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ABSTRACT 

Several attractive theories predict the existence of mirror fermions. There 

is a good theoretical reason to expect that the lightest mirror fermions might 

have relatively long lifetimes. We explore the experimental consequences of such 

a possibility, focusing on mirror lepton production at the SLC near the Z” reso- 

nance. We find that by going slightly off resonance or by polarizing the electron 

beam one can clearly distinguish the mirror leptons from ordinary leptons. 
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Introduction 

All experimental evidence indicates that weak interactions are chiral in na- 

ture. Weak W and 2 bosons interact differently with left- and right-handed 

fermions . Many researches have taken this basic fact of physics at presently 

available energies as a fundamental guide in the search for an underlying theory 

of elementary particles. It is important to realize that this is not necessary. It is 

perfectly possible that the observed chiral structure is the result of spontaneous 

symmetry breaking in a theory with vector couplings. Such a theory must con- 

tain mirror fermions”’ - particles whose interactions are mirror images of those 

of quarks and leptons. For example, the right handed mirror electron interacts 

with the W while the left-handed one is an SU(2),5 singlet. There are several 

attractive theories in which these mirror particles arise naturally. These include 

extended supersymmetry”’ as well as models in which the fermion generations 

are explained by spontaneous breakdown of the spinor representation of a large 

orthogonal group,“’ and all Kaluza-Klein theories in which gauge interactions 

arise solely from higher dimensional gravity. I41 

The masses of mirror fermions cannot be much higher than several hundred 

GeV. They arise from the same mechanism which is responsible for the sponta- 

neous breaking of SU(2) x U(1) and their masses cannot be much higher than 

those of W and 2 without interfering with the phenomenological successes of the 

standard model. Thus there is a very good chance that they can be produced in 

currently planned accelerators, possibly even SLC. It is clearly of great interest 

to search for mirror fermions. 

There is one theoretically unattractive feature of theories with mirror ferm- 

ions. One can write an SU(2) x U(1) invariant mass term mixing mirror fermions 

and ordinary fermions, which gives both types of particles mass. No principle 

prevents this mass from being very 1arge.I” One loses the understanding of why 

ordinary fermions are light (compared to the GUT or Planck scales) that was 

provided by the standard model. 
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Serious theories of mirror fermions resolve this problem by incorporating 

symmetries which forbid such a mass term. Senjanovic’, Wilczek and Zee16’ and 

Bagger and Dimopoulos[71 have pointed out that these symmetries also forbid all 

renormalizable interactions between ordinary and mirror fermions. The decays 

of mirror into ordinary particles are produced by a nonrenormalizable coupling 

of dimension 5 or greater. The resulting lifetimes for the lightest mirror quark 

and lepton are of order 

M2 
7 >- 

m3 

where m is the particle mass and M the scale of the new physics, responsible 

for the nonrenormalizable interaction. In most models M > 1012 GeV, which 

for m - 100 GeV leads to r > 10m8 sec. Thus, for accelerator experiments, the 

mirror fermions are effectively stable particles. 

The signal for the production of mirror fermions (particularly mirror leptons) 

in e+e- collisions is thus particularly clear and striking. It is of interest to see 

whether we will be able to distinguish them from new leptons with ordinary 

couplings. We have therefore calculated the cross sections for mirror lepton 

production near the 2’ resonance. Our calculation includes the effects of initial 

state radiation and the experimental uncertainty in the beam energy, as well 

as the effect of polarizing the electron beam. We find that by going slightly 

off resonance or by polarizing the electron beam one can clearly distinguish the 

mirror leptons from ordinary leptons. 

The process e+e- --) f f 

The process e+e- + ff in which a charged fermion f is produced together 

with its anti-particle can proceed via 7 or 2 in the s-channel. 

The general form of the coupling between 2 and fermions is: --ieyp (a - br5>. 

For the electron: 

a, = (-1 +4sin2Bw)/(2sin26w); b, = -1/(2sin28w) 
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i for a right-handed or “mirror” fermion: 

af = (-1 + 4sin2Bw)/(2sin28w); bf = +1/(2sin2/3w) 

The vector coupling a and the axial-vector coupling b are given in terms of 

the left- and right-handed couplings gL and gR : 

a= +(gL+gR); b= +(gL-gR). 

