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ABSTRACT 

The existence of a dilaton field in no scale super-gravities implies that the only 

classical solutions of the dilaton + Einstein equations are those which predict at 

low temperatures a vast hierarchy between the supersymmetry breaking scale 

m SUSY ( i.e. the typical squark, slepton and/or gaugino mass) and the Planck 

scale. At relatively low temperatures the dynamical quantities of the matter + 

dilaton system relax to some critical time trajectories with the property that the 

msusv (t> and w t ime trajectories stay proportional. The dimensionless ratio 

msvsy/T is a fixed point of the theory and it is completely independent of the 

high temperature condition (T N A4planck) of the matter + dilaton system. 



I. Introduction 

In the framework of N = 1 supergravity theories there is an interesting 

class of models which contain in their spectrum a physical dilaton field 4,. The 

dilaton couples through gravitational interactions to the trace of the energy mo- 

mentum tensor of the theory and therefore it interacts non-trivially with the 

SU(3)xSU(2)xU(l) p su ermultiplets. Although these interactions are of gravita- 

tional strength we show here that the existence of a dilaton field in the effective 

theory is of major importance and may be necessary to understand the observed 

scale hierarchies in our universe. 

N = 1 supergravity models with a dilaton field are the so called no scale 

models [l-5]. In general any supergravity model which emerges from D + 4 

spacetime dimensions contains naturally a dilaton after the compactification of 

the extra D dimensions. For instance the 6 + 4 = 10 dimensional superstring 

theories [6] define 4-dimensional no scale type effective theories once the extra 

6-dimensions are compactified in a Ricci flat manifold [7,8]. 

It is crucial that in the no scale supergravity models the spontaneous break- 

down of supersymmetry (superhiggs mechanism) [9] is induced by the dilaton 

supermultiplet [1,3,4] (c$,, &,, r]). Th e f ermionic partner of the dilaton (Ma- 

jorana fermion) r] is the would be Goldstino field, the field which is combined 

with the two helicity spin 3/2 state and defines the massive spin 3/2 gravitino. 

The pseudoscalar partner of the dilaton &, is the Goldstone mode of a global 

U(1) non-compact symmetry [3,4,10,11]. &, appears in the no scale supergravity 

Lagrangian only through its space time derivatives. From these properties of the 

dilaton supermultiplet it follows that the magnitude of the supersymmetry break- 

ing scale depends crucially on the dilaton vacuum expectation value without any 

farther dependence on & [4,11]: 

msusv = M exp cyqSD (1) 

M is the gravitational scale, M = (8rG~)-l/~ = Mplanck/fi = 2.4 x 101* 
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GeV and (Y is a model-dependent parameter (see later). By msusy we de- 

note the typical mass splitting between bosonic and fermionic masses of the 

SU(3)xSU(2)xU(l) g au g e interacting supermultiplets: 

From Eq. (1) ‘t 1 is clear that the magnitude of msusy in the effective theory 

is determined by the actual value of the dilaton field (4,). The later has to be 

compatible with the dilaton field equations. Therefore in order to understand 

why msusv is so small today msusy _ < 10-16M one has to examine the solutions 

of the dilaton field equations. However in all no scale models there is an approx- 

imate SU(l, 1) symmetry of the vacuum (4, + c$, + constant) [1,3,4,10,11] and 

consequently m,,,,((4,>) remains undetermined classically. $J, and +P corre- 

spond to the two non-compact generators of the SU(l,l)/U(l) Kahler manifold 

[3,4,10,11]. B ecause of this classical degeneracy, the determination of msusy(4D) 

is achieved at the quantum level of the theory [2-51. Unfortunately, the quantum 

gravitational corrections are not controllable at present; therefore an important 

and self consistent assumption is necessary for the effective low energy theory. 

We assume therefore that after taking into account the quantum corrections, 

4D remains a dilaton field, namely dD still couples to the trace of the energy 

momentum tensor of the theory. 

This paper is organized as follows: 

In Sec. 2 we show that the existence of a dilaton in an effective N = 1 

no scale supergravity defines unambiguously the dilaton coupling to the matter 

system (a) as well as the dilaton self coupling (X). Assuming a Robertson-Walker 

background and using the Einstein equations we derive the gravity-matter-dilaton 

classical equations of motion. 

