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ABSTRACT 

In this paper the vacuum polarization effects of fermions interacting with 

Abelian gauge fields are studied in 2+1 dimensions. We find that for a gauge 

field configuration with magnetic flux 27rrF, there is induced charge Q, spin S 

and angular momentum J given by Q = -z ,+ 1 m F, S = ;, J = -i fi F2 

(m = fermion mass). A simple argument is offered to explain the physics of 

these quantum numbers. Some subtleties associated with the induced spin and 

angular momentum are explained in detail. The induced spin is shown to be 

related to the l+l dimensional chiral anomaly. 
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1. Introduction, Motivation and a Glimpse at the Physics 

By now it is well established that gauge theories in (2+1) dimensions offer 

a variety of very interesting phenomena. One important aspect is the possibil- 

ity of giving a “topological” mass to the gauge bosons without spoiling gauge 

invariance. lf2 It was realized that in an interacting theory of fermions and gauge 

fields, the fermionic vacuum polarization effects in the presence of the gauge field 

give rise to unusual induced currents.3’4 These currents have unexpected par- 

ity properties and the effective action for the gauge fields obtained from these 

induced currents contains a “topological” mass for the gauge fields. 

This phenomenon occurs in theories with two component fermions and it has 

been shown that these peculiar induced currents are a result of the unusual spin 

properties of these theories.5 

One of the interesting aspects is that magnetic fields (taken as background 

fields) induce charge in the ground state, and that electric fields induce currents 

perpendicular to it. 

Recently it was realized that in the presence of an external magnetic field 

with finite flux, a gauge vortex, the fermionic vacuum has an induced angular 

momentum which is a function of the total flu~.~ This result is very puzzling be- 

cause the equations of motion for the fermions are rotationally invariant; angular 

momentum must then be time independent, and since it is an adiabatic invari- 

ant, its eigenvalues cannot depend on the (time dependent) flux. This result has 

been recently challenged by Brown. ’ In this paper we try to explain using simple 

arguments (which are non-perturbative), the physics of these induced quantum 

numbers. 
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We discuss the origin of the vacuum charge and point out the physical effects 

of the external background field on the fermionic spectrum. 

We show that in the presence of the gauge vortex the Dirac sea is distorted to 

accommodate more (or less) states relative to the free vacuum. It is this change in 

the number of negative energy states that is responsible for the induced quantum 

numbers. Now the “vacuum” of the theory is defined so that all these negative 

energy states are filled, and all the positive energy states are empty. Thus there 

are induced quantum numbers in this vacuum when the vortex is switched on. 

In Section 2 we provide very simple “counting of states” arguments that 

explain both the physics and the values of the “vacuum” quantum numbers. We 

compute in a simple manner the charge, angular momentum and spin induced 

by the external vortex configuration. This section is devoted to a simple and 

intuitive understanding of these vacuum polarization effects. 

Section 3 is a more technical discussion of some subtleties of angular mo- 

mentum and spin. The physics of the time dependence of the induced angular 

momentum is discussed. Also the total matter-field angular momentum is dis- 

cussed with particular attention on the surface effects and boundary currents. 

Two different derivations of the induced spin are worked out and some subtleties 

inherent to its definition are clarified. We show that the induced spin is com- 

pletely determined by the chiral anomaly in the l+l Euclidean dimensions. 



2. Counting Arguments 

In this section we provide some simple arguments that lead to the understand- 

ing of the induced quantum numbers. To start with we will review the nature 

of the Dirac spectrum in the presence of localized gauge vortices. Although 

this problem has received much attention,‘-” we will give a brief derivation of 

the main features that will be of importance for the discussion of the induced 

quantum numbers under discussion. l1 

Review: 

We choose the Dirac algebra to be 

-j” = fy3 -jl = iq y2 = ia (2.1) 

in terms of the usual Pauli matrices. Then the Dirac equation with a static 

background gauge field in the A0 = 0 gauge reads 

We write the gauge vortex configuration in the symmetric gauge 

Ai = -Eij $ F(r) with F(0) = 0 , F(m) = F , 

and the magnetic field and total flux are 

B(r) = ; q / Bd2z = 2rF. 