Using rnz = 94 GeV, rz = 2.9 GeV, sin2 8~ = 0.215 we obtain 

a, = -0.085, be = -0.609; 

af = -0.085, bf = +0.609 
(1) 

or equivalently 

gf = -0.694, gR = +0 524. e . 9 

g; = +0.524, g; = -0.624 
(2) 

Thus the right-handed and the left-handed couplings of a mirror lepton are in- 

terchanged with respect to those of an ordinary lepton. 

The vector coupling a is tiny for both left-handed and right-handed leptons and 

vanishes for sin2 6~ = 0.25. This fact has important experimental consequences 

as we shall see in the following. 

The cross section for e+e- - + f f when final polarization is not observed is 

given by18’ : 

-,(G4f [,+ (l-~)cos20] +G5;(1-~)‘cos~+G~M2s)} 

(3) 
where 

s is the square of CM energy; 

0 is the scattering angle in CM; 
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p is the momentum of the fermion f; 

Qf is the f electric charge, (Qf = -1 for mirror leptons); 

M is the f mass; 

Dz(s) is the Z inverse propagator, Dz(s) = s - mf + im,I’; 

PL is the longitudinal polarization of the electron beam; 

and the G-s are given by: 

Q? G1=sZ-- 2Qf Re ClueI + lbe12) (laf I2 + Ibf 12> 
S IQd4 I2 

Q? G3=sz-- - 2QfRe aeaf [ 1 + Iaeaf12 - lbebf12 + lbebf12 - Jaebf12 
S Dz (4 lDz(412 

~~ = 2Qf Re $7) + 2Re cuebe*) (laf ‘,” •I- Ibf I”) 
S [ 1 2s ID.&) I 

G5=--- - 2Qf Re aebf 
[ 1 

+ 2Re (afbf*) (Iae12 + lbe12) 
S Dz (4 IW4 I2 

&=--- - 2Qf Re beaf 
[ 1 

+ 2% (a&e*) (laf12 - lbf12) 
S Dz (4 IDZ(412 

From (3) we see that an experiment measuring da/da can in principle dis- 

tinguish between a right- and a left-handed lepton. We begin by discussing the 

qualitative features of such an experiment, to be followed by a more detailed cal- 

culation, incorporating initial-state radiative corrections and spread in the beam 

energy. 
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Let us first consider the case of an unpolarized electron beam, PL = O.* 

In that case the only term in (3) which differentiates between the two kinds of 

leptons is Gz. The contribution of that term however vanishes upon B integration, 

so the total cross section cannot be used to detect the handedness of f. Instead 

it is useful to consider the forward-backward asymmetry, A(&)FB defined as: 

(4 

where 
r/2 

OF = J &dcosB 

and 

f7B = 
/ 

&dcod 

e=s/2 

with 80 denoting the minimum value of 8 at which f can be detected. We have 

assumed 80 = 45’, a value which is representative of the relevant SLC detector, 

MARK II. 

As a consequence of (2)and (3) th e f orward-backward asymmetry in mirror 

lepton production in the process e+e- + f f has the opposite sign and the same 

absolute value as forward-backward asymmetry in production of ordinary left- 

handed leptons of the same mass: 

AFB (e+ e- --) fR fk) = -&B(e+ e- * fL f--) (5) 

In G2 there are two terms which contain information about the handedness of f; 

the first corresponds to 7 - 2’ interference and the second is a pure 2’ exchange. 

* We shall assume throughout that the positron beam is unpolarized. While a polarized 
positron beam is possible in principle, polarized electron beams will be achieved in the near 
future. 
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These are shown in Fig. l(a) for an ordinary lepton. The interference term 

changes sign at the 2’ pole, so that at s = rni the only contribution to forward- 

backward asymmetry comes from pure 2’ exchange. Despite enhancement by 

the Z” pole, that contribution is small, since it is proportional to the product 

of a, and af, both of which vanish for sin2 8~ = 0.25. As a result, the forward- 

backward asymmetry changes sign very close to the 2’ pole. On the other hand, 

even thoug-h the asymmetry vanishes very close to the resonance, it changes 

rather rapidly with energy, so that one can distinguish a mirror lepton from an 

ordinary lepton by measuring the forward-backward asymmetry only a few GeV 

off the resonance. 

If the electron beam is polarized, the situation changes drastically. Now, 

in addition to Gz, there is another term which differentiates between the two 

kinds of leptons - G5. The forward-backward asymmetry receives contributions 

from both Gz and Gs. Gs is similar in structure to Gz: it contains a 7 - Z” 

interference term and a pure Z” term. There is an important difference however. 

