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ABSTRACT 

We study how the geometry of spin glass states changes under redefinitions 

of the metric. We show that in mean field theory the property of ultrametricity 

is robust. We present numerical evidence suggesting that in the more realistic 

D = 2 and D = 3 spin glass models a stronger result may hold, namely that the 

choice of metric is to a large extent unique. 
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Much of the recent progress in understanding the nature of the spin-glass 

phase has focused on the geometry of the space of thermodynamic equilibrium 

states. A striking feature of this space in mean-field-theory is its ultrametric 

structure,’ implying a hierarchical organization of states in clusters. This feature 

leads, in particular, to analytically tractable models of dynamical relaxation.2 

Whether it -is a generic property of more realistic spin glasses,’ and other com- 

plex frustrated systems4 is an open and very interesting question with possi- 

ble ramifications in such diverse fields as combinatorial optimization and brain 

modelling. 586 

One facet of the universality of ultrametricity, that can be explicitly verified, 

would be its robustness under redefinitions of the metric in the space of states. 

The distance between two spin-glass states a and b has so far been taken to be a 

measure of the variation in local magnetization7 

d% = 2 
site i=l 

k (mr - mp> 2 s 2 (qEA - qab) 

where qab is their overlap, and the self-overlap qEA is state-independent. Though 

natural, this definition is not unique. Indeed, by analogy with (1) we could define 

for any observable density C+, such as the local molecular field, a coarse grained 

magnetization, the energy density etc., which can be considered as new coordi- 

nates of the infinite dimensional space of states. In this letter we study how the 

geometry of states is affected by such coordinate changes. This is interesting 

because invariant features should be the only ones worth looking for (i) in real 
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experiments, where the precise density measured by a given probe might well be 

ambiguous (for instance, neutron diffraction experiments with less than perfect 

resolution would presumably measure a coarse-grained magnetization) and (ii) in 

other complex frustrated systems, such as the problem of close-packing randomly- 

shaped tiles (possibly of relevance in the study of amorphous materials) where 

no a priori -natural definition of the distance between states exists. 

Our results are as follows: (a) we will show explicitly in mean field theory that 

the property of ultrametricity is invariant under metric-redefinitions, and (b) we 

will present numerical evidence that in the more realistic D = 2 and D = 3 Ising 

spin glass models not only is ultrametricity, if present, preserved, but a much 

stronger result may hold, namely that a wide variety of locally defined metrics 

ar identical up to an overall scale factor. In this sense, the metric in the space of 

spin-glass states is almost unique, and the geometry universal. 

The mean-field theory of spin-glasses is described by the long-range 

Sherrington-Kirkpatrick8 Hamiltonian 

N N 

X = - C Jij pi aj - H C pi 
i,j=l i=l 

(3) 

where the ai are Ising spins, and the Jij are independent quenched random vari- 

ables with a symmetric Gaussian distribution of variance l/n. The property 

of ultrametricity was demonstrated’ by calculating the average probability that 

three states a, b and c have mutual magnetization overlap zr, 22 and 23. Using 

the replica trick this can be written 

3 



x 6 (&b(a) - 21) ’ 6 (%&-‘) - z2) * 6 (!h&‘) - 23) (4 

where ‘$r stands for a-summation over all spin-configurations of the n replicas 

and the magnetization overlap of two real replicas is 

(5) 

Using standard saddle-point integrations, this is rewritten as 

P (Zl,Z2,Z3) = lim 
1 

c d(&aa - 
n+o ncn - m - 2) a#+ 

a) 6 (Qac - 22) 6 (Qca - ~3) 

(6) 

where Qab is the n x n matrix that minimizes the free energy. Below the transition 

temperature, it has the hierarchical form obtained by Parisi’ 

Q= 

Ql 42 

Ql 

‘!s Ql 

42 Ql 

43 (7) 

m2 
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This is best described by the homogeneous tree shown in Fig. 1, and a mono- 

tone non-increasing and positive (for non-vanishing magnetic field H) sequence 

q;. It follows immediately from the hierarchical form of Qab, and Eq. (6), that 

P(zr ,22,23) vanishes unless the two smaller overlaps coincide. Thus all triangles 

in the space of p&e states have their two bigger sides equal with probability one, 

which is the statement of ultrametricity. 

