SLAC—-PUB — 3894
March 1986
M)

SLACnet - Implementation and Experiences.”

e

R. L. A. Cottrell, T. Downey, H. Frese, C. Granieri, M. Huffer,
L. Moss, T. Streater, O. Saxton, D. Wiser.

Stanford Linear Accelerator Center
Stanford University, Stanford, Calsfornia, 94305

Presented at the SHARE 66 Conference, Anaheim, California, March 16-21, 1986.

SHARE Installation Code: SLA
Sponsoring Projects: VM System Interface, Local Area Networks.
Session Number: C403/0672

* Work Supported by the Department of Energy, contract DE - AC03 - 76SF00515.

ABSTRACT

SLACnet is a Local Area Network (LAN) using Ethernet” and the Xerox Net-
work System (XNS) protocols. It currently provides datagram, virtual circuit,
remote procedure call and file transfer services. SLACnet connects together mul-
tiple pEc! vax computers running VMS and an IBM* 3081K mainframe
running VM/SP. The IBM 3081 is connected to the Ethernet via a Device At-
tachment Control Unit (DACU). The source code consists of about 25K lines of
C and 8K lines of assembler. About 16K lines are common to the IBM VM/SP
and the DEC VMS implementations. SLACnet has been in production 24 hours
a day since April, 1985, and coexists with DECnet on the same Ethernet. SLAC-
net is designed to keep the impact on the IBM 3081 to a minimum, and provide
easy to use conversion between VM/SP and VMS sequential files. SLACnet pro-
vides bulk transport of up to a Gbyte/day of physics data between the VAXes
and the IBM 3081, as well-as the transfer of program source files, listings, object
code, etc. This talk describes how SLACnet fits into VM, the services provided,
the mapping between the DEC and IBM worlds, the performance of the various
layers, the impact on VM/SP, and the development effort involved.

Keywords: Ethernet, IEEE 802.3, LAN, DACU, VM, File Transfer, DEC, DEC-
net, VAX, VMS, XNS Protocols.

* Xerox, Ethernet and XNS are trademarks of Xerox Corp.
t DEC, DECnet, UNIBUS, VAX, and VMS are trademarks of Digital Equipment Corp.
* IBM is a trademark of the International Business Machines, Inc.

i

Table of Contents

1. Introduction e e e e
2. Environment e e e e e e e e
3.Goals e e e e e e e e

31 UserGoals
3.2 ImplementerGoals

4. Protocols Layering C e e e e

4.1 Physical Layer e e e .

4.2 Link Layer e e e e

4.3 Network and Transport Layers
4.3.1 Network Layer
4.3.2 Transport Layer

4.4 Session Layer

4.5 Presentation Layer
4.5.1 Courier Remote Procedure Call Profocol
4.5.2 Bulk Data Transfer Protocol

4.6 Application Layer e e e e e e e

4.7 User Interface
4.7.1 VMS Examples . Ce .
4.7.2 VM/SP Examples

. VM/SP Implementation

5.1 Network Communication Executive (NCX)

5.2 Link Layer

5.3 Network and Transport Layers ..

5.4 Session, Presentation and Application Layers .
54.1 MasterEnd e e e
5.4.2 Opening the Session

543 SlaveEnd Coe .

5.5 Error Messages . .
56 VM/SP Disk I/O Package (10Pack)
5.7 LINK Passwords . . e e e
5.8 VM Synchronization

. Performance
6.1 VMS C e
62 VM

6.2.1 Link Layer .
6.2.2 Transport Layer
6.2.3 File Transfer Layer

6.2.3.1 File Transfer Rates (Disk to Disk)

6.2.3.2 CPU Impact on IBM 3033:

iii

O © © O© I I~ IO UL U b th =t

DO B D) = e et b ek ped el e et el ek et et et e e el et

7.Code o ..
7.1 Source Code

7.2 ObjectCode 0o
721 ITPo oo e e e e e e e e
7.2.2 Listener e e e e e e e e e
7.2.3 File Transfer Layer

8. Statistics Gathering and Accounting

81 Accounting o o

8.2 Network Management

8.2.1 Real Time Monitoring
8.2.2 Probing the Network

9. Discussion e e v e e e e e e e e e e e e
9.1 Choices e e e e e e e e e e e e e e e e e e e
9.2 Differences between the VMS and VM Env1ronments .
9.3 Performance™ e e e e e e e e T e e e T

10. Acknowledgements

A. Appendix: Details on the Use of the DACU
A.1 Subchannel 4, Control

A.2 Subchannel 5, Buffered Write
A.3 Subchannel 6, Buffered Read
B. Appendix: Client Interfaces
B.1 Network Layer e e e e e
B.2 TransportLayer

B.3 Courier Remote Procedure Call
B.4 Bulk Data Transfer

B.5 Disk I/OPackage

B.5.1 CMS Minidisk Support
B.5.2 Spool Support

v

23
23
25
25
25

. .25
. 26
.26
. 26
. 26
. 26

27
27

.27

28
28

. .29
. .29
. 29
. .30
.31

31

. .31
. 33
. 35
. .36
. 36
. 36

1. Introduction

This talk will discuss the design, functionality, implementation and experiences
in developing a way to provide medium speed (tens of kilobytes/second) file
transfer service between DEC VAXes and IBM mainframes. Besides describing
how it was done, I will also mention some of the choices we faced, the issues
raised by the developing in and connecting of two dissimilar operating and file
systems, and the factors that had to be taken into account to get reasonable
performance. Most of the emphasis will be from the VM/SP point of view, since
this is where most of the effort was expended. The description will be in terms
of the International Standards Organization’s (ISO) proposed Reference Model
for Open System Interconnection (OSI)!*"

2. Environment

The Stanford Linear Accelerator Center (SLAC) is a national laboratory, funded
by the DOE and run by Stanford University. It is one of the leading centers
world-wide for basic research in elementary particle physics. There are about
1200 SLAC employees and about 200 visitors from universities and laboratories
of 40 different nations.

On site, SLAC has around 27 DEC VAX computers running VMS which are con-
nected together by DECnet, and used for real time, online equipment monitoring
and control, data acquisition, analysis, display, and logging. The data files can be
transferred by 6250bpi tapes and by SLACnet to the computer center, which has
an IBM 3081K mainframe and an IBM 3033 mainframe both running VM/SP.
A typical amount of data transferred would be around 600 Mbytes/day. The
tapes are kept in a large tape library currently holding about 50000 tapes. The
IBM mainframes are used to run detailed off-line analysis FORTRAN programs
to perform: sophisticated pattern recognition techniques to recognize points in
space; reconstruction of particle tracks through the points; extensive statistical
analysis and summarizing; and presentation of the data in both graphical and
tabular formats. The mainframes also support interactive program development,
text entry and document preparation, experiment design and modelling as well
as more down-to-earth things like payroll preparation.

Figure 1

An aerial view of SLAC located on 480 acres of Stanford University property, west
of the main campus at the base of the foothills of the San Francisco peninsula.
The vertical white line is the accelerator. Interstate 280 crosses the accelerator
towards the top, heading, on the right, towards San Francisco 35 miles to the
north, and, on the left, towards San Jose.

The on-site SLAC data communications network has:

1. A Micom data PABX supporting up to 1500 ASCII asynchronous terminal
devices (including about 150 PCs), and computer ports over twisted pairs.

2. An Ethernet with about 10 segments supporting:

(a) terminal servers from Bridge Communications™ with about 240 ter-
minal and computer ports;

(b) DECnet to connect the VAXes.
3. BITNET connections between 21 VAXes and the IBM mainframes.

A picture of the Ethernet and DECnet connections is shown in Figure 2 below.

'SLAC SITE

® IBM mainframe

° DEC VAX type computer

- Ethernets 500 meters

- Non—Ethernet DECnet

Figure 2

SLAC Ethernet and DECnet connections, showing the locations of the main com-
puters and the connections. There are offsite DECnet connections to Caltech,
the Argonne National Laboratory, the University of Illinois, the University of
Michigan and the Lawrence Berkeley Laboratory.

The data PABX and the Ethernet terminal servers allow a user at a terminal
to access any SLAC VAX or the IBM mainframes (through IBM 3705s or IBM
Series/1s). The VAXes can all talk together via DECnet. In late 1982, we
recognized an increased need to transfer files easily and quickly between the
VAXes and the IBM mainframes. The project to develop this capability became
known as SLACnet and got into full swing in early 1983. SLACnet went into
production 2 years later in April 1985. The effort involved was about 4 person
years.

3. Goals

The goals of the SLACnet file transfer service implementation are briefly de-
scribed below. More details on the goals and functional specification can be
found in" and'

3.1 TUser Goals

1.