In Sec. 3 we give a particular critical solution of the dilaton-matter-gravity 

system and we discuss its essential properties. This solution implies very precise 
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state equations and keeps the mSUSY (t) and T(t) time trajectories proportional. 

The fixed ratio m s,s,/T = E d P d e en s on the number of massless and massive 

states as well as the couplings Q and A. 

In Sec. 4 we discuss the range of the various parameters in a semirealistic 

situation and we give E as a function of those parameters. 

In Sec.. 5 we demonstrate that for sufficiently low temperatures the only 

solution of the system is the critical solution in the sense that any other solution 

relaxes quite rapidly to the critical one. 

The Sec. 6 is devoted for conclusions. 

2. Classical Equations of Motion 

The aim of this work is to derive and solve the classical field equations for the 

dilaton field in a non-trivial gravitational background. We will restrict ourselves 

to the class of homogeneous and isotropic solutions with zero space curvature. 

So the metric is parameterized as usual by the scale factor R(t) 

gPu = diag. (1, -R(t), -R(t), -R(t)) . (3) 

Furthermore we assume that the gauge interacting particles (leptons, slep- 

tons, quarks, squarks, Higgs bosons, higgsinos, gauge bosons and gauginos), are 

in thermal equilibrium at any time t defining a temperature T(t). We parametrize 

their energy momentum tensor as usual [l2] 

spu = -pgP” + (p + p)uW, u” = 1, ui = 0 (4 

p and p are the pressure and energy densities of the gauge interacting thermal- 

ized system. They are functions of the temperature and the masses of sleptons, 

squarks, Higgs bosons and gauginos. So, in the absence of any other scale in the 
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i effective theory other than msusy (4D) (no scale hypothesis), p and p are func- 

tionals of T  and msvsy (rjD). It is important to notice that this later statement 

is valid only at times where the Higgs vacuum expectation value (H) is equal to 

zero. 

P= P(%USY 3 T) 

P= Pk-%JSY 9 T) 
V T > Tc : (II) = 0 (5) 

Tc is the critical temperature of the SU(2) xU(1) 3 U(l)em phase transition. 

For the non-gauge interacting particles, such as the pseudoscaler & and the 

gravitino +P, we assume that their contribution to the total energy momentum 

tensor is negligible at least for times where T(t) < M . 

One must keep in m ind that the SU(2)xU(l) 2 U(1) phase transition 

may occur if only and only if msusy (T) for T < Tc becomes smaller than the 

dimensional transmutation scale & [ 13,141 of the SU(2) x U( 1) radiative breaking 

mechanism [ 13-151 

(H) # 0 u msusy (T) I Q for T < Tc . (6) 

Indeed, the existence of SU(2) xU(1) b rea m  m inima request that a (mass)2 of k’ g 

a Higgs doublet becomes negative for scale ~1 smaller than & [13,14,2-51, 

(7) 

where the dimensionless function C depends only on the dimensionless param- 

eters of the theory; namely the gauge and Yukawa effective coupling constants. 

The relation (7) can only occur if the massive supersymmetric particles are not 

decoupled at scale Q and give non-zero contribution to the mass renormalization 

of rn& [14]. Detailed analysis of the radiative breaking mechanism [13-151 shows 

that the transmutation scale Q defined by the equality C(cyi(Q)) = 0 is hierar- 

chically smaller than M  [14,1-51: Q = Mexp[-O(l)/aa] and takes the desired 
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value Q N 10-16M when the gauge coupling constants ~1, (~2 and tys are of order 

unity at M (gauge unification hypothesis) also when the ratio cxt(Q)/a~(Q) lies 

in the range l/3 to 2 [13-15,1-5] (prediction of the top quark mass). 

We are now in a position to derive and solve the dilaton field equations for 

temperatures T > Tc : (H) = 0. First notice that the general dilaton-matter 

Lagrangian density has the form 

Leff =fi 
( 

-+ + i g~Vp+Ddu+D + ~matter(g~u,ms,sy(~,)~~i) - Wb) 
) 

+ . . . (8) 

where the dots denote non-gauge interacting fields like tip, &, etc, and c$i stands 

for the gauge interacting ones; lCmatter is defined so that 

L matter 
I$i=o = 0 

The energy momentum tensor S’pV of Eq. (4) is related with fmatter, 

SP = _ 2 z & (d?l lmatter) 