P-3) 

(2.4 

This choice of the symmetric gauge is in fact very general. Indeed, in the 

A0 = 0 gauge, there is the freedom of time independent gauge transformations. 
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Using this freedom, any gauge configuration with definite winding number can be 

cast into the symmetric gauge by a small gauge transformation. Since A’ in this 

gauge is rotationally covariant, the Dirac Hamiltonian (Eq. (2.2)) is rotationally 

invariant and [H, .?J = 0 where 

is the canonical angular momentum. (In any other gauge the symmetry corre- 

sponds to a rotation and a gauge transformation.) The eigenstates of H can be 

written as 89 

(2.6) 
J=&; ,f; ,... 

and f(r), g(r) solve the radial equations 

[+$ + i (J - F(r))] g(r) = (E - m) f(r) 

-5 + $ (J - F(r)) 1 f (7) = (E + m> g(r) 

For m = 0, the H in (2.2) is equivalent to the l+l dimensional Dirac operator in 

Euclidean space (hermitian) and the Atiyah-Singer index theorem predicts the 

existence of “zero modes” of definite chirality.12’13 In this case l+l dimensional 

chirality is given by 03. Hence for gauge configurations with net flux we expect 

“zero modes” at E = fm, i.e. threshold states. From Eq. (2.7) it is easy to find 

the solutions 

E=m: $cc-$ 
( es7J-~r’Il” ) 

(2.8a) 

5 



Using the behavior of F(r) given in (2.3) we find 

rJ 
f(r) o( 

for r -h 0 forJ>O, F>l 
r(J-F) f orr+co J<F-fr 

(2.8b) 

(2.9a) 

C rbJ 
g(r) Oc 

for 7 + 0 forJ<O, F<-1 

r-(J-F) for r + 00 IJI L IFI - + 
(2.9b) 

For simplicity we will assume that F is integer; the general situation will be 

discussed later. Regularity at the origin requires that J > 0 for f(r) and J < 0 for 

g(r). Normalizability requires that J 5 F - i , F 2 1 for f(r) and 1 JI 5 -F - $ , 

F < 0 and IFI 2 1 for g(r). Th e case of equality in the above conditions for 

J requires comment. When J satisfies the inequalities, the states are bound 

and normalizable. However, when the equalities are satisfied, these are resonant 

states; their norm diverges but slower than that of a true continuum state. In a 

large “box” of radius R the norm of these resonant states is - .kR. They are 

perfectly acceptable “zero modes”. 

Notice that there are F threshold states, one in every partial wave. It is easy 

t-0 see that there are no bound states with [El < [ml. These threshold bound 

states deplete both the positive and negative energy continuum -“borrowing” 

states from both parts of the spectrum. This causes an asymmetry, 7 in the 

Dirac spectrum14 

rl = m[~.(E) -P&E)] dE , 
/ 

(2.10) 

0 

where p,, (E) is the density of states in the presence of the vortex. Clearly q is 

odd under charge conjugation. This quantity has to be properly regularized and 
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has been studied by several authors and is given by15 

(2.11) 

where m is the fermion mass in Eq. (2.2). 

The physics is basically the same as in one-dimensional systems,16 Eq. (2.11) 

and completeness allow us to understand the change in the spectrum. The thresh- 

old states deplete IFI/ states from the positive continuum (E > Iml) and IFI/ 

states from the negative (E < -I m I) continuum. Each of these states is an eigen- 

state of angular momentum J. Hence these threshold states deplete one-half of 

a state each partial wave J (up to IJI = IFI - i, see Eq. (2.9)) from both the 

positive and negative continuum. 