Multiple file transfers should appear to the user as if they are simultaneously
in progress. This multi-leaving is hoped to overcome the problem of small
files having to wait until a long file is completely transferred. Also it should
allow the file transfer service to utilize resources more efficiently.

It should be possible to initiate file transfers from either end of a connection.

3. The user should be able to initiate a file transfer in either direction (i.e.

10.
11.

12.

the initiating end can act as either the consumer or the producer).

It must support the transfer of text and printer files (including tab expan-
sion and carriage control), and binary files.

Byte swapping and conversmn between ASCII and EBCDIC must be sup-
ported.

It must support the transfer of FORTRAN unformatted files so they can

be read and written on both systems by programs using FORTRAN unfor-
matted READ/WRITE.

. It must provide file transfer capability between the IBM mainframe running

VM/SP and DEC Vaxes running VMS.

. The apparent transfer rates should be an order of magnitude higher than

BITNET rates (about 700 bytes/sec) between the SLAC VAXes and the
IBM mainframe.

The system should be robust and highly reliable.
It should be easy for users to integrate the file transfer into their procedures.

The system must be able to read and write directly from and to user’s CMS
minidisk files, and to the spool system.

It must fully support DECnet filespecs.

3.2 Implementer Goals

1. It is built in a layered fashion. This enables us to improve it layer by layer,
and possibly replace or provide alternate layers at a later time.

2. It is based on published protocols. This enables us to take advantage of the
work of other people, both in designing the protocols, and in some cases in
implementing them.

3. It should be efficient. In particular we initially wanted to be able to support
disk to disk rates of above 100 kbytes/sec, and yet impact the host as little
as possible. We later had to revise these rates to above 30 kbytes/sec.

4. Although, thus far, we have only implemented the file transfer services, the
lower layers were implemented with a desire to use them later to support
other services (e.g. interactive messages, time, mail, terminal, clearing-
house, etc.). '

5. The implementation was designed to be transportable between different
operating systems. This hopefully reduces the amount of code that has to
be written (though making that code harder to write), reduces the amount
of code to be maintained, and increases the probability of the implementa-
tions on different systems agreeing, both initially and later as enhancements
and fixes are added. Initially the operating systems included the DEC VMS
and the IBM VM/SP systems. The transportability goal led us to write the
bulk of the code in a higher level language, in this case C, and deliberately
to keep the system dependent code to a minimum, and well isolated.

6. It must run in a heterogeneous network including, initially, equipment from
IBM, DEC, 3COM, Interlan, and Bridge Communications.

7. The resultant system must require minimal operator intervention.

4. Protocols Layering

The file transfer service is composed of several layers that conform to the ISO/OSI
recommendation” Layers 1 and 2 use the Ethernet'® technology. With the
passage of the ISO/DIS 8802/3 and IEEE 802.3 standard,”” this is now an
internationally accepted communication standard.

Layers 3 through 6 use the set of high-level protocols that Xerox, the origi-

0SI Layers
File ' Network .
Transfer anagement 7 Application
) Remote Procedure Call 68 Presentation
Bulk Data Transfer 6 Session

WE\F;HFH_F] 4 Transport

|Internetwork Datagram | 3 Network
Ethernet __ 2%Datalink
1 Physical

4.1 Physical Layer

nal developer of the Ethernet, pub-
lished for its Xerox Network Systems
(XNS) products. Layers 3 and 4 are
known as the Internet Transport Pro-
tocols (ITP)® Layer 5 of XNS is
almost non-existent. Layer 6 is de-
fined by the XNS Courier protocol*”

Figure 3
XNS protocols implemented in SLAC-
net. On the right are shown the cor-
responding OSI layers. The applica-
tion layer is SLA Cnet specific and not
part of the XNS protocols.

The lowest layer is the physical layer. This is based on the Ethernet and consists

of a 50 Ohm yellow coaxial 0.5 inch diameter cable (the Ether), together with taps

and transceivers for each station. The Ethernet is used as a 10 Mbit / sec baseband

HOST
CHANNEL

l

OEMI

[U

UNIBUS
I

m;‘}[

NI1010A

oo

M M
Transceiver

Ether

bus utilizing the Carrier Sense Mul-
tiple Access with Collision Detection
(CSMA/CD) media access method.

Figure 4

The Ethernet is interfaced to the
channel of the IBM mainframe host
by means of a DACU. This con-
sists of a System Unit (SU) in the
form of an IBM PC, and an Interface
Unit (IU) that contains 128 kbytes
of buffer memory and interfaces to
the UNIBUS and the IBM OEMI on
the host’s block multiplexer channel.
The interface to the Ether itself is
through an Interlan NI1010A Ether-
net controller board.

m’]“_

4.2 Link Layer

On the DEC VAX/VMS systems, the link layer consists of a DEUNA Ethernet
interface board plugged into the UNIBUS interface. A single DEUNA in each
VAX supports both SLACnet and DECnet.

For VM/SP an Interlan NI1010A Ethernet communications controller™ board is
plugged into the UNIBUS of an IBM Device Attachment Control Unit (DACU)™"
The DACU provides the capability to connect non-IBM input/output devices to
the block multiplexer channel of IBM 43xx and 308x processors. On the non
IBM side the DACU presents a UNIBUS interface. We chose the DACU since,
being programmable, it is flexible, the program development environment (IBM
PC) was well understood at SLAC, its price was attractive, and also it reduced
the number of vendors involved.

— -

4.3 Network and Transport Léyers

At the time we started there were two major well defined candidates for the net-
work and transport layer protocols. These were the XNS ITP and the DARPA
TCP/IP protocols®™ Both of these protocols cover the network and transport
layers. We chose the XNS/ITP protocols since we felt they are easier to imple-
ment, and capable of higher performance. This is partially due to: larger address
space; their use of fixed header fields; fewer options to implement and test; and,
the fact that network layer checksums are optional and so time can be saved
by not calculating them. In addition the fact that we were already running the
XNS/ITP protocols in our Bridge terminal servers, meant any tools and learning
from one system would be useful for the other. We purchased the sources of
Interlan’s ITP" implementation for Unix* written in C, and ported this to the
IBM VM/SP system'”

4.3.1 Network Laver

This layer addresses, routes and delivers standard internet packets over the net-
work and makes a best effort to deliver them. Each packet is treated as an
independent entity with no relation to other packets traversing the system. The
XNS layer 3 protocol is the Internetwork Datagram Protocol (IDP).

* UNIX is a trademark of AT&T.

w

4.3.2 Transport Layer

The transport layer provides a transparent universal data transfer mechanism
to the higher layers. The transport layer is expected to: check the integrity
of the data delivered by the lower layers; and to optimize the use of available
communication resources, while meeting the performance requirements of the

xuguer myerb .l.ﬂele are 5 AL‘(D pl'ObO(,Olb ueuneu at bIliS la.-y_eT‘

The Sequenced Packet Protocol (SPP) guarantees end-to-end transfers of
data messages. The lower layers may lose packets, duplicate them, or get
them out of order. SPP fixes this up, provides flow control and fragmen-
tation of messages into packets, and reassembly of messages from packets.
It also provides the functionality of multiple simultaneous virtual circuits.
The SLACnet file transfer services utilize SPP. The Bridge Ethernet ter-
minal servers also use the SPP as a basis for their terminal serv1ces

The Packet Excha,nge Protocol (PEP) is used to transmit a request in a
packet and receive a response with reliability greater than that achieved
by IDP, and less than achievable through SPP. Bridge Communications
also use PEP for network server management (e.g. gathering and reporting
session records, configuration setting and querying). We have used the PEP
support to allow VM/SP users to interrogate and set the Bridge terminal
server configurations.

The Echo Protocol is used to verify the existence and correct operation of
a host and the path to it. All Echo Protocol packets received are returned
to the source.

The Error Protocol provides a means for any agent to report that it has
noticed an error (and as a result discarded the packet). The agent sends
the Error packet to the source socket of the packet that provoked the error.
The contents of the Error packet include an error number and parameter,
followed by the first portion of the offending packet.

The Routing Interchange Protocol (RIP) is the means by which the routing
tables in each router are dynamically maintained. We have not made use
of this protocol.

:w’,‘}‘;

4.4 Session Layer

The session layer binds together two cooperating user processes into a temporary
relationship. Since the lower la.yérs were based on the XNS ITP protocols, it was
natural that we chose the XNS Listener paradigm to implement this layer. It
listens at a well-known socket for a service request. Upon receiving a request, it
sets up a connection between the initiator (in our case the file transfer master)
and the server (in our case the file transfer slave), and then stands aside, returning
to listen for more service requests.

4.5 Presentation Layer

The presentation layer services are concerned with data transformation, data
formatting, and data syntax. The presentation layer is implemented using the
XNS Courier” data encoding standard, and uses the XNS Courier Remote
Procedure Call Protocol and Bulk Data Transfer Protocol.