(94 

w 

while the total energy momentum tensor (including dilaton) is 

T”” = -fig’“” + (3 + h) (104 

where we have defined the effective pressure and density of the system as 

$=p--D, @=p+uD PW 

Our main assumption is that the dilaton field keeps its essential property of 

coupling to the trace of the energy momentum tensor S/j of the effective theory, 
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or 

q bD = -a(@ - 3j5) = -a@ (114 

with 

ipu = spu + g’“i& = -3s’“” + (a + fi),p,u W) 

The proportionality constant a in Eq. (11) will be completely determined 

by consistency requirements as we will see immediately. Indeed, the dilaton 

Eq. (lla) must not be in contradiction with the fact that -?; plays the role of an 

effective potential for the dilaton 

So the consistency of our assumption that C#J, is a real dilaton field implies 

(Eqs. (lla,b) and (12a)) 

- = -a($ - 3s) , 
84, 

V T > Tc WI 

As is stated above, the gauge interacting system defines a thermodynamic system 

(p, p, T) and consequently it satisfies the integrability condition 

Tap z=P+P 

On the other hand, the scale hypothesis (Eq. (5)) implies 

a m susy i3msusy 
+T-$ 

> 
p = 4p, VT>T, 

(134 

PI 

which express the fact that p has scale dimension 4. It then follows (Eq. (13a,b)) 
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that 

a 
m SUSY dm P= -(P-3P) (144 

SUSY 

or 

-?- P = --cr(p - 3p) 
WD 

. 

From Eqs. (12b) and (14b) we find 

auD 
- = (a - a) (p - 3p) + 4aUD , 
WD 

b’ T > Tc 

WI 

(144 

Since UD depends only on +D while p - 3p has an explicit dependence on T 

as well, the validity of the above equation for every T > Tc implies that the 

proportionality constant a in Eqs. (lla) and (12b) is not arbitrary but is fixed 

to a = a. Also it implies that UD has to scale like the fourth power of msrrsy 

UD = ~m~osy = AM4 exp 4~x4, (15) 

with X a dimensionless constant. Equation (15) is of main importance; it shows 

that the existence of a dilaton field in the effective theory request the absence of 

terms in UD with different scaling properties than mousy. For instance, terms 

like m2 svsyM2 are forbidden in the effective theory. 

Before writing down the system of classical equations which involve 4,, p, p 

and the scale factor R we stress again that Eq. (13b) is valid only if all scales 

are proportional to msusy and when msusy (T) > Q N 10-16M so that the Higgs 

vacuum expectation value is zero, (H) = 0. In the presence of the renormalization 

scale p one must assume that the theory is renormalized using a field dependent 

renormalization such that JL = const x msrrsy (4D). Within these assumptions, 

the classical field equations for 4,, p, p and R are 

4, +3H& +4a-3f4 =O (164 
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b+3H(p+fi)-ac$,(@-3$) =o W) 

3H2=p^+ ;& (164 

-R(t) =6(I;r+2H2) =$-3j-4% (164 

In Eqs. (16a-d) and in what follows we work in M = 2.4 x 1018 GeV units for _ 

simplicity. By the dot u ’ n we denote derivation with respect to the time t and 
. 

by H(t) we denote the Hubble function H = R/R. Its value at a time t gives 

the expansion rate of the universe. The first Eq. (16a) is the dilaton equation 

which is explicitly derived before. Equation (16b) is obtained by the conservation 

equation of the total energy momentum tensor, Tp”; u = 0, and it takes that 

form once the dilaton Eq. (16a) is used. Finally the two last Eqs. (16c,d) follow 

from the Einstein equations 

RF’ - f g/1”R = T’LU (17) 

Equation (16~) corresponds to JL = v = 0 while Eq. (16d) is nothing but the 

trace of Eq. (17). The trace Eq. (16d) is not an independent one but it can be 

obtained using Eqs. (16a-c). 