A) Vacuum charge: 

The “vacuum” with or without the vortex is constructed by filling up all 

the negative energy states and leaving all the positive energy states empty. The 

induced vacuum charge is defined as 

(Q), = \ h(E) - PO(E)] dE (2.12) 

where P,(E) (PO(E)) is the density of states in the presence (absence) of the 

vortex. Clearly equation (2.12) is nothing but the difference in the number of 

negative energy states between the two situations. 

Several cases arise for different signs of F and m. 

a) m > 0, F > 0 : the threshold states are given by (2.8a) and (2.9a) with 

energy E = m (i.e. E > 0). Th ese states are empty. Since these states deplete 
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F/2 states from the negative continuum (i.e. there are F/2 states less with the 

vortex configuration compared to the free situation) the induced charge in Eq. 

(2.12) becomes 

(Q), = -; . (2.13) 

b) m > 0, F < 0 :. the threshold states are given by Eqs. (2.8b) and (2.9b) 

with energy E = -m (E < 0). Th ese states are filled. These states deplete 

the E < -m continuum by IFI/ states, but now the threshold states must be 

accounted for in the charge. Now 

(&) V 
= -H + IFI = H = -E 

2 2 2 - 

The first term on the right-hand side of Eq. (2.14) (-IFl/2) is the deficit of states 

in the E < -m continuum. The second term (/ FI) is the number of (occupied) 

threshold states. 

c) m < 0 : In this case the energy of the threshold states changes sign. For 

F > 0 they have energy E = - Irnl and they are occupied and have to be counted 

for the charge. For F < 0 they have energy E = Irnl, they are empty and do not 

contribute to the charge. Then for m < 0 

WV = f * (2.15) 

Hence in the general case 

1 m 1 m 
(Q)v=qqF=-qq J 

5 d2x. (2.16) 

The result (2.16) h as b een found by many authors using different techniques. Our 

analysis offers a simple alternative and will allow us to understand other quantum 

numbers carried by the uvacuumn in the presence of vortex configurations. 

8 



B) Spin: 

We will now use the above analysis to compute the induced spin in the uvac- 

uumn. It has been noticed that spin is peculiar in two space dimensions for two 

component fermions. Indeed the spin is a pseudoscalar and fermions have only 

one spin projection along the missing z-direction: 2,5 

S-‘“Z 
2 I4 PI - 

(2.17) 

The E/I.EI in Eq. (2.17) distinguishes the positive and negative energy states. 

It has been shown that it is this property of spin that is the one responsible for 

the parity anomalous induced currents in these theories. Of course spin is not a 

good quantum number and it is only defined in the rest frame. 

However Eq. (2.17) indicates that in the free theory, the spin in the vacuum 

is infinite since all the E < 0 states are filled and have spin 

In the presence of the vortex configuration these spins tend to be aligned 

parallel to the (localized) magnetic field. The deficit (or excess) of states in the 

positive and negative energy part of the spectrum arises from a process that 

involves a spin-flip transition. This spin-flip changes the sign of the energy of the 

state, thereby producing an asymmetry in the spectrum. 

The vortex removes (or adds) states from (to) the Dirac sea (E 5 -/ml) the 

total change in the number of E < 0 states is given by the induced charge in Eq. 

(2.16). Every one of these states has spin (Eq. (2.17)) 

1 m 

S=-u7- 
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Therefore the total change in the induced spin in the presence of the vortex is 

(S), = (-; k) (-; fi F) = f 

or 

(2.18a) 

The induced spin given by (2.18) is a pseudoscalar but is odd under charge conju- 

gation. This last property may be surprising since under charge conjugation an 

electron at rest with spin up becomes a positron at rest with spin up. However 

the expression (2.18) is the spin induced in the uvacuumn. In the presence of 

the vortex the vacuum is clearly not an eigenstate of charge conjugation because 

there is a net vacuum charge. Again, it is the asymmetry between the positive 

and negative parts of the spectrum that is responsible for this phenomena. 