4.5.1 Courier Remote Procedure Call Protocol

The remote procedure call protocol defines a single request-reply or transaction
discipline for higher level applications. The active end issues call procedures
which contain “arguments” (data items or input specific to the requirements of
the called procedure) necessary to get the work done. The remote procedure is
executed in the passive end and the result returned to the active end. If some-

- thing goes wrong, the procedure is aborted and an error statement returned.

The ASCII/EBCDIC and byte swapping data conversions are handled by spec-
ifying Courier data types such as Integer (16 bits signed), Cardinal (16 bits
unsigned), Long Integer (32 bits signed), String, Unspecified, Boolean, together
with Arrays and Sequences of the above data types. The data items are con-
verted to and from the network standards of the ASCII character set and IBM
byte ordering.

4.5.2 Bulk Data Transfer Protocol

Movement of large quantities of data would be inefficient to do via arguments to
a remote procedure call. Therefore XNS provides a special adaptation of Courier
called the Bulk Data Transfer Protocol. Bulk data is an arbitrarily long sequence
of 8-bit bytes. The protocol specifies how the sender and receiver make contact,
how the bulk data is demarcated, and how the transfer can be aborted by either

party.

v’,}

4.6 Application Layer

The application layer is the highest layer of the OSI architecture. In our case the
major application is the program that provides the file transfer services.

At the time we were implementing SLACnet, Xerox had not announced their
filing protocol, nor were they willing to make a pre-announcement copy available
to us. Thus we had to choose some other protocol. We looked at the DARPA
FTP and TFTP file transfer protocols, and at the U.K. Blue Book protocol.m'
We chose to implement a stripped-down version of the Blue Book protocol ™ It
appeared to provide a more complete negotiation mechanism, and also specif-
ically allows for the protocol to be extended in a way that provides backward
compatibility.

The protocol dialogue takes place between a master (an active initiating process)
and a slave (a passive respopding process). It is divided into 3 phases: an initial-
ization phase during which the 2 ends negotiate about the identity, properties
and formatting details; the data transfer phase; and the termination phase.

During the negotiation phase, the slave is sent information as to what type of
file is to be transferred, and whether the master node is an ASCII host and
how its bytes and words are arranged. The slave then decides whether trans-
lation between ASCII and EBCDIC, and/or byte or word swapping is required.
If translation is required and the slave is an EBCDIC node then it will perform
the translation in the bulk data phase, otherwise it will request the master to
perform the translation. If byte/word swapping is required, then if the slave has
DEC type byte/word ordering, it will perform the translation in the bulk data
phase.

The sender of a file performs the required carriage control, tab expansion, record
padding, and wrapping functions during the bulk data phase.

Either end may abort the file transfer by sending a bulk data abort message to
the other end.

The termination phase is relatively simple. The master sends a STOP to the
slave. The stop command contains the master’s final status information. The
slave responds with a STOPACK reply, which also contains the completion sta-
tus of the transfer from its point of view. If either end detected errors, then
these (more than one error may be detected) are converted to appropriate er-
ror messages at that end. Then the error messages, final status and statistics
information are sent to the other end.

10

p

4.7 TUser Interface

From discussions with our users, we decided that users on a given machine prefer
that all services on the machine have a similar interface. This applies even if it
means the user is presented with a different interface when using a corresponding

service on another machine. Thus the user interface (the TRANSFER command)
on the VAX end models a VMS COPY command:

VAL VIIU ViR 4h CILU LilUuGEw & v ARV SSRRR TSR Y

TRANSFER input-file-spec/options output-file-spec/options

whereas on VM/SP it looks a bit like the SENDFILE command:
EXPORT local filespec TO remote filespec AT node (options
IMPORT local filespec FROM remote filespec AT node (options

In both cases the filespec of the remote file is expressed in the syntax of its native
file system, and not parsed by the local end.

The file transfer service pravidesthe user with options to specify: .

1. Character data, including conversion between EBCDIC and ASCII; and
optional tab expansion.

2. Printer formatting support, optional conversion of embedded form feeds,
line feeds, carriage returns to ANSI column 1 carriage control characters.

3. Binary data, VM/SP to VMS and vice-versa, and master to slave and vice-
versa, including the byte and word swapping required between VAXes and
IBM mainframes. No bit-level conversions such as floating point conversion
are currently provided.

4. Changing record formats, e.g. fixed format to variable format, record trun-
cation, wrapping, and padding. VMS null (zero length) records are con-
verted to VM/SP records with a single pad character.

5. File copying attributes such as appending, replacing, creating.

6. The level of user notification, and who should be notified and where, when
the file transfer is completed.

Table 1 is excerpted from the VM /SP HELP file and gives some idea of how the
options are specified.

11

lwu

Table 1. User Options Available for the VM/SP SLACNET command

VM EXPORT/IMPORT Options

Options (defaults are underlined):
AUThorization “auth-str”

BRIef | FULL | DEBUG /¥ Terminal output */
NOCC | CcC /¥ Carriage Control*/
CHAracter | BINary [4|wordsize] /¥ EBCDIC to ASCII,

or binary wordsize (needed for byte swapping)*/
CREate | APPend [ONLY] | REPlace [ONLY]
DEFaults [QUEry)| /* Used to change defaults */
INRecfm Variable|Fixed{Segmented - -
/* Segmented support allows a user to take records written with*/
/¥ a binary unformatted FORTRAN WRITE on one system, */
/* transfer them to another system, and read them */
| /* with a binary unformatted FORTRAN READ.*/
NOTify *|vmid [VIA Msg|Rdr|Smsg] | NONOTify
/* Can notify others when transfer done*/
OUTRecfm Variable|Fixed|Segmented
PADcharacter c|xx|“c” /* Pad char for fized len recs*/
RECLength * | recl
TABstops DECprint|“c1 ¢2 ... ¢n”

‘TRUncate | NOTRUncate ' /* Over long lines are truncated?*/
WAIt | NOWATt /* Transfer asynchronous of terminal?*/
WRAp | NOWRAp /* Over long lines are wrapped?*/

4.7.1 VMS Examples

1. Same node VMS to VMS transfer with reformatting (assume input file is
composed of variable length records):
TRANSFER INFILE.DAT OUTFILE.DAT/FIXED/LRECL=80

2. Transfer from a VM/SP node:
TRANSFER SLACVM#[JOE.191]T.FORTRAN DBAO: [JOHN]T.FOR
TRANSFER "SLACVM#[JOE 191]T FORTRAN" DBAO: [JOHN]T.FOR

12

4.7.2

Notes:
(a) The user must use “.”

in the VM/SP filespec or enclose it in quotation
marks. -

(b) The remote node name (in this case SLACVM) is prepended to the re-

mote ﬁlespec and separated from it by an installation selectable special
character (:H: in the above examn]o\

Transfer to a VM/SP node with the file going into the reader spool of the
remote VM/SP userid:

TRANSFER DBAO: [FORD]JGUIDE.TEX;42 SLACVM#[ZAPHOD.RDR]GUIDE.TEX
Note: RDR is the default device for VM and may be omitted.

VM/SP Examples

. To transfer simple character files between VM/SP and VMS:

EXPORT PROF EXEC TO [PAT.DATAILOGIN.COM AT MAC(CAUTH "PAT pwa"
IMPORT BOOK SCRIPT A FROM SLD::[MCMILLAN]BOOK.RNO AT MAC

. To use SLACnet to send a character file to a distant DECnet node:

EXPORT FN FT TO °*SLD"JOE password"::[JOE]JUNK.JNK' AT MAC

Note: It may help to change the terminal default logical escape character,
before issuing this command.

5. VM /SP Implementation

The VM/SP environment provides multiple virtual machines, each of which runs
its own operating system. In our case all the virtual machines involved run the
IBM VM/SP Conversational Monitor System (CMS). Our design tries to mini-
mize the number of virtual machines used in order to reduce the inter-machine
communication activity. This also enables us to specially treat this small num-
ber of virtual machines, if it is found necessary, in order to improve performance
(e.g. by locking pages into memory to reduce paging activity, or by favoring the
virtual machine).

Inter-machine communications are handled by the IBM Inter-User Communica-
tion Vehicle (IUCV) for VM/SP!™

13

o

5.1 Network Communication Executive (NCX)

Since CMS does not readily support asynchronous processes, something is re-
quired to handle the networking needs for concurrent tasks. NCX was designed
by Interlan® spec1ﬁca.lly for handling fast, efficient multitasking of PROCESSes,
and provides an interface between the operating system (CMS or VMS) and the
Network code. A PROCESS is a non-preemptable execution stream. PRO-
CESSes are priority scheduled, running until EXITing or blocked by an explicit
call (SLEEP, VIGIL, REQUEST) from within the PROCESS itself. A PROCESS
can create (FORK) new (independent) PROCESSes. Shared Resources such as
the Ethernet are represented by SEMAPHOREs and can be REQUESTed and
RELEASEJ, by other PROCESSes or by interrupt level routines. PROCESSes
can inter-communicate (SEND/RECEIVE) via MAILBOXes. REQUESTSs and
RECEIVEs can time out. PROCESSes can dynamically allocate and free mem-
ory. - - .-

We transported a Unix version (in C) to VM/SP, and later rewrote it in about
1300 lines of assembler code.