We are now ready to show that the property of ultrametricity is robust under 

redefinitions of the metric, of type (2).l" Instead of a general proof, which would 

be tedious and not particularly illuminating, we will restrict ourselves here to 

two examples where the observable 0; is (a) the local molecular field, and (b) the 

energy density; these can then be readily generalized. 

(A) LOCAL MOLECULAR FIELD 

The field-overlap of two real replicas is defined as 

To calculate the average probability that three states a, b and c have mutual 

field-overlaps 21, 22 and 23, we substitute q$’ for qab in Eq. (4), and then replace 

in turn Jij and qab(a) (f or a # b) by their saddle-point values 6 2 u:u; and Qab 
i=l 

respectively. The result is the same as Eq. (6), but with the saddle point matrix 

Q replaced by 

Q@) = p2 (Q +1)3 

where 1 is the identity matrix. Now matrices of the Parisi-form (7) are closed 

under addition and multiplication, as can be easily seen by inspection. That 
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monotonicity of qi is preserved under multiplication follows from the trivial in- 

equality x5 + y@ 2 xc + ly if x 2 y and 5 2 c. Thus the matrix of field-overlaps 

Qth) has the same hierarchical form as the saddle-point matrix Q, which suffices 

to establish the ultrametricity of the space of states in the new metric. 

(B) ENERGY DENSITY 

The energy-overlap of two replicas is 

Going through the same steps as before, we arrive at the joint probability of 

mutual energy-overlaps of a triplet given by Eq. (6) with Q now replaced by 

9::’ = P2 2 (Q + l)ac (Q + l)bd Mabcd 
c,d=l 

where Mabcd is the one-site average 11 

To show that QcE) h as the same hierarchical structure as Q, note that the 

invariance-group of the latter is the direct product of the permutation groups 

of miA/miA-l branches at each branching-point A on the tree: 

Qab = Qr(a)n(b) ; 

When a runs over all n replicas so does r(a) and hence, by a change of dummy 

variables it follows that QcE) has the same symmetry-group, and thus also the 
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same hierarchical structure (7) as the Parisi matrix. It remains to prove that 

its entries are larger the more they are nested. This can be shown with the 

use of lengthy to prove but straightforward inequalities I2 for the ferromagnetic 

hierarchical model with Hamiltonian X = f C Q &,UaUb which is a generalization 
4 

of the long-range Dyson ferromagnet. The positivity of Qab is crucial here. 

The above examples can be easily generalized to other gauge-invariant def- 

initions of the metric. The invariance of ultrametricity is a consequence of the 

fact that the distance dif) of two states is a monotone increasing function of 

their magnetization distance alone: l3 d(O) ab = f(‘)(d,b). In mean field theory the 

functions f(O) are in general complicated. 

We will now present numerical evidence that in the more realistic two- and 

three-dimensional spin glass models (a) d!f) are still monotone functions of dab, 

and (b) for several &-odd densities C+ these functions are, surprisingly, straight 

lines. Hence, such changes of metric amount to a simple resealing that preserves 

not only the notion of ultrametricity, but all other geometric features (such as 

the distribution of overlaps) as well. 

Our numerical simulations were done on the IBM 3081 at SLAC. We studied 

the frustration models with Hamiltonian (3), but with Jij being fl with equal 

probability for nearest neighbors on a D = 2 square, and D = 3 cubic lattice, and 

zero otherwise. Our lattices varied in size from 162 to 542 and from 83 to 143; 

we used periodic boundary conditions, and mostly zero magnetic field H. We 

slowly cooled several replicas, typically 50, of the same sample down to some low 

temperature, that ranged from p = 0.8 to p = 3.0, and then in each replica we 

measured the densities of magnetization (mi), molecular field (hi), energy (Ei), 
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coarse-grained magnetization (mi) and a composite operator (ci), where rni is 

the average magnetization over an elementary square or cube of the lattice with 

i at its lower left corner, and for the composite operator we took: 

The averages were taken over a few hundred Monte-Carlo sweeps. Finally we 

measured the distances d(O) between each replica and some randomly chosen 

fixed replica, for each of the above densities 0, as well as the self-overlaps qgl. 