Indeed charge conjugation in the free theory implies that the spectrum is 

symmetric. Changing the sign of the flux (F) leads to the opposite spin polar- 

ization. The asymmetry changes sign (see Eq. (2.11)) and so does the induced 

spin. 

If the reader feels uneasy about these arguments on the physics of these 

polarization effects, we offer in Section 3 two alternative derivations of the above 

result along with a more thorough formal treatment of the subtleties involved, and 

the relationship of the induced spin to the chiral anomalies in l+l dimensions. 

C) Angular Momentum: 

In the symmetric gauge (Eq. (2.3)), th e t ime independence of the angular 

momentum J^ defined in Eq. (2.5) is a consequence of the rotational invariance of 
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the Dirac Hamiltonian (2.2), i.e. [H, J] = 0. Notice that because of this property, 

J^must be time independent even when F(r) in (2.3) depends on time. 

If we imagine an adiabatic process in which a vortex is switched on, the total 

angular momentum of the system must remain the same, since H is rotationally 

invariant at all times. 

In a recent paper Paranjape’ has found that there is a non-trivial induced 

angular momentum contrary to the naive expectation, hence we feel it is of 

interest to understand the physical origin as well as the value of this induced 

angular momentum. We will again make use of the counting arguments developed 

earlier in this section. 

The principal ingredients are the F (integer) threshold states given by eqs. 

(2.8) and (2.9). Recall that there is one threshold state in every partial wave up 

to IJI = IJFI ([JF[ = IFI - $ see Eq. (2.19)). 

There is a depletion of IFI/ states in the E < -[ml continuum. This is 

achieved by depleting k of a state in every partial wave up to I JFI. This is 

true due to the conservation of J. As F(r) is adiabatically switched on, the 

energy levels move and produce the asymmetry in the spectrum. For each state, 

J remains constant and as these states leave the E < 0 region of the spectrum 

they carry angular momentum. Repeating the arguments elaborated upon for 

the vacuum charge (cases a and b above) we find 

a) m > 0, F > 0 : the threshold states ((2.8a), (2.9a)) have energy E = m 

and they are empty. There is a deficit of k state per J up to JF and J > 0 then 

F-i 

(~)~=-fc J=-f. (2.19) 
J=; 
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b) m 
E = -m 

EC-m, 

> 0, F < 0 : the threshold states (92.8b) and (2.9b)) have energy 

and J < 0. There is a deficit of $ state for J < 0 (J 2 JF) from 

but the threshold states contribute also 

1 1 

(J), = -;'Fk'(-lJ/) +'Fk'(-/Jl) z-f . 

IJI=+ IJI=; 

(2.20) 

For the case m < 0 the threshold states have the opposite sign of the energy, a 

similar analysis gives the general result 

(J), = -f$ f . (2.21) 

This expression disagrees by an overall factor from that of Ref. 6. In fact, the 

above result is a consequence of the asymmetry in the spectrum and the time 

independence of ?. There is a deficit (or excess) of states in the Dirac sea; these 

states carry angular momentum and there is then a net angular momentum in 

the uvacuum” given by (2.21). 

Note that if F is time dependent, then the induced angular momentum (J), 

is also time dependent (even though it would seem to be formally time inde- 

pendent). As discussed before, the reason behind this phenomenon is that as F 

varies adiabatically in time, states with definite angular momentum are being 

lost from (or gained by) the Dirac sea. These states are eigenstates of 7; hence 

there is a deficit (or excess) of angular momentum in the uvacuum” with the 

vortex present. 

The following question arises: is there an anomaly in angular momentum; 

i.e. is angular momentum conserved? 
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The canonical angular momentum is the volume integral of the p = 0 com- 

ponent of 

h@(x) = AJ(x)-&qx) , (2.22) 

where q(x) is the field operator and J^ is given by Eq. (2.2). Conservation of 

angular momentum isthen given by 

d,Mp’j = 0 . (2.23) 

Hence even when (J) v is time dependent the angular momentum will be conserved 

if there is a flow of angular momentum current out of a large circle at spatial 

infinity. 