5.2 Link Layer

The DACU interface code uses three of the four available UNIBUS-type DACU
subchannels. We modified* the VM /SP DIAGNOSE 20! function to support the
DACU. Reads and writes use two Channel Command Words (CCWs) each. In
order to provide reasonable performance (see section 6.2.1) and minimize the host
impact, the DACU interface attempts to use large 56 kbyte buffers to transmit
across the channel interface to the DACU (see Appendix A).

% Fortunately, we had access to the source code.

t A VM/SP function that supports synchronous execution of a channel program on a general
I/O device.

14

r;““"_,,

5.3 Network and Transport Layers

Some of the reasons why we did not go to the extreme case where each user’s

virtual machine includes all software needed to run client programs as well

as ITP, are given elsewhere™ A further reason for isolating ITP in a sin-

gle virtual maclllirlle is that this can facilitate its later replacement by intel-
12

ligent hardware, connected to the DACU that provides the ITP services.

Our design has the ITP services running in a single service VM, ITPACP.
This machine includes NCX that handles asynchronous requests for service, re-
sulting from both the ITP entities and from external interrupts from clients
(via IUCV) and the Ethernet. NCX in its turn uses the services of the
clock, talks to the IUCV interface code and the Network Interface (NT)
driver. The NI driver controls the DACU through the DACU interface
code. Clients of ITPACP talk to it via a SLAC written ITP Client In-
terface (ITP-CI) which in turn goes through NCX and the IUCV inter-
face. Figure 5 shows the relationships of the various layers of the code
within ITPACP, and how ITPACP talks to another VM through IUCV.

IBM 3081/3033 Running VM/SP Fig ure 5 o
ITPACP In the simplest ITP application there
TP Application is a server machine ITPACP that in-
Clock — terfaces to the DACU, and provides
: network and transport layer ser-
@— NCX NCX vices. The application itself resides
in a second service machine commu-
M Oriver | 1ucv ucv nicating with ITPACP via IUCV,
DACU | fieriees Interface and the ITP client interface (ITP-
Interface i
Block—Mux I%CV—J CI).'Both virtual machines use th.e
Channel services of the Network Communi-
— cations Executive (NCX) to per-
form multi-tasking.
NI1010A
,L Ether

15

i

5.4 Session, Presentation and Application Layers

Initially the only client of ITP is the file transfer service. There are 2 sides to the
file transfer service, the master (i.e. the initiator or active side of the file transfer
request), and the slave (i.e. the server or passive side of the request).

5.4.1 Master End

In conformance with the desire to minimize the number of virtual machines, the
application and presentation layers are able to run in the same service VM as
the session layer. However, this complicates the issue of adding other servers
later since the servers are not isolated, and also the performance requirements
of different servers may conflict (e.g. a file server does not need to be very
interactive, whereas a message server or terminal server does). Other negative
aspects to having all the FTP servers in a single service VM compared to being

in separate service VMs aret -
1. The code has to be written more carefully since it is not single threaded;

2. The isolation between servers is reduced so there can be more unwanted
interactions. One errant server can bring down the entire file server sys-
tem. It can be harder to reproduce and pin-point problems due to the
concurrency of processes.

Thus we usually run the master end of a file transfer in the user’s VM. This also
has the advantage that the user can request that the file be written directly on
one of his/her disks.

~ On VM/SP the file transfer can be executed in a WAIT or NOWAIT fashion. In

the WAIT fashion the user’s VM executes the transfer synchronously and must
wait until it is completed. When using the NOWAIT option the file transfer
is executed on the user’s behalf by a service VM, FTPSERVE. Thus the user
can initiate the request, and then get on with other work while the transfer is in
progress. In either case the user interface of the master end parses the command,
reports on errors, expands abbreviations, puts in system and user defaults, and
creates a fully expanded request as a C structure.

1. If the WAIT option is requested, this C structure is simply passed to the
file transfer program which executes in the user’s VM.

2. If the NOWAIT option is specified then the structure is passed as a spool
file to FTPSERVE’s virtual reader. This awakens FTPSERVE which reads
the file and passes it to the file transfer master program. The results of
the file transfer may be passed back to the user VM via its reader, or an
interactive message (MSG and/or SMSG). If the file was read to VM/SP
then it is also transferred to the user VM via its reader.

16

m;‘}ﬂ_)

5.4.2 Opening the Session

The master end of a file transfer request sends an SPP Open request to the well-
known listener socket at the remote node. The listener at the remote node (run-
ning in the SlacNet Courier Access Listener (SNCAL) service VM) receives the
SPP Open request, and accesses an unknown socket as a client of SPP, causing a
new socket to be dynamically allocated. The listener next hands off the SPP open
packet to the new socket, changing the destination socket number in the packet
to be that of the new socket. Then the listener forks a session process, giving it

o the access-id of the new socket, and
ITP— e then goes back to listening for further
SNCAL 1o ™ service requests (SPP open packets).
(Listener) Registrar Bession The session process uses the access-id
bu8[03'4 pert to open an SPP connection with the
Registration |

ITPACP == 7 master. -

ITP_lm Figure 6
il g How the service VMs fit in VM/SP.
(o). NCx- ITPACP supports up through the
DALY ITP- |Courier [Supplier transport layer. SNCAL supports
a » the listener and is basically the ses-

——él——— 176 Bulk Lervers . .
Ether L o Deta sion administrator. The file transfer

slaves (or any other servers) run in

SLACNET1..n 4 server VMs with the names SLAC-
(FIP Sleves) NETI..4.

5.4.3 Slave End

The file transfer servers may run as sub-processes in the SNCAL service VM.
However, for the reasons given above for the master, initially we have set up
separate service VMs for separate file transfer servers. Currently there are 4
file server service VMs (SLACNET1..4). Thus 4 file transfers can be in progress
simultaneously. When a server VM is AUTOLOGged it tells, via IUCV, a “reg-
istrar” in the SNCAL VM, which services it can supply. After starting up the
session process in SNCAL (see section 5.4.2), the master sends it an SPP packet
indicating what service it requires. If a non-busy supplier is found in the reg-
istrar’s list, the desired slave module name is sent via IUCV to the server VM.
The kernel running in the server VM forks a supplier process, which loads the
slave module from disk and executes it. All further SPP transactions then take
place between the master and the slave module running in the server VM. When

. the slave completes it returns to the supplier process. The supplier process frees

the space used by the slave module and informs the session process in SNCAL of

17

s

its completion and exits. The session process in SNCAL then marks the server
VM non-busy in the registrar’s list and also exits.

If no matching non-busy supplier can be found, then the SPP Open attempt will
time out.

In order to reduce paging of code, the file transfer code has been written so the
majority of the code is re-entrant and only a single shared copy of the re-entrant

code will be required. So far we have not taken advantage of this.
5.5 Error Messages

On VMS we use the standard VMS message utilities”™ On VM/SP we model the
VMS scheme. All error messages are assigned a 32-bit number, called the message
code. The message code contains the facility (e.g. Ethernet interface, file transfer
master, I/O interface) that_generates the message, the message number within
the facility, and the severity of the error. The developer of each facility is assigned
a facility number, and produces a file with all the message codes and their related
text. On VM/SP a utility processes these files to create a DisContiguous Shared
Segment (allows multiple VMs to share common memory), that contains the
information. When an error occurs, the message code is used to call a procedure
that returns the complete error message text.

5.6 VM/SP Disk I/O Package (ioPack)

~ In order to allow the file transfer master and slave to be transportable, we defined

a host-independent set of C callable routines to support disk I/O. These were
implemented for VMS and VM/SP and present the same interface to the caller
irrespective of the machine on which they are being called. However, the error
codes returned are specific to the local system. The application code uses the
error code together with the message system described in section 5.5, to obtain
an error message.

The disk I/O package supports reading and writing to CMS minidisks, and writ-
ing to a spool file (reader, printer, or punch). All the usual CMS file modes are
supported including mode 4 for VBS records, which are used for FORTRAN un-
formatted binary records. Punch files utilize the Cornell CARD DUMP format,
which allows transmission of files of any record length.

18

‘,’eﬁ-_ .