3. The Critical Solution 

The desired classical solution, 4, (t), h as t o satisfy the system of coupled 

Eqs (16a-c). In general one may expect that the dilaton trajectory at low tem- 

peratures as well as its value at T N Q = 10-16M is sensible and strongly 

dependent on the initial high temperature dilaton value 4D (T N M). If that was 

the case then the existence of the SU(2) x U(1) phase transition and the hierar- 

chy generation mechanism in no scale models will be questionable or otherwise 

ambiguous depending on the initial random value of 4, (T N M). However this 

uncomfortable situation never happens. As we will see below the dilaton time 
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trajectory relaxes at low temperatures to a critical one keeping the dimensionless 

ratio m SUSY(4D(t))/T(t) constant' 

msusv(t) - 

w t large 
T 2 Z (18) 

The value of the dimensionless constant & is of order unity and is completely 

independent on the initial conditions 4, (T = M) or m,,,, (T N M). This low 

temperature scale identification between msusy and T time trajectories is very 

crucial and guarantees the existence of the SU(2) xU(1) phase transition at a 

critical temperature Tc N Q = 10-16M. The precise value of Tc is completely 

independent on the initial value of m .,,,(T N M) and depends only on the 

critical fixed point CC. For temperatures lower than Tc the Higgs vacuum expec- 

tation value (H)T and msusy will relax to their zero temperature values which 

are close to the transmutation scale Q N lo-l6 M [2-51 and the dilaton stops 

to evolve 

(H)o = msusy (T N 0) N 10-16M (19) 

Indeed the appearance of the extra scale Q (quantum generated) implies that 

for temperatures smaller than Q the values of (H)T and msusy are of order Q 

and follow by the minimization of the zero temperature effective potential; in 

addition the dilaton acquires a mass of order Q2/M N 10m5 eV. The presence of 

the scale Q does not affect our previous assumption [Eq. (5)] for T > Q. We will 

not examine here this relaxation mechanism but it is obvious that the transition 

takes place quite rapidly since the value of m,,,, at Tc is already of order Q, 

so very close to its zero temperature value. The relaxation mechanism becomes 

more complicated in the case where 4, continues to behave like a dilaton for 

T < T,; we will examine this situation elsewhere. 

During the time interval of msusy and T identification the time trajectories 

of all the dynamical quantities: p^, fi, H, 4,, T, and msusy are attracted to the 
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following critical ones 

1;” - CP c = 2ck!2 - 1 
t2 ’ ’ 8~x2 (2W 

HC =- i or R’(t) = ct1j2 (2W 

1 1 
4”, = -cD - - log t , a 2a 

or mzUsy (t) = - 
tl/2 
ecD 

CT TC = - 
tw 

(204 

(204 

It is simple to check that the above critical trajectories satisfy the classical 

field Eqs. (16a-d) with a fixed state equation given by 

B(t)= 6a2 - 1 

m 2cY2 - 1 (21) 

The other important characteristic of the critical trajectories (Eq. (20)) is 

that the curvature scale vanishes R = 0 even in the presence of coupled massive 

degrees of freedom (p - 3p # 0). Also the entropy of the thermalized system 

is conserved with RT = constant even if the thermalized system interacts non- 

trivially with the non-thermalized dilaton field. 

g (R3S) = ; R3 [ (f$)]=o. (22) 

R = 0 and R3S = constant are valid because, the non-trivial time evolution 

of 4,(t) keeps the ratio m,,,,/T constant so that p/T4 and p/T4 are constant 

quantities. 

We show later that the critical solution of Eq. (20) is the only stable one in the 

sense that any other solution relaxes to the critical one for sufficiently large times. 
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Before performing that important demonstration we derive some useful relations 

between the critical point & = m~vsu /Tc and the other dimensionless parameters 

of the theory; namely the parameter CY and X as well as the number of chiral and 

vector (N, and NV) gauge interacting supermultiplets. In a semirealistic model 

the range of those parameters is quite restricted as we will see immediately. 

The constant coefficients C, and CT of the critical solution Eq. (20) as well 

as & are completely determined in a specific model once the parameter (Y and 

X are known. Indeed at a given temperature T the density and pressure are 

functions of T and e = msusv/T: 

B = T4 (fp(E) + A(“> (234 

F = T4 (fp(E) - G”) w4 

where fp (t) and fp (I) are the statistical distributions of the thermodynamical 

system (p, p, T). For instance assuming that all supersymmetric partners of the 

chiral fermions as well as the gauginos, have masses of order msusv, then 

(244 

cw 

where IfiF are the statistical integrals for Bose and Fermi distributions. 

w4 

N,, NV are the number of chiral and vector supermultiplets respectively. In 

Eq. (24a,b) we assumed for simplicity equal supersymmetry breaking masses. In 
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reality the mass breaking scale of a given supermultiplet takes a value around 

m SUSY 

mi = ai msusy (26) 

where a; are calculable constants in any specific model [13-15,2-51. Defining 

m SUSY such that C q/(N,+Nv) N 1 Eqs. (24a,b) are good approximate formulas 

valid in a general model. 