At this stage we recall that the induced vacuum currents are 

(J% o( ~~~~~~~ + - - - (2.24) 

which are obviously conserved. For time varying background fields, the induced 

charge varies in time and there is a current flow at infinity. 

_ An analogous phenomenon occurs for the angular momentum. As F varies, 

there is a charge accumulation and a flow of current at infinity. The charge accu- 

mulation gives rise to the induced angular momentum and current flow at infinity 

carries the compensating angular momentum. Angular momentum (global) is 

therefore conserved. 

In a two-dimensional (spatial) world, the situation is obscured by the fact that 

a magnetic field may have a net flux; i.e. there is no return flux. Alternatively 

one can think that the return flux is at spatial infinity. 
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We postpone until the next section the discussion of the return flux and the 

subtleties regarding the canonical versus the Belinfante form of the total matter- 

field angular momentum. In the next section we will analyze the gauge invariance 

of the result (2.21) and reconcile this with the non-invariance of J^ as given in 

Eq. (2.5). 



3. Some Formalities 

This section is devoted to clarifying certain subtle points and filling in certain 

details of the arguments used in the preceding section. 

A) Total Angular Momentum: 

The rotational invariance of the matter-field Lagrangian (QED in 2fl di- 

mensions) ensures the conservation of the total canonical (Noether) angular mo- 

mentum 

MC = / d2x$+(x) [(Fx (p’- i)) + fr CQ] q(x) + / d2xr’x (I? x B) 

(3-l) 

+ 
J 

d2x &(E”ckLrkAt) . 

The last term (a pure surface term) is the integral of a gauge non-invariant 

quantity. However, since it depends on the fields at spatial infinity, it is invariant 

under gauge transformations that do not change the flux. Hence MC is gauge 

invariant. 

The “improved” Belinfante angular momentum is given by17’18 

MB = MC - 
J 

d2xd;(Ei,kerkAl) . (3.2) 

When the fields fall-off fast enough at infinity MB and MC are equivalent. How- 

ever it has been noticed18 that for a vortex configuration, the surface terms in 

(3.1) and (3.2) are non-vanishing. 

It is the canonical (Noether) angular momentum MC that is time independent. l8 

Let us now compute (Mc)~ when A is given by the vortex configuration (2.3). 
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In the presence of a magnetic field there is a charge induced in the vacuum 

given by Eqs. (2.15) and (2.16); the induced charge density is 

where the dots stand for higher derivative terms of the form (V2”B/m2). We will 

only study the situation for large fermion mass and neglect the non-local terms 

in (3.3) since in any case they will integrate to zero in the final expressions. 

The induced charge generates an electric field given by 

a -l?(x) = (P(x))~ or g(x) = 
J 

d2y 2Fi-w:,2 (P(Y)>, - (3.4 

Using Eqs. (2.3), (2.4) and (3.3), (3.4) and after some simple algebra, we find 

(MB) = /d2x ($J+(x)~$+,)~ + f f$ F2 , 

where J^ is the canonical angular momentum given by Eq. (2.5). 

The expectation value of the surface term in (3.1) and (3.2) is given by 

1 m -- - 
2 b-4 

F2 , 

and hence 

(M& = / d2x (*+(+%J(+ - 

P-5) 

(3.6) 

(3.7) 

Therefore, in the symmetric gauge, the canonical, gauge invariant, (MC) Noether 

angular momentum for matter plus field is just the expectation value of the 

canonical, gauge dependent, angular momentum for the matter fields. lg 

16 



This is, in fact, just as one expects; in the symmetric gauge the Dirac Hamil- 

tonian is rotationally invariant and the eigenvalues of J^ remain constant even 

when the vortex configuration varies in time. 