5.7 LINK Passwords

VM/SP keeps count of the number of password violations made trying to LINK
to a disk. If this exceeds about 10, then that VM is barred from making further
LINK attempts during the logged on session. In order to prevent this happening
to a file transfer server VM, the listener checks the password violation count of a
server machine before asking it to perform the file transfer. Should the count be
exceeded, a process is started to wait for the completion of all file transfers in that
server machine. At that time, the server machine is FORCEd and AUTOLOGged
by the listener if (a) the error condition still exists and (b) the server belongs to
the family of SLACNET1..4 servers. Crude, but it works, requires no mods to
the VM/SP Control Program (CP), and only the listener needs privileges.

5.8 VM Synchronization

Any of the service VMs (SNCAL,’ITPACP, SLACNET1..4, FTPSERVE) can be
FORCEd and AUTOLOGged in case of problems. The VMs will automatically
get back into step when one of them is AUTOLOGged. This enables us to take
one of the VMs down, fix bugs, add enhancements etc., and then easily restore
it to service.

6. Performance

6.1 VMS

~ The DEUNA is rated at about 180 kbytes/sec when transmitting data onto the

Ethernet.

In a VAX 11/780, reading and writing SPP messages takes about 16 msec cpu
time in the ITPACP process and 2.5 msec cpu time in the user process. The
maximum SPP message rate was around 10/sec.

For our type of data (binary unformatted FORTRAN data), the VAX 11/780
VMS disk read rate is around 250 kbytes/sec, and the write rate is about 130
kbytes/sec.

Bulk data transfer disk to disk with the producer and consumer on the same
VAX 11/780, runs at 30 kbytes/sec for large binary files. Doing this, the peak
utilization takes 6-8% of the cpu to support the producer, about 7-9% to support
the consumer, and ITP takes 55% (n.b. since both producer and consumer are
on the same VAX, this will drop by a factor of 2 when using 2 VAXes).

_ Transferring a file from a VAX 11/780 running VMS to VM takes about 55% of

the VAX cpu cycles. On a VAX 8600 this drops to 20%.

19

vafe,

6.2 VM

6.2.1 Link Layer-

The maximum IBM to DACU rate (we have 100 foot channel cables) using 56
kbyte buffers, is about 0.8 Mbytes/sec (n.b. the data is simply going into the
DACU, not onto the Ethernet). The maximum transfer rate across the Inter-
lan NI1010A is around 256 kbytes/sec. The maximum throughput from the
IBM to the Ethernet is highly dependent on the buffer size transmitted across
the channel interface. Some early measurements we made using 4 CCWs per
write, gave the results shown in Figure 7. That data can be roughly fitted by:
T = 24.5 + 5.838 + 2.36r"l. Where 7 = msecs / buffer, B = the buffer size in
kbytes, and v = number of Ethernet packets per buffer.

Reading or writing an Ethernet packet as a single buffer takes around 3 msec
mainframe cpu time, and about 35-40 msec elapsed time. The elapsed time
limitation appears to be in the DACU, and hence there is no change in this

time when using an IBM 3081 or

Thru—put vs. IBM 3033 to DACU Buffer Size an IBM 3033.
Rl S L A B
1x .
s 1800 bytes Figure 7‘ -
1000 bytes - Rate at which data can be writ-
100 3 ten from an IBM 3033 to the
500 bytes DACU memory and onto the Eth-

~z
-]

= ernet, as a function of buffer and
packet sizes. The solid lines are
the throughput, the dashed lines
ctirion show the cpu utilization, and the
L numbers on the right are the

20000 40000 80000 packet sizes.
Buffer Size in Bytes

[~
[~}

n
-]

Throughput in KBytes/sec

o
°llll TT v 7 TT 1T Trrr TTI T TTT

6.2.2 Transport Layer

Using 1500 byte packets, and 30 kbyte SPP messages, the transport layer (SPP)
transfers data between the memories of two VAX 11/780s at about 42 kbytes//sec.
Transferring from a VAX 11/780 to the IBM 3033 using 1500 byte buffers be-
tween the mainframe and the DACU, this rate drops to about 20 kbytes/sec.
Increasing the mainframe to DACU buffering to 30 kbytes increases the rate to
- 52 kbytes/sec. Between the IBM 3081 and the IBM 3033 the rate was about 46
kbytes/sec.

20

e,

6.2.3 File Transfer Layer

The following measurements are made with 1500 byte Ethernet packets, 31000
byte bulk data buffers, and no XNS checksum™ calculations. All the timings are
wall clock times. The VM/SP end is an IBM 3033. Multiple packets are collected
in the DACU and transferred via a single large buffer to the 3033.

Time for VAX to start FTP slave process image: 4,500ms ¢))
Time to read a single packet buffer 24ms (2)
Time to read a 10-packet buffer 43ms
(Time/packet after 1st packet in buffer) 2ms (3)
Notes:

1. At the remote end the Courler remote procedure call listener starts a file
transfer service process by performing a remote login with the appropriate
access string for the specified user account. The time to perform this remote
login depends on how heavily the VAX is loaded, etc. The average we
observed is around 5 secs, and 80% of the remote logins are performed in
under 20 secs. This is on a reasonably loaded VAX 11/780. Thus if small
files are transferred, a major fraction of the time goes into the remote login
if this has to be done for each file transfer.

2. This time is basically the latency of the DACU, i.e. the time it takes to
respond to the mainframe. A faster PC in the DACU might help.

3. This indicates the importance of performing buffering between the host
and the DACU. Note that the instantaneous transfer rate is around 750
kbytes/sec.

6.2.3.1 File Transfer Rates (Disk to Disk) The following timings were made
during the daytime. They are made between separate computers. The timings
typically varied by about 10% from measurement to measurement. Using DCSSs
to share data across VMs, rather than copying the data, had a negligible effect on
performance. The window size (see note 2 below) if not specified is 3. The VMS
end is a VAX 11/780 unless specified. The VM end is an IBM 3033. The file is a

3 Mbyte binary file' of variable records of average length 1500 bytes, maximum

* Turning on the checksum calculations does not alter the VM/SP to VM/SP transfer rates,
but does increase the cpu utilization of ITPACP by about 30%.

t This file happened to be a convenient 3 Mbyte file that was sitting around, and is truly
typical of the stuff we have to shovel around. Using a file of 80 byte records, typically
reduced the performance by 25%.

21

length 21 kbytes and minimum length 44 bytes. The packet size is 1500 bytes.
Going from 1500 byte packets to 500 byte packets reduced the performance at
the transport layer by 30%.

VMS to VMS: 30 kbytes/s

3 VMS to VM (no DACU buffering (buffer = 1 pkt)) 18 kbytes/s
VMS to VM (with buffering, window size 10) 31 kbytes/s (1)
VMS to VM (with buffering, window size 20) 36 kbytes/s (2)
VMS to VM (with buffering, window size 25) 40 kbytes/s (2)

VMS(8600) to VM (with buffering, window size 20)50 kbytes/s (3)
VMS(8600) to VM (with buffering, window size 25)55 kbytes/s (3)

VM to VM no buffered write, buffered read 30 kbytes/s
VM to VM buffered read and write 40 kbytes/s (4)
Notes: - -

1. Shows the importance of DACU-to-mainframe buffering.

2. Shows the importance of using large acknowledge windows (i.e. the number
of packets that can be outstanding at the receiver before it must acknowl-
edge the receipt of at least one of them). Small windows mean that the
DACU must constantly interrupt the mainframe to report the receipt of an
acknowledgement.

3. Shows that the DACU is not the only limit; a faster VAX helps too.

4. The aggregate transfer rate when running two transfers simultaneously, i.e.
IBM 3033 to IBM 3081, and IBM 3081 to IBM 3033, was also about 40
kbytes/sec (20 kbytes/sec in each direction).

6.2.3.2 CPU Impact on IBM 3033:

L

Channel Busy (no DACU Buffering) 50%
‘Channel Busy (with buffering) 10%
IBM 3033 CPU Utilization worst case 12% (1)
Notes:

1. 65% of this 12% was in ITPACP.

22

7. Code
7.1 Source Code

On both the VAXes and the IBM mainframes the bulk of the code is in C, with
the remainder being in assembler, and in the case of the IBM mainframes, REXX.
The DACU code was written in Pascal, since this language is supported by the
DACU support programs.

On VMS the Interlan code was written for the Whitesmith C compiler. We
modified it to run under the DEC VAX C compiler™

On VM/SP at first we used the Canaan modified Bell C compiler in production.
Recently we changed over to the Waterloo C compiler®” It creates 30% less object
code, and runs 30% faster. Also it is supported by the SLAC computer services
people whereas the Canaan compiler is not. Since the Waterloo compiler is
relatively new, we did encounter some bugs, which Waterloo have been responsive
in fixing. There were also some naming conflicts with our code and the Waterloo
run-time library, and different interpretations on a couple of subtle boundary
conditions in the string handling routines, arrays of structures, and imbedding
comments in literal strings. Unfortunately the Waterloo compiler uses an unusual

procedure calling convention, so we also had to modify the receiving sequence in
the NCX and the disk I/O package.