Consistency checks included verifying that the internal energy of our states 

agreed with previous simulations, 14 near the freezing temperature. We also ver- 

ified that self-overlaps are to a good approximation state-independent and self- 

averaging, and used their fluctuations to estimate error bars. We made no at- 

tempt to establish the presence or absence of an equilibrium transition, for which 

much better data already exists; l5 for all we know our states could be metastable. 

In Figs. 2 and 3 we present typical distributions of (dLf)aldi,) with 0 = h 

and c for a D = 2 sample, and 0 = h and mc for a D = 3 sample, at zero exter- 

nal field. The little squares indicate the areas in which the points (qif), qaa) fall 

for all replicas a. Assuming state-independent self-overlaps, the square sizes can 

be used as estimates of the corresponding error bars. Within these error bars, 

the distributions are one-dimensional curves, that are remarkably well fitted by 

straight lines. Due to the global 22 invariance, there is a reflection symmetry 

about the point (q(O) EA, qEA); thus the slopes of the straight lines are the ratios 

of the corresponding self-overlaps, whose values we found to be essentially inde- 

pendent of lattice size, sample, and to a good approximation temperature below 
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l/p = 1; they are given on the figures. Note that if gauge non-invariant additions 

to the metric self-average to zero, one would expect qLT)/QEA = 8 in three di- 

mensions, which is consistent with the “experimental” value. Let us stress, that 

although our data shows no statistically significant deviations from linear laws, 

we know of no theoretical argument that would exclude such deviations. 

In Figs: 2 and 3, on the same scale as [d(h)]2, we have also plotted [d(E)]2, to 

show that the energy-density fluctuations from one state to another are relatively 

small. A more detailed analysis showed that: (a) in two dimensions, the [d(E)]2 

curve fluctuates a lot with quenched disorder, and approaches the horizontal axis 

with increasing lattice size. It might thus be the case that in the thermodynamic 

limit all states have the same energy distribution, except on a set of measure 

zero; a much better scaling analysis, on larger lattices, is necessary in order to 

address this issue. (b) In three dimensions, the [d(E)]2 curves seem to converge to 

the symmetric shape shown in Fig. 4(a). The symmetry under reflections about 

d = Q&.4 is due to the fact that Ei is &-even, and can be lifted in the presence 

of a magnetic field, as shown in Fig. 4(b). 0 ur statistics are not good enough to 

determine the functional form of these curves, although we can safely say that, 

up to reflections, they are monotone increasing and hence preserve the notion of 

ultrametricity. 

In conclusion, we have presented analytic (in mean field theory) and numer- 

ical (in the D = 2 and D = 3 spin glass models) evidence, that the notion of 

ultrametricity is invariant under redefinitions of the distance between states. We 

have also presented evidence that in the D = 2 and D = 3 models, the choice of 

metric is to a large extent unique. 
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FIGURE CAPTIONS 

Fig. 1. The tree describing Parisi’s hierarchical replica symmetry breaking 

ansatz. The entry Qab = qi depends only on the level i of the nearest com- 

mon ancestor of a and b. The bifurcation number of all branches at the jth level 

is rni/rni-1. 

Fig. 2. Plots of [d(*l12, [d(c)]2 and [dcE)12 versus the magnetization distance d2, for 

50 replicas of a typical 20 24 x 24 sample at /3 = 2.1. The little squares indicate 

where the corresponding self-overlaps for all 50 states fall. The slopes are the 

ratios of self-overlaps; the quoted errors are due to fluctuations from sample to 

sample. The energy fluctuations [dcEl12 may be vanishing in the thermodynamic 

limit. 

Fig. 3. Plots of [dch)12, [d(““)12 and [dcE)12 versus d2 for a typical 30 12 x 12 x 12 

sample at p = 2.1. 

Fig. 4. (a) A typical [dcE)12 versus d2 curve at external field H = 0. Crosses and 

dots represent data from a 10 x 10 x 10 and 12 x 12 x 12 sample respectively. In 

the insert, (b) a magnetic field H = 1 has been switched on, and the symmetry 

of the curve around d2 = QEA has been lifted. 
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