When the gauge field is switched off, MC in (3.1) coincides with the matter 

field canonical angular momentum. Since both J^ is constant in time and MC in 

(3.1) is time independent, Eq. (3.7) must hold. 

Therefore when F varies in time the time dependence of (J), in Eq. (2.21) 

is not due to angular momentum being transferred to the electromagnetic fields. 

As was explained before, it is a consequence of the second quantization procedure 

of defining the vacuum as the filled Dirac sea in the presence of the vortex. 

The physical interpretation of the surface term becomes clear when we incor- 

porate the effects of the return flux. 

In two space dimensions there is no analog of the 3-D Maxwells equation 

a . B’ = 0 which forces all the flux lines to close. In fact in two dimensions there 

can be vortices with no return flux and hence a net flux passes through the plane. 

This situation can be envisaged by building an infinitely long solenoid along 

the z-axis in three dimensions and slicing a plane perpendicular to this axis at 

Z = 0. This corresponds to a two dimensional vortex with no return flux. Since 

the solenoid is infinitely long along Z, the return flux is spread out at infinity. 

However, for a finite solenoid of length 2L along this axis, the magnetic field at 

z = 0 (in the plane) is given by (see Eq. (2.4)) 

&(r)= Ey- 
[ 

LFk4 1 (L2 + r2)3/2 - (3.8) 

As L + 00 the second term vanishes. However the integral of this term over the 
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plane is finite and equal to 27rF independent of L. Indeed 

J Bs(r)d2x= 0. (3.9) 

The second term in (3.8) is the return flux. As L -+ 00 this return flux is pushed 

to infinity, its density goes to zero but its integral is constant (independent of L) 

and cancels- the flux in the solenoid. 

The vector potential that gives rise to Bs(r) in Eq. (3.8) in the symmetric 

gauge does not have a long range tail (zero total flux), therefore the surface term 

in (3.1) vanishes. 

Indeed with Bs (r) the total induced angular momentum, vacuum charge and 

spin vanish. There is an accumulation of charge (and spin and (J),) near the 

solenoid and an accumulation of the opposite Q, S, and J near the return flux. 

As L -+ 00 these quantum numbers near the return flux flow out to infinity. In 

fact the return flux plays the role of the antivortex. 

The surface term in (3.1) takes into account the contribution of the return 

flux to the electromagnetic field angular momentum. 

Therefore we believe this argument illuminates the fact that even if (Q), and 

(J), are time dependent (as F varies) both are conserved once the surface effects 

are taken into account. 

B) Induced Spin: 

The argument leading to expressions (2.18,a,b) for the induced spin may not 

be convincing to the reader. Unlike the charge and angular momentum, the 

states cannot be labeled by the spin, hence the derivation of (2.18) is at best 

heuristic. However it contains the correct physical interpretation. We now offer 

a more formal derivation of the induced spin. 
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Because there is only one spin polarization, the ground state spin is ill-defined. 

It is infinite even in the free theory. 

The first question we face is what is a good definition of the induced spin? 

One would be tempted to propose 

s(x) = +3ap [74-c(5) 9 ~p(x)l - (3.10) 
r-4 

This definition of spin is charge conjugation even. (The charge conjugate field 

operator is t,&(A) = -iylyo$T(-A)). H owever this definition is ill-defined. Ex- 

panding the field operators in terms of positive energy (un) and negative energy 

(vn) solutions of (2.2) we find 

(3.11) 

but because of (2.17) (recall as = ro) 

21,v, = -iif.&?.& . (3.12) 

Therefore 
L> 

S is infinite and not defined. In fact, the definition (3.10) amounts 

(when integrated in d2x) to adding the number of positive and negative energy 

states. 