The total number of lines of code is around 33,000. Tables 2 and 3 below show
how this is broken up, by function and language.

23

ﬁ,"11< .

Table 2. Breakdown of SLACnet Source code by Function

Function Language | Lines (VMS)
DACU - PC Pascal 500 na
DACU - VM Int. | Assembler| 550 na
IUCYV - Int. Assembler | 1050 na
Network Driver C 400 na
NCX Assembler | 1200 [(1700 C, 2800 MAR)
I/O Interface | Assembler| 2900 (1500 C)
ITP * C 8000 =
ITP Client Int. | 1200 " (3000)
Listener C 400 (1500)
Courier User Int. C 3500 =
Bulk Data C 1500 =
FTP Master C 1000 =
FTP Slave C 1000 =
FTP Utilities C 1000 =
User Interface | REXX, C | 2600 (600)
Total 26800 (22600)

24

Assembler code is unique to each operating system
Numbers in parentheses refer to VMS
MAR = VAX MACRO Assembler
na means there is no direct equivalent in VMS
means the code is the same on VM and VMS

means the code came from Interlan

Table 3. Breakdown of SLACnet Source Code by Language

The count of the source code lines includes comments. The main language used
(over 70% in number of lines of code) was C. Just under 50% of the code is
transportable between VM and VMS.

Language Lines | % Tota]]

PC (DACU) Pascal | 500 1.5
IBM Assembler H | 5700 17.1

Macro-11 Assemblery 1500 4.5

C Transportable |[16000| 47.9

C Waterloo (VM) | 3000 8.9
C DEC (VMS) | 5100 | 15.3
REXX 1600 4.8

Total 33400

7.2 Object Code

721 ITP

" The size of the ITP program on VM/SP is about 112 kbytes including NCX, the

drivers and device interfaces.

7.2.2 Listener

On VMS the listener occupies abbut 18kbytes of code, 2 kbytes of data and
around 20 kbytes of stack space. On VM/SP the listener server VM (SNCAL)
takes about 60 kbytes.

7.2.3 File Transfer Layer

On VM/SP the file transfer master takes 120 kbytes. This includes bulk data, the
disk I/O interface, the Courier user interface, the ITP user interface NCX, the
IUCYV interface, and a small test program. The SLACNET1..4 server machines
each require about 55 kbytes to support NCX, the [IUCV, ITP, and I/O interfaces,

plus about 35 kbytes for the file transfer slave module itself.

25

"1

8. Statistics Gathering and Accounting

8.1 Accounting

Both the master and slave ends of the VM/SP file transfer service gather the fol-
lowing data: requesting userid; source filespec; target filespec; transfer direction;
FTP return code; master and slave version numbers; number of bytes transferred;
number of records transferred. This information is concatenated into one line of
fixed length, and the VM/SP special message feature SMSG is used to send it
to a service VM, which logs it onto a disk file. The disk file is archived to tape
when it reaches a certain threshold. The file is accessible publicly and can be
viewed using the VM/SP editor. The data is analyzed on a monthly basis using
locally written SAS™" procedures.

8.2 Network Management —

8.2.1 Real Time Monitoring

Real time monitoring of the network traffic is performed by means of NET-
MON, a VM/SP version of NETMGR, an Interlan program' for their Ethernet
products. NETMON is a menu-driven, screen-oriented program for 327x type
terminals that allows inspection of local and remote network statistics and con-
figuration information. Four displays are available: 1) general ITP statistics; 2)
ITP network statistics; 3) ITP socket statistics; and 4) connection statistics.

 8.2.2 Probing the Network

To enable VM/SP users or operators to check whether the network is running,
the QSNET exec checks the components.

1. It ensures that FTPSERVE, ITPACP, SNCAL and SLACNET1.4 are
logged on, that the DACU is correctly attached, ITPACP can talk to it,
ITPACP on SLACVM is responding correctly, and can probe the ITP layer
at each remote SLACnet node.

2. It can also:
(a) Try some trivial file transfers to check the working of the FTP software.
(b) Show which DECnet nodes are connected to a specified SLACnet node.
(c) Show the SLACnet network table.

(d) Show various online ITP and network counters.

26

o

9. Discussion

9.1 Choices

In the early days we had to make many choices concerning which standards to
follow, hardware to use, and language to develop code in. Some observations
concerning our decisions follow:

DACU: The DACU hardware has been extremely reliable, with no failures be-
ing observed in any of our 3 DACUs. Twice in the last 2 years a DACU has
needed manual intervention to reboot it after a short (less than 10 second) power
fluctuation locked up the PC. The performance, however, leaves something to be
desired. A large fraction of the development effort was consumed in improving
the DACU to mainframe performance. We also ran into a serious problem with
UNIBUS transfers (e.g. reading the Control Status Register (CSR)) being cor-
rupted by Direct Memory Address (DMA) transfers from the NI1010A. IBM is
looking at the problem, but for the moment we have had to turn on the IDP
checksumming in order to insure the integrity of our data.

Protocols: Though we still feel that the XNS protocols are optimal for a local
area Ethernet, the lack of high-level applications to talk to is a serious limitation
to its development as a standard. Some of the blame for this must be attributed
to the delays in making the applications layer protocols public.

Language: C has turned out to be very adequate for the development. The
conversions in mid-stream from Whitesmith C to DEC VAX C and Bell C/370
to Waterloo C, probably cost us about 1 man-month.

9.2 Differences between the VMS and VM Environments

Since we were implementing protocols to run under both these systems, we be-
came acutely aware of the following major differences:

1. The lack of multi-tasking support inside CMS required the development of
NCX. Many long, almost religious, discussions were held concerning how
many service VMs should be used, ranging from every VMS process running
as a separate service VM on VM/SP, to the whole of SLACnet running in
a single service VM.

2. EBCDIC versus ASCII character sets, and the different byte/word ordering.

3. File system differences, particularly: file name lengths; use of delimiters
(periods versus space); the maximum permissible logical record lengths;
and treatment of zero length records, carriage control and tabs.

27

,v.’q:

4. VMS allows a single account to be logged onto by several users simultane-
ously, whereas on VM/SP an account may only be logged onto by a single
user at a time. In addition on VMS the logon password and disk file pass-
words are one and the same, whereas on VM/SP different passwords may
be used. Because of these two differences the VMS and VM/SP listeners
differ. On VMS the listener performs a remote logon of the account asso-
ciated with the disk file to be transferred, thus providing the appropriate
disk access environment. On VM/SP no remote logon is performed; the
password is simply passed to the disk I/O package when the disk is to be
LINKed.

5. The lack of an integrated program development environment on VM/SP
contrasts sadly with that in VMS, with its language sensitive editor, its
standard procedure calling convention, its standard set of system procedure
calls for all languages, full-screen symbolic debugger for all languages, code
management system, etc. Admittedly REXX is markedly superior to the
DEC VAX DCL language; however, less than 5% of our code was in REXX.

6. The lack of an IBM supported system level symbolic debugger required the
development of such a tool to provide instruction and interrupt tracing, in-
cluding symbol name support, tracebacks, and the ability for a programmer
to log on and initiate, resume or terminate debugging or program analysis
at any time.

VM/SP has provided a very robust base on which to develop SLACnet. In 2 years
of development done on a production VM/SP mainframe, negligible system test

" time has been required. CP has only crashed twice due to our exposing system

code errors. Once this was due to an IBM fix to a bug in using IUCV send with
a 1 way message with parameter data. The other was in the area of interfacing
to the DACU, when we were trying to perform I/O and field attentions on the
same subchannel. Both problems were quickly by-passed.

9.3 Performance

The limits to the file transfer performance appear to be in the transport layer
and below. We have looked at off-loading the transport layer functions out of
the mainframe. Such hardware is becoming available, for example from Micom-
Interlan!’ that handles ITP on a board that plugs into a UNIBUS. However,
it is designed for a host that can directly access the board’s memory. It is not
clear whether it could effectively be used to obtain higher performance with a

DACU with its limited number of subchannels and memory space, and the way

it isolates the UNIBUS device from the mainframe.

28

10. Acknowledgements

The authors acknowledge Roy Miller for developing the symbolic debugger, pro-
viding guidance in using it, and providing consultation on some of the system
aspects of VM/SP. We are also very grateful for many long and instructive discus-
sions on VM/SP/CP/CMS with Bill Weeks and Ted Johnston. We thank Gary
Bower for his contributions early on in the design of the file transfer service.
Joe Wells provided much useful background to the philosophy of VM/SP, and
specific information on PC file transfer to and from VM/SP. John Halperin also
provided useful guidance during the early stages. John Brown labored hard to
inject reality into our lofty goals. Steve Willis and Bill Siefert, both of Interlan,
provided much useful help on using the Interlan ITP and NCX packages. Finally,
debts are due to Marvin Weinstein for explaining how to format this document

in TeX and how to imbed the graphics, and to Billie Bennett for Figures 1 and
2. -7 - T

A. Appendix: Details on the Use of the DACU

We are running release 4.0 of the DACU code from, using three of the four
available UNIBUS-type DACU subchannels.

