifts as a- 2. Einstein’s equation becomes 

(L 
[I 

2 - 
a - y[Pr + Pm + pw] = -f, 

and it is clear that the universe may become texture dominated. 

This equation can be rearranged as 

Ii 

[I 

2 87rG - 
a --Pr+Pm]=G, 3 [ 

where I have made the definition 7 s 9. The scale factor can be renormalized 
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by [a/dm] G Z, to obtain 

‘2. ii: [I ;; 
a 

- !g, + pm] = -E 

1 ify<l 

2 
EC ( 1 0 if7=1 . 

-1 if7>1 

Thus we come to the strange conclusion: If z = 1 then the universe is really 

smaller than it would appear. If 5 = 0 or -1 the spatially closed universe mimics 

the flat or open universes! 

Since the universe appears to be matter dominated,or possibly just now be- 

coming curvaturedominated, we should have -4 ? _ 

I7 - 11 5 87rG 
a2 3Pm 

at the present epoch. If 17 ;- 11 < 1 then the physical radius of the universe could 

be much less than previously thought. This could occur only if the symmetry 

breaking scale is near the Planck mass, admittedly a far-fetched proposition, but 

perhaps not-too-distantly-fetched in the speculative light of recent superunified 

models. 

4. Gauge Textures 

The global symmetry of the previous example may be promoted to a gauge 

symmetry. For the purposes of illustration, the model is gauged in two different 

ways. 



4.1 SU(2) 

First, we can define a spinor 

d- +1++2 
- 

( ) 43 + id4 

and write the Lagrangian, without changing its content, as 

L = 
/ 

[dpqS+~,qS + X($+4 - v2)“]fid4x. 

This form suggests the g_a,ging-of SU(2), which we do here, by making the ? * 
replacement 

Now, when q5 takes on a VEV that winds around the 3-sphere, we find that the 

energy is minimized when A, also gets a VEV. Let 

0 
d = 9(& 6, ‘p) 0 g E SU(2). V 

Then for 

(A,) = g-‘Q 

we find that 

Furthermore, since (A,) is pure guage, FPy = 0 and, surprisingly, the texture has 

zero energy: it is non - physical. 

An alternative way to see this is to suppose we start with a situation where 

(4) is wound up as before and (Ap)=O. We can have (A,) --* ga,g and the 

texture will vanish, but since g has a winding number this can only happen by 
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i an instanton-like event. Since this instanton occurs all over the 3-sphere I call 

it a cosmological instanton. Thus a texture may decay through a cosmological 

.- instanton. This effect is quite similar to proton decay through weak instantons 

in the Skyrme model, but since the texture is formed in a phase transition it is .- 
most likely that A, will immediately take on a VEV such that Dpc$ = 0, and a 

physical texture does not form at all. 

4.2 THE COSMIC MAGNETIC BACKGROUND 

In the second way we will gauge the entire O(4) symmetry. In this case there 

will be an unbroken O(3) gauge symmetry. We make the following definitions 

/o 0 0 0 

p- O O -l O 

010 0 

\ 00 0 0 

i 

0 001 

=.- 
u’ 

0 000 
E 

0 000 

-1 0 0 0, 

-4 

T2 z 

u2 E 

0 010 

0 000 

-10 00 

0 000 

0 0 00 

0 0 01 

0 0 00 
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T3 G 

u3 f 

* 

0 

-1 

0 0 

10 00 

0 0 00 

0 0 00 1 

-which have the properties 

(4.1) 

Also, 

i 

-sincp 

A- cos $9 
P = 

0 

\ 0 

f 
cos cp cos 8 

sin up cos e 
- sin 0 
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f 
cos cp sin 8 cos c 

& 
sin cp sin 8 cos 6 

cos e cod E 

\ -sin[ 

One more set of useful definitions is, 

_. 

Equipped with this machinery, the reader may verify that 7” all annihilate 

4, and are therefore generators of the unbroken O(3) symmetry group; that T 

and Zli satisfy the algebra (4.1); and that the equation 

p,6= 1% - A&$ = 0, 

=.-- 
which gives the vacuum expectation of A,, is satisfied by 

A, = ;lP sintsin8 A# = lU’sin[ At = :Uf. 
a 

One may now calculate the vacuum field strength in the coordinates, (t, cp, 8, 0, 

L 
0 0 0 0 

t? 0 0 

qbY = --$ 
-7tsin2 (sin6 Tesin[sin6 

0 7tsin2 (sin8 0 -7”sine ’ 

0 -Te sin (sin8 Tp sin c 0 1 

which is a non-abelian magnetic field existing everywhere in the universe, 

02 
8= -aZ(7PsinEsin8,7esinE,7~). 

Such a VEV of course beaks Lorentz invariance, but a Lorentz transformation 

followed by a gauge rotation leaves the vacuum invariant. If we define I); as 
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i the derivative, covariant with respect to only the unbroken O(3) subgroup, then, 

since (AT) = 0, 

&.&&&o, 

and 

& X 8=3X 8= $(UPsin[sin8,UesinE,UC). 

So at energies below the symmetry-breaking the effect of the texture is to give a 

non-abelian electric current to the vacuum, which is the source of 8. 

The stress energy tensor is 
- --rc 

Tr[&,FXY 

r r r r 

i i 0 3 0 0 0 3 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 1 1 ’ ’ 

where g is the gauge coupling constant. This is to be contrasted with (3.1). No 

longer do we have the effect described in section 3. Gauging the texture results 

in an energy density which redshifts as aw4, like radiation. 

5. Epilogue 

Though I have no prejudice about the possibility of incorporating these ideas 

into a truly realistic cosmological model, there are several interesting questions to 

be answered. The first, of course, is to what extent can the phenomena described 

here be ruled out by astrophysical observations ? Others are, what happens to the 

cosmic magnetic background when confinement sets in? What could the role of 

fermions be in these models? Finally, how can the generalization of these effects 

inform model building with higher compactified dimensions? 
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