From (3.12) we see that a more suitable definition of the induced spin is 

S(x) = ; 034 {%c(x) 9 tip(x)} (3.13) 

which leads to 

(S(x)) = ; c vnv, + c tint& . (3.14) 
E,,<O E,>O 

19 



Using the anticommutation relation for the fermi fields it achieves the form 

(S(x)) = i Tr[03S2(0)] . (3.15) 

From Eq. (3.12) we see that the definition (3.14) amounts to subtracting the 

number of positive energy states from the number of negative energy states, i.e. 

it is related to the spectral asymmetry of Eq. (2.11). 

Expression (3.15) seems to indicate that this quantity (= 0 x 00) and hence 

is not well defined either, however from (3.14) we find that in the free case it is 

trivially zero by charge conjugation. Indeed, in the free case, charge conjugation 

yields T~EUE = -IT-EV-E. 

The reader will recognize in (3.15) th e chiral anomaly in l+l dimensions 

(Euclidean) where us is 75. Therefore we regulate (3.15) in a gauge invariant way 

(gauge invariant under time independent gauge transformations) a la Fujikawa 20 

1 
(S) = i Jilim Tr [c3e -H”IM2s2(0)] , (3.16) 

where H is the Dirac Hamiltonian in (2.2). The standard result of the $rnm --+ 
Tr(. . .) is the two dimensional chiral anomaly and we find 

(S) = 4 (3.17) 

in agreement with (2.18). 

Please notice that the definition of the induced spin and Eqs. (3.13) and 

(3.17) are odd under charge conjugation, but well defined. Indeed the reader can 

easily find that only a charge conjugation odd definition of the induced spin is 

well behaved. 
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We offer yet another method to compute (S) using point-splitting. From the 

definition of the fermion Green’s function 

iSF(X’, x, t’ - t) = (0 1 Tqqx’, t’)$(x, t) IO) , 

which is the usual time ordered product, we find 

(0 I iqx, W(x, 4 I ) = - EO’O+ iii (0 1 T$(x, t)$(iT+ E’, t + CO) IO) ei~+eApdxp, lim 

(3.18) 

where the exponential of the line integral ensures gauge invariance. After a 

tedious but straightforward calculation we find 

(0 1 T$(x, t) T(x, t + co) IO) = g & - L ~~~~~~~~ fi . 
47r CO 

(3.19) 

Hence 

(oI$(x,t)+(x,t) lo) =E,‘im+ -$ h + -& @&Aj fi] . (3.20) 

The first term on the right-hand side (divergent as EO -+ 0) is identified as (S) in 

the free theory (A, = 0). Th e second term corresponds then to the induced spin 

therefore the induced spin is (see Eq. (2.4)) 

(9 w = / d2x f (O I ~(x, t)~(x, t, I O)i,d = f ’ (3.21) 

We hope that these alternative methods were helpful in that the reader may 

feel more comfortable with the counting arguments of the first section, which we 

believe illuminate the physics in simple terms. 
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So far we have only studied the integer F case. This allowed us to use sim- 

ple counting arguments to understand the induced quantum numbers. However 

please notice that (3.17) and (3.21) were obtained for any arbitrary F. Also, the 

vacuum charge (computed by other methods) is given by Eq. (2.16) for arbi- 

trary F. When F is not integer the counting argument is obscure but a detailed 

analysis 8,ll (or a field-theory calculation) will show that the expressions for 

(Q),, (S), and (J), are indeed general. The continuum develops a singularity 

in the density of states at threshold involving the fractional part of F; this then 

contributes to the induced quantum numbers 11 in the same way as the zero 

modes. 
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4. Summary 

We have studied the fermionic vacuum polarization effects in 2+1 dimensions. 

In the presence of a background vortex the Dirac sea contains more or less states 

(depending on the sign of the flux and fermion mass) relative to the ground state 

in the trivial theory. 

These states carry charge, spin and angular momentum. The difference in 

the number of states in the Dirac sea with and without the external vortex field 

gives rise to the induced quantum numbers that can have general values. 
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