The critical constant cc is then determined algebrically by the state Eq. (21) 

together with (23a,b) 

fP(O - Vp(t3 - 7fp(cg + (4 - 7)X[4 = 0 (274 

where 

2 
’ = &-$2 - 1 W) 

Once & is known the coefficients CT and C, are also determined using the 

Eqs. (24a,b) 

CT = and C, = log (&CT) (29) 

Therefore all critical trajectories are completely fixed once the parameters cy, A, NC 

and NV are known. 
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4. The Range of the Parameters and & 

In a semirealistic model NC and NV are quite well known. For instance in the 

minimal model with three families and two light Higgs doublets NC = 45+4 = 49, 

NV = 12 while with four Higgs doublets NC = 53. 

The parameter X is unknown in general and depends on the observable as 

well as the-hidden sector of the theory. However the requirement of vanishing 

cosmological constant at T << T,, fixes this parameter 

Also, the quantum stability requirement for (H) and the validity of the radiative 

breaking mechanism [13-151 of the SU(2)xU(l) -+ U(l)em implies that [14] 

msusy ITKT, I Q2 V-0 W) 

where gz is the SU(2) coupling constant. A lower bound for msusy comes from 

the experimentally unobserved charged supersymmetric scalers below 30-40 GeV. 

Therefore in all semirealistic supergravity models X has to lie in the range (see 

Eqs. (30a,b,c)). 

1o-3 5 x 5 10 (31) 

Finally the value of the parameter (Y depends on the way where msusy is related 

to the gravitino mass m3i2. In no scale models there is a strong relation between 

the normalized dilaton field dD and the Kghler potential G of the theory [4] 

1 
4, = 3 G (pi) + const. (32) 

A consequence of this relation is that the dilaton dependence of the gravitino 
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mass is fixed to [4,11] 

const. 
> 

. (33) 

Therefore, if msusy scales like the kth power of m3i2 then the parameter o = 

km. 

m 
4l, 

SVSY 
=m.-+a=km 

For models with a non zero-tree level mass splitting in the gauge interact- 

ing sector of the theory, msusy is proportional to m3i2 and cx = @. This 

statement is valid for all models which respect the U(1) non-compact symmetry 

[3,4,10,11] f$p + c$~+ const. 

The only possible deviation from the cy = fl rule may arise in the class of 

no scale models where the tree level rnT;ty is identically zero [4]. For these models 

the only supersymmetry breaking terms present at the tree level are the gravitino 

- Goldstino mass terms. This is for instance the case of the SU(N,l)/SU(N) xU(1) 

model [4] in the absence of tree level gaugino masses. This model was found as the 

effective four dimensional theory which emerges from the ten dimensional &3 x EL 

superstring after compactification of the internal six dimensions on a Ricci flat 

manifold [ 7,8]. A non-zero supersymmetry breaking in the graviton-dilaton sector 

arises under the assumption of the EL gaugino condensation [16,17]. 

Even though mT;-y = 0 (semi)-classically, the non-vanishing mass splitting 

in the dilaton-graviton supermultiplet is expected to be communicated to the 

gauge interacting sector through gravitational interactions. Dimensional analysis 

implies that 

m susy =m3,2 f (T, +) (354 

where j is a dimensionless function and AC0 is a loop momentum cutoff scale. If 

a fundamental theory of gravity exists, then the effective value for AC0 is either 
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M or m312 = M expmt$,, one of the two scales of the theory. (A non-zero 

vacuum expectation value of a scale (4i) # 0 is also proportional either to M 

or m3i2.) In any case the dimensionless function j depends only on m,,,/M. 

Expanding j in powers of m3j2/M we obtain 

W) 

The first non-vanishing coefficient Ck will determine the parameter (Y = 

km in the effective theory. If for some unknown reason the pertubative ex- 

pansion of j does not exist, then it is possible that k is not an integer. In any 

case, the existence of the exact supersymmetry (m3i2 4 0) implies that k is a 

positive number. The most probable situation is when k = 1 or, k = 2 in more 

symmetric cases. In the absence of a strong symmetry reason in the fundamental 

theory of gravity it is very difficult to understand values of k larger than three. 