In Gs the pure 2’ term is only suppressed by one power of the small vector 

coupling a,, while the interference term is small, being proportional to a, and 

smaller near the 2’ peak. The absolute and relative strength of the two terms in 

Gg is therefore very different from Gz, as can be seen in Fig. l(b). Gs is much 

larger than Gz and is dominated by pure 2’ exchange, peaking at the resonance. 

As a result, given a polarized electron beam, one can clearly distinguish mirror 

feptons from ordinary leptons by measuring the forward backward asymmetry at 

the resonance. The effect is biggest when Gz and Gs work in the same direction, 

namely for PL = - 1. This can be intuitively understood from the fact that 

PL = -1 corresponds to left-handed electron beam and that IgLl is somewhat 

bigger than Ighl. 

Radiative corrections 

Let us now make a slight change in the notation and denote the cross section 

given in (3) by 00. The meaning of the “0” subscript is that this is the “bare” 
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cross-section, which does not include radiative corrections. The incoming electron 

or positron can lose part of its energy by emitting photons. This effect can be 

accounted for by folding the “bare” cross section with the probability distribution 

for the energy lost into radiation”’ : 

o(w)=t)$(g)’ oo(w-k)+eYo(w)-~ 

0 

e$+&)oo(W-‘e) (6) 

0 

where 

W is the CM energy, W = &; 

o(W) is the radiatively corrected cross section; 

Ee is the incoming electron (or positron) energy, Ee = W/2; 

k is the energy of the emitted photon; 

t is a very slowly varying function of s, t = 2(cr/r) [In(W2/mf) - l] M 0.11 at 

W-mz; 

E = 2a7r (7r2/6 - 17/36) + 13/12t. 

The beam energy is in general subject to small fluctuations. In order to 

account for these fluctuations, we fold the radiatively-corrected cross section 

with the probability distribution G(W - W’) of the beam-energy: 

i.-?(W) = J dW’a(W’)G(W -W’) (7) 
-00 

where we have taken G(w) to be a gaussian, 

GW = & - exp ( -w~/~u~) (8) 

with a standard deviation Q of 0.5 GeV. Even though the actual energy distribu- 

tion differs from a gaussian, our results are relatively insensitive to its exact form, 

9 



Since u&,, < Pz. Using (7) and (4) we obtain the experimentally measured 

forward backward asymmetry 

Figures 2(a) through 2(d) display AFB,&F and 6~ as function of CM energy, 

+, and the electron beam polarization PL, for both ordinary and mirror heavy 

leptons and for several values of the lepton mass. 

We notice that while the forward-backward asymmetry is largest far off res- 

onance, the corresponding cross-sections are small. On the other hand, for an 

unpolarized electron beam the asymmetry vanishes very close to the resonance. 

Thus in that case it is best to measure the asymmetry a few GeV off resonance. 

For a polarized electron beam the asymmetry is quite significant right at the 

resonance. The absolute magnitudes of the asymmetry for purely left- or purely 

right-polarized electron beams are very close to each other. On the other hand, 

the cross-section for a left-handed beam is significantly higher. 

Our conclusion is that the best strategy for distinguishing mirror leptons 

from ordinary leptons is doing an experiment with a left-handed electron beam 

at the 2’ resonance. For Mf 2 40GeV the phase space at the resonance is rather 

small, but below 40 GeV the signal is quite clear and significant. In the absence 

of a polarized electron beam, a mirror lepton can be identified by going a few 

GeV off the resonance. 
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FIGURE CAPTIONS 

1. (a) G2 as function of @. The continuous curve corresponds to G2. Con- 

tribution to G2 from 1 - 2’ interference is shown in dot-dash line and 

contribution from pure Z” is shown in dotted line. 

(b) Gs as function of &. The continuous curve corresponds to Gs. Con- 

tribution to Gs.from 7 - 2’ interference is shown in dot-dash line and 

contribution from pure Z” is shown in dotted line. 

2. Forward-backward asymmetry AFB, for the process e+e- + f f. 
For each value of Mf the first plot shows AFB as function of fi for both 

ordinary (continuous lines) and mirror leptons (dot-dashed lines) and for 

PL = -1, 0, 1. 

The second plot shows the corresponding 6~ and 5~ for ordinary leptons 

in units of R = tr/oQ~~(e+e- + j.4+/..4-). 

Continuous lines correspond to 6F, dashed lines correspond to 5~. 

(a) Mf = 20 GeV; 

(b) Mf = 30 GeV; 

(c) Mf = 40 GeV; 

(d) Mf = 45 GeV. 
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