A.1 Subchannel 4, Control

Control transactions between ITPACP (the service VM supporting the network
and transport layers) and the DACU Pascal program such as: buffered read /write
setup (buffer size, timeout parameters); executing dataless control commands to
the NI1010A; writing broadcast addresses to the NI1010A; reading the NI1010A
statistics buffer.

A.2 Subchannel 5, Buffered Write

Packets are buffered into a 56 kbyte write buffer. Within the buffer, packets are
preceded by control words indicating the next packet’s length or end of buffer.
When the mainframe has a buffer ready to be written, it makes a single DI-
AGNOSE 20 call to send two CCWs. One of these acknowledges the attention
from the DACU that was presented when the DACU completed the previous
write. The second CCW does the actual data transfer to the DACU buffer. The

- DACU receives an interrupt at the end of the channel program, and automat-

ically presents channel end to the mainframe. As soon as the DACU program

29

sees the interrupt it sends a device end to the mainframe, thus completing™ the
DIAGNOSE 20.

The DACU program gives the NI1010A the start address and length of the first
packet stored in the buffer, starts a transfer to the Ethernet, and watches the
NI1010A Control Status Register until the transfer is complete. This sequence is
repeated until all packets have been transferred from the DACU buffer, where-
upon the DACU program sends an attention to the mainframe to say it is ready

to arrnnf a f11rf}\or wrlfn Frorn tl'\n malnframe

After each write of a packet to the Ethernet, the DACU program checks the
NI1010A to see if a read has completed. If so, a new read is started.

A.3 Subchannel 6, Buffered Read

Packets are buffered into a 64 kbyte read buffer. When the mainframe DACU
support program starts, it passes the DACU two timeout counters. One gives
the maximum time to wait between packets before transferring the buffer to the
mainframe. We use 20 msec for this timer. The second gives the maximum
time, measured from reading the first packet into the buffer, after which the
buffer will be transferred to the mainframe. We use 0.5 sec for this timer. The
DACU program presents the NI1010A with the buffer transfer address for the
next Ethernet packet read, this also tells the NI1010A to transfer a packet (when
it has one) to the DACU memory via a DMA transfer. The DACU program
then checks the NI1010A CSR at frequent intervals to see if a packet has been
read into the DACU memory from the NI1010A. When a packet is read, the
DACU program checks whether the timeouts have been exceeded, or the buffer
is full. If so, it sets the DACU channel registers that tells the mainframe where
to read the data from, and sends an attention to the host. If there is free space in
the buffer, then the DACU program presents the NI1010A with the next buffer
transfer address.

The mainframe receives the attention from the DACU to say that there is a
buffer to read. The mainframe makes a single call to DIAGNOSE 20 to send
two CCWs, one to acknowledge the attention, the second to read the DACU
buffer. When the read completes, the DACU is interrupted, and can then reuse
the buffer. The NI1010A itself can accept up to nine 1500 byte packets (about
30msec for back-to-back packets), before it needs to be read.

* The elapsed time from calling the DIAGNOSE 20, executing the channel program, and the
mainframe seeing the device end and returning from DIAGNOSE 20, is about 12 msec plus
1.9 msec for each 1500 bytes transferred.

30

B. Appendix: Client Interfaces

B.1 Network Layer

The network layer is supported by the following C language callable procedures:

echacc
echreq

idpacc
idpxmt
idptrev
idphrcv

B.2 Transport Layer

Get access as a client of the Echo Protocol
Transmit an Echo packet

Get access as a client of IDP

Transmit an IDP packet

Receive an IDP packet and truncate the remainder
Receive an IDP packet and hold the remainder

The following C language callable procedures provide the program interface to

SPP:
sppacc
sppxmt
spptrcv
spphrcv
sppforce
sppclose

L

pepareq
pepxreq
peptreq
pephreq
‘pepares
pepxres
peptres
pephres

Access the transport layer as a client of SPP
Send an SPP packet over an SPP connection
Receive an SPP packet and truncate the remainder
Receive an SPP packet and keep the remainder
Hand off a packet to a local SPP socket

Close an SPP connection

The following PEP procedures provide an interface to PEP:

Access as a PEP requester

Transmit a PEP request and wait for response
Receive a PEP response and truncate the remainder
Receive a PEP response and hold the remainder
Access as a PEP responder

Transmit a PEP response

Receive a PEP request and truncate the remainder
Receive a PEP request and hold the remainder

In addition the following general ITP procedures are used by all transport layer
protocol clients:
deaccess - Terminate an ITP access

itpini

Initialize the ITP user interface

itpclose - Close the ITP user interface

- An example of a simple C program to receive data from another node, using the
facilities of ITP, is shown below. The SLACnet ITP procedures are underlined.

31

#include <snitpusr.h>

#define MY_SOCKET=0x29
#define HIS_SOCKET=0x28

unsigni6 aid, /* ITP Access Identifier */
dna[6]1{0,0, /*network address*/
OxFFFF ,OxFFFF ,OxFFFF, /*Broadcast*/
HIS_SOCKET};
struct rcv_spp rcv_spp; char buf([512];
main(npkt) int npkt;
{ /* open a path to ITP %/
if (itpini () !=XN-SYCCESS) { treat errors- ...} -
/* allocate an SPP socket */ :
if ((aid=sppacc (MY_SOCKET)) !=XN_SUCCESS) {treat errors ...}
/* open a virtual circuit between MY & HIS SOCKET*/
if (sppopen(aid, dna, 6000, /* timeout 1 min.*/
~ TRUE, /* ACTIVE end open*/
FALSE,/* no CKS calculation*/
FALSE /* reliable byte stream*/
) !=XN_SUCCESS) { treat errors ...}
for(i=0; i<npkt; i++)
{ /* wait for and read next SPP packet*/
if (spptrcv(&rcc_spp, aid, 20000,/* timeout = 3 mins.*/
buf, sizeof (buf)) !=XN_SUCCESS)
{ treat errors ...}

}
if (deaccess(aid) !=XN_SUCCESS) { treat errors ...}
itpclose(); /* close path to ITP x/
exit (0);

}

The equivalent program to send the data is obtained by swapping the addresses
of MY_SOCKET and HIS_SOCKET; changing the ACTIVE open to a PASSIVE
open; and changing spptrcv to sppxmt.

32

s

B.3 Courier Remote Procedure Call

The program interface to the remote procedure call protocol, is supported in
SLACnet by the following C language callable procedures!*!

Unique to local side (User Program, active end):

ccStart - Invoke a remote program

cCall - Invoke a procedure within the remote program
cWait - Wait for a Response from a remote procedure

Unique to remote side (Server Program, passive end):

cConnct - Complete the session initiated by the user process
cRspnd - Respond to remote procedure call

cReady - Wait for remote procedure call

—

Used by either side (User or Server Program):

cPush - Add data to a Call or Response frame
cPop - Remove and returns data from a Call or Response frame
cClose - Shut down one end of the Courier connection

33

An example of parts of a simple Courier program (FILEACCESS), to illustrate
the use of the SLACnet Courier procedures, is shown below.