For any value of the parameter (Y larger than l/2 (7 < 4) there is at least 

one solution with & > 0 for any NV, NC and X > 0. In fig. (1) we plot & as 

function of X for different choices of (Y and with NC and NV chosen 49 and 12 

respectively. When a = m there is a unique stable critical solution (dashed 

line). For (Y larger than 1.6 the situation changes. There are in general three 

critical solutions & (1) < &“I < &“‘. The smaller one (&l)) exists for all values of 

X > 0 while e$“’ and r$“’ exist only when X/(Nc + NV) is sufficiently small. For 

instance when (Y = 2@ th ere is one stable critical solution for X > 2.5 x 10m4 

while for X < 2.5 x 10e4 there are two stable e$“, &“) and one unstable EL2) 

(solid lines). For semirealistic values of X and CII there is only one solution & 

which lies in the region 

0.4 < EC < 6 (36) 
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5. The Stability of the Critical Solutions 

In what follows we will show that there always exists at least one stable 

critical solution for cr > l/2 (7 < 4) and X > 0. Any other type of solution will 

be unstable in the sense that it relaxes rapidly at a low temperature to a stable 

critical one. For this purpose it is convenient to choose as independent variables 

the logarithm of the ratio m/T, the temperature T and the scale factor R, 

msu.sY 
2 = log - 

T 
= a&, - log T . (37) 

Also we convert the time derivatives to derivatives with respect to log R using 

the identity 

&A=H alo; R A = Hi(R) . (38) 

Because of the Eq. (16b), it is possible to express oi, in terms of z and i without 

any further dependence on T and R 

where a(z) is a positive function of z given in terms of the statistical distributions 

fP(4 f&4 and f;(4 = 6 fp(4 

4 fp - f; 
a(z) = 3(fp + fp) 2 l (3 94 

On the other hand Eq. (16~) permits us to express the ratio H2/T4 in terms 

of z and i only, indeed, 

H2 
- = h(z,i) > 0; h(z, i) = 

2cx2 
T4 6a2 - (a(z); - 1)2 

- (fp(4 + Xe4%) (40) 

Finally, using these relations (39) and (40) we may eliminate 4, and T from the 

dilaton Eq. (16a) and obtain a second order differential equation involving only 
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the function z(R) 

(414 h(z, ;) (a(z)“z” + a’(,& ‘) + b(z)a(& + V;ff(z) = 0 

with 

b(z) = $ H2 i,“” = f $$ = f ( jp(z) - jp(z) + 2Xe4=) (414 

and 

Viff(4 = & (fp - 3fp - 7fp + (4 - 7)Xe4’) (414 

Notice that b(z) is a positive function as well as a(z) and h(z, i). Also that 

Viff(z) can be interpretated as the derivative of an “effective potential” 

z 

Kff(Z) = 
J 

dz Ve;f(Z) = & 
( 

z 

-fp(z) + TAe4’ - 7 

J 1 
dz fP(4 (42) 

The critical solutions (z = constant) are those which correspond to the stationary 

points of VIff(z). Indeed Viff(z) = 0 is nothing else but the state Eq. (27) which 

determines the critical solutions. Because of the positivity of a, h and b the 

stable solutions are those which correspond to the local minima of V,ff while 

any solution which corresponds to a local maximum is unstable. That there 

exists at least one stable solution follows from the fact that Veff(z) goes to +oo 

when 1.~1 + +oo (for 0 < 7 < 4, X > 0) 

veff -+ 
{ 

2Xe4" - & jp(oo)z, z > 0 
M-44 z<o 

where 

fp(=‘) = 4 (NV + ;Nc) 

(434 

W) 

and 

fp(-) = 4(Nv + NC) (434 

If there is only one critical solution then it is always a stable one (see fig. (2a)). 
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If there are three solutions, (a 2 2@ and X/NT < 4 x 10e6), z{') < z,(2) < 

zj3) , then z$‘) and zi3) are stable while zj21 is unstable (see fig. (2b)). 