/**xx%% Ugser end of FILEACCESS sk ok ok sk ok ok ok o ok ok ok Kk ok k /
#include "cMsg.h" /*Error and return status defs*/
#include "cType.h" /*Data type definitionsx/
#define FILEACCESS 250 /*Courier program numbersk/
#define OPENFILE O /*0PENFILE procedure number#/
#define READREC 1 /*READREC procedure number */
#define CLOSEFILE 2 /*CLOSEFILE procedure numberx/
#define VSN) /*Courier Program version numberx/
#define TIMOUT 1000 /*Timeout in 10 msec tics*/
main(node, recno)
unsigned node, /*SLACnet node number*/
recno; /*Record number to be read*/
{ unsign32 PgmH, ~ " /*Handle used to” identify programx*/
status; /*Return status from Courier procsx/
integer access_mode=1, /*Read access*/
reclen; /*Actual length of record read*/
unsigned handle;
char record[512];
char acs[]="johnny appleseed"; /*Access control string/

/*containing userid and password for remote logon*/

PgmH=FILEACCESS+(node << 16);
if ((status=ccStart (PgmH,VSN,acs,TIMOUT)) !=C_OK)exit (status);

for (;;) {
cPush (handle,STRING,"disk_user"); /*Set up the remotex/
cPush (handle,STRING,"disk_Password");/*procedure call #*/
cPush (handle,STRING,"file_spec"); /*to OPENFILE with */
cPush (handle,INTEGER,access_mode); /*relevant info. x/
if ((status=cCall (OPENFILE)) !=C_OK) break; /*Make call. */

}

if ((status=cWait (NIL)) !=C_RETURN) break; /*Await result. */
cPush (handle,INTEGER,recno);

if ((status=cCall (READREC)) !=C_0K) break;

cPop (UNSPECIF,&record, length(record) ,reclen);

status=cCall (CLOSEFILE) ;

cClose(NIL, NIL); exit(status);

}

In the above example the SLACnet Cogiier procedures are underlined. Below is

an even sketchier view of the server end.
/*************************************/

/* Very rough idea of the server end */
[%Rk ok ok ok ko ok ok Kk Kok K sk ok sk ok Kk Kk kK ok ok

main()

{ unsigned callNum;

if ((status=cConnect (TIMOUT)) !=C_0K
{cClose(NIL,NIL); exit(status);}
for (;;) {

}

if ((status=cReady (&callNum)) !=C_OK) break;/*Await RPC*/
if (callNum=0PENFILE) {
cPop (STRING,&diskuser,length(diskuser) ,&duserlen) ;

h=ioOpen(. . /*0pen the specified filex*/

} .- - i i

if (callNum=READREC) {

}

if ((status=cRspnd (handle)) !=C_0K) break;

if (status==C_ABORT) cPop(LONGCARD,&status,4,NIL)/*Get error*/

cClose(NIL,NIL);
exit(status);

}

o 1;7:(.

B.4 Bulk Data Transfer

The program interface to the bulk data protocol is by means of the following C

callable procedures:

[0

bdProduce - Initialize the Producers side
bdConsume - Initialize the Consumers side

bdSend - Buffer data to be sent by SPP

bdReceive - Receive and unbuffer data

bdAbort - Abort the remainder of a bulk data transfer
bdFinis - Flush out remaining data and finish up

35

B.5 Disk I/O Package

The following functions were 1mplemented

ioOpen - Open a file.

ioClose - Close a file.

ioPut - Write a record or part of a record to a file.

ioGetP - Return a pointer to a buffer containing a record.
ioGetM - Move a record to a user specified buffer (for FORTRAN).
ioInfo - Return information on an open file.

B.5.1 CMS Minidisk Support

The filespecs are of the form:
[userid.mini_disk address.access_mode.password]fn ft fm

The userid and mini_disk_address are case insensitive. A userid of * will give the
userid of the virtual machme which made the call to ioPack. A mini_disk_address
of * will give 191 when reading, and the RDR spool of the designated userid when
writing. The access_mode specifies how the disk is to be LINKed. If it is not
specified then on a read it defaults to getting a read-only link even if another
user has the disk in write access (CP LINK mode RR). On a write it defaults
to establishing a write link unless another user already has write access to the
disk (CP LINK mode MR). The password is the CMS disk’s password for the
specified access_mode, and if not specified defaults to ALL. The CMS filename
(fn) filetype (ft) filemode (fm) are defined in the usual CMS way. A * in either
the filename or filetype gives the first matching file in the usual CMS fashion.
On reading, a * in the filemode gives the first disk where the file is found. On
writing, a * in the filemode gives the first write accessible disk. The filename and
filetype are case sensitive. Periods as well as spaces are allowed as delimiters in
filespecs.

B.5.2 Spool Support

The filespec is of the form:
[userid.spool_device.class.dist]lfn ft

The spool_device may be the userid’s reader (RDR), printer (PRT), or punch
(PUN), and both printer and punch files may be sent to the reader. The class
and dist are the standard CP"® class and distribution codes. If not specified
they default to class A, and a null distribution code.

36

10.

-11.

12.

13.

14.

REFERENCES

. Dave Wiser. SNET002: Thoughts on Bulk Data Transfer. SLAC: 1984.
. Tim Streater. SNET003: The FTP Layer of the SLAC Inter-Computer

File Transfer System. SLAC: 1984.

. Len Moss. SNET004: Network Services: Functional Specification. SLAC:

1984.

Mike Huffer. SNET005: SLAC C Language Interface to Courier. SLAC:
1984.

O. Saxton, T. Streater, D. Wiser. SNET007: A Host Independent I/O
Interface. SLAC: 1984,

. R. L. A. Cottrell, T. Downey, H. Frese, C. Granieri, M. Huffer, R. Miller,

L. Moss, T. Streater,.O. Saxton, D. Wiser. SNET008: Design Document
& Implementation Notes for SLACnet. SLAC: 1984.

H. Frese, R. L. A. Cottrell, and T. Downey. SNET012: The VM Version
of Interlan’s NS{240 Xeroz ITP Network Software. SLAC: 1984.

. Xerox System Integration Standard. Internet Transport Protocols XSIS

028112: Xerox Corporation, Stamford, Connecticut 06904, 1981.

. Xerox System Integration Standard. Appendiz F of Courier: Bulk Data

Transfer. XSIS 038112 Add. 1la: Xerox Corporation, Stamford, Stam-
ford, Connecticut 06904, 1984. Internet Transport Protocols XSIS: Xerox
Corporation, Stamford, Connecticut 06904, 1981.

Xerox System Integration Standard. Courier: The Remote Procedure Call
Protocol. XSIS 038112: Xerox Corporation, Stamford, Connecticut 06904,
1981. ‘

Interlan. NI1010A UNIBUS Ethernet Communications Controller, User
Manual. UM-NI1010A: Interlan Inc., 155 Swanson Road, Boxborough, MA
01719.

Interlan. NI1515 Unibus Compatible Ethernet Communications Processor.

Engineering Specification. Interlan Inc., 155 Swanson Road, Boxborough,
MA 01719.

Interlan. Network Communication Ezecutive (NCX), Programmer’s Guide.
Documentation Part Number: 950-1045-00, Interlan Inc., 155 Swanson
Road, Boxborough, MA 01719.

Interlan. How to use the Interlan NS4240 Xerox ITP Network Software
(ITP/UNIX). Interlan, Inc., Westford, Mass 01866, 1983.

37

i

15.
16.
17.

18.
19.
20.

21.

22.
23.
24.
25.

26.

217.
28.

29.

30.

IBM. CMS Command and Macro Reference. SC19-6209-2: IBM 1983.
IBM. CP Command Reference for General Users. SC19-6211-2: IBM 1983.

IBM. 7170 Device Attachment Control Unit General Information Manual.
GA24-4022: 1BM 1984,

IBM. VM/SP System Programmer’s Guide SC19-6203-2: IBM 1983.
IBM. IBM VM/SP Operator’s Guide. SC19-6202-0: IBM 1980.

IBM. VM/SP System Product Interpreter User’s Guide. SC24-5238-0: IBM
1983.

Bridge Communications Inc. FEthernet System Product Line Overview.
Document Number: 09-0001-02, Bridge Communications Inc., 2081 Stierlin
Rd., Mountain View, CA 94043.

DEC. VAX/VMS Message Utility Reference Manual. Order Number: AA-
Z2422A-TE, Digital Equipment Corporation, Maynard, MA.

DEC. Programming in C. Order Number: AA-L370B-TE, Digital Equip-
ment Corporation, Maynard, MA.

DEC, Intel, Xerox. The Ethernet, A Local Area Network, Data Link Layer
and Physical Specifications, Version 2. Digital Equipment Corporation,
Maynard, MA. Intel Corporation, Santa Clara, CA. Xerox Corporation,
Stamford, CT. 1982.

International Standards Organization. ISO: DP7498: Reference Model for
Open Systems Interconnection. ANSI, 1430 Broadway, New York, N.Y.
10018.

IEEE. Carrier Sense Multiple Access with Collision Detection (CSMA/CD).
ANSI/IEEE Std 802.3-1985: The Institute of Electrical and Electronic En-
gineers, Inc, 345 East 47th Street, New York, NY 10017. 1985.

ARPA. Internet Protocol Transition Workbook. Network Information Cen-
ter, SRI International, Menlo Park, CA 94025. 1982.

D. DeWitt, L. H. Landweber, and M. S. Solomon. WISCNET - Protocol
Implementation in a Virtual Machine Environment

File Transfer Protocol Implementers Group. A Network Independent File
Transfer Protocol. Data Communications Protocols Unit, NPL, Tedding-
ton, Middlesex TW11 OLW, U.K. 1981.

M. J. Carmody. Waterloo C for VM/SP CMS User’s Guide. Computer
System Group, University of Waterloo, 158 University Avenue, Waterloo,
Ontario, Canada N2L 3E9.

38

31. Statistical Analysis System. SAS User’s Guide: Basics. SAS Institute,
Inc., Box 8000, Cary, NC 27511, 1982.

39