The general solution z(R) of the differential Eq. (41a) describes a dumping 

oscillation around the local minima of V&f(z). For large R (low temperatures) 

z(R) relaxes to (one of) the stable critical solution(s) (see fig. 3). The relaxation 

temperature depends on the initial conditions, while the critical point zC = log& 

is completely independent of those. For instance starting with an initial z, close 

enough to z, then the trajectory z(R) is given by 

z(R)=zC+($)1’2Acos(ulog$++), R>RI (44a) 

where A and 4 depends on z~ and H, while 

V”( zc) a(zc)h(zc,O) Pb) 

Eq. (44a) is valid only if IAl E o(1). 

If initially z(R1) > z, then z(R) has the following asymptotic behavior, 

z(R) = z, - (3k - 1) log $ + 0 (;) , (CX = km) 

while if z(R1) << zc, z(R) behaves as 

z(R) = z, + log E + 0 
RI 

(45) 

(46) 

with T. R = const. 

In both cases a relaxation temperature TR exists where the system enters the 
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dumping oscillation regime described by the Eq. (44a) (see fig. 3). 

TR = Tlevzo , zo > 0 (47) 

with 

zo= 2& 

{ 

2, > -% 

-(q - Zc) , 2, < zc 

For instance, if the magnitude of msusy at very high temperature (TI N M) 

is around the gravitational scale, 10m4T1 < miusy < 104Tr, then, the relax- 

ation temperature is bigger than 1014 GeV N 10m4M while for mivsy relatively 

small ( mfus y < 10m4M), the relaxation temperature is TR = miusy. There- 

fore for any random value of miusy the system relaxes to its critical trajectory 

Cm s,sy(T) = &T) before the SU(2) x U(1) -% U(1) phase transition. Only if 

m:vsu is hierarchically smaller than M from early beginning (miusy < 10-16M) 

the system does not have enough time to reach its critical trajectory before the 

SU(2) xU(1) phase transition. In any case only the solutions which predict a 

vast hierarchy between msusy (T N Q) and M are permitted by the dilaton field 

equations. Consequently the hierarchical ratio msvsy/M 5 lo-l6 is perfectly 

natural when in the effective theory there exists a physical dilaton field. 

CONCLUSIONS 

In this work we show that the existence of a dilaton in an effective N = 1 

no scale supergravity implies a very particular time evolution of the gravity- 

matter-dilaton dynamical system. The cosmological evolution of the universe is 

qualitatively and quantitatively very different of the standard description where 

the masses of the particles are taken as constant parameters. Now the masses 

are dynamical quantities and evolve in a very particular way (mi(t) N &T(t)). 

The energy density due to the massive degrees of freedom is never negligible 

compared to that coming from the massless ones, for all temperatures larger 
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than the dimensional transmutation scale (T > Qo). So the standard notion of 

decoupling is not applied here. 

The ratio m sUsy/T takes a precise fixed value and guarantees that the 

SU(2)xU(l)+ U(l)em ph ase transition happens when the universe is sufficiently 

old with Tc N QO = 10-16M. The details of the transition are completely inde- 

pendent of the very high energy condition of the matter + dilaton system; they 

depend only on the low temperature fixed value of EC = msvsy/T. The fact that 

& in any semirealistic model is of order unity, implies that the magnitude of 

m SUSY around the SU(2) xU(1) phase transition (T - T,) is already very close 

to its zero temperature value, so it ensures that the relaxation of the system to 

(H)T=o N msusylTEo N Qo = 10-16M 

happens before the recombination period so that the successful results of nucle- 

osynthesis remain undisturbed. It is the first time that one may relate successfully 

the age of the universe at the SU(2)xU(l) ph ase transition with the observed 

scale hierarchies: 

M 
t(C) I cage ,2 

SUSY 

where Cage is a well determined coefficient given in terms of & and the other 

dimensionless parameters of the effective theory. 
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FIGURE CAPTIONS 

Fig. 1. The dependence of the critical point CC = m&,sy/TC on the parameter A. 

Fig. 2. (a) The effective potential Veff(z) for Q = @ and X = 1 (NC = 

49, NV = 12). There is a unique minimum. (b) The effective potential Veff(z) 

for cx = 2@ and A = 10-l, 2 x 10m4, low5 (NC = 49, NV = 12). For 

X > 2.5 x 10m4 there is one minimum. For X < 2.5 x 10m4 there are two minima 

and one maximum. 

Fig. 3. The msvsy/T 1 t re axa ion at low temperatures starting from large (solid 

line) or small (dashed line) initial values msvsy /T > tc and msusy /T < & 

respectively. 
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