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COOLING RINGS FOR TEV COLLIDERS* 

R. B. Palmer+ 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

1. INTRODUCTION 

We are now familiar’ with the relation for the beam power for a quantum 
beamstrahlung limited collider: 

N B 1.7 x 1Or2 bJ4 

f w 3.6 x 1O-24 3 Ws) 

Pbcom = .5 x lo-24 L (en p* cry/2 r3/’ (mks) 

Burt Richter and others have rather arbitrarily considered various desirable values 
for these constants. I will try: 

p*=1mm (lo-’ m) (final focus strength) 

4 =lp (lo-’ m) (bunch length at collision) 
6 = .16 (beamstrahlung fractional energy loss) 

t - 1033 cm-2 set -1 (10” me2 set-l ) (luminosity) 

6; = 1.35 x lo-* m (normalized emittance) 
7’ = 3 x lo6 (1.5 TeV) (collision energy) 

With these values one obtains a 

N w 4 x lo* (particles per bunch) 
f M 3.0 kHz (repetition frequency) 

Pbeam fi: .3 M Watts (power per beam) 

* Work supported by the Department of Energy, contract DE-AC03-76SF00515. 
t On leave from Brookhaven National Laboratory. 
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A value which yields a total wall plug power for both beams at 1% efficiency (c.f. 
SLAC eff. is less than 10S3) of: 

P cuclll w 60 M Watts 

which is reasonable. 

The question I want to address here is: can one obtain - en = lo-* in any 
plausible cooling ring. In order to answer this one must consider not only quantum 
fluctuations but also intra beam scattering, cooling rates and ring acceptance. 

2. COOLING RATE 

Cooling arises in a ring_ because the synchrotron energy loss occurs not only 
longitudinally, but also, if the beam has a finite angular divergence, transversely. 
The rf cavities make up the longitudinal component but leave the loss of transverse 
component. 

The rate of cooling of transverse momentum is proportional to the rate of loss 
of energy (mostly longitudinal and made up by the rf). Thus the time rq to lower 
the transverse momentum by “en is given by 

2.718 ti ‘en = AE 2 e2 P’r” r F -- 
-= 3rnoc p2 q E m 

w 9 X 10S7 r” T Fm II&S 
P2 q 

where Fm is the fraction of the ring filled with magnets. Thus 

%,Y = 
3 x 106 p2 

J z,y J’mq3 
lllkS (24 

Jz is the partition function2 in the bending plane which is equal to 1 for a separated 
function lattice. In any case: 

Jz + J, + Jz = 4 W) 

Jy is hard to shift from 1. JL is 2 in a separate function lattice and can, at best be 
lowered to say .5, at which point Jz B 2.5. 

Equation (2) assumes no mixing between horizontal and vertical emittance. Or 
alternatively it implies that both are being cooled simultaneously, as for instance 
is true initially. As equilibrium is approached, however, the horizontal emittance is 
being blown up by fluctuations and intrabeam scattering, while the vertical is not. 
Under these conditions equation (2) is only true in the absence of mixing. If we 
introduce a mixing parameter < which is =0 for no mixing and =l for full mixing 
then Jz can be substituted by Jz + <Jy. However, this is true only when the vertical 
emittance is cold. Initially, we must set c = 0 whether there is or is not mixing. 
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Adding this term and substituting the field B for p: 

P kz 1.7 x 1o-s +3 (34 
8.3 1 

rq w 
Jz + <Jy B2 7 Fm 

Xl&S w 
For instance the SLAC cooling ring has B w 2 tesla, 7 M 2.4 x 103, Fm fi: .36, 
Jz w 1 and since we are considering initial cooling, < = 0. The equation then gives 
r k: 2.4 x 10e3 sec. This may be compared with the published3 value of 3 x 10e3 see, 
which is near enough for our purposes. 

3. EQUILIBRIUM EMITTANCE FROM QUANTUM FLUCTUATIONS 

The existence of an equilibrium emittance arises because of the existence, in a 
ring, of a dispersion q. Different momenta have different orbits and when a sudden 
charge of momentum occurs due to the radiation of a photon, the particle finds itself 
in a position away from its equilibrium. Before it can be re-accelerated by the cavity 
it starts oscillating about its new orbit and, as a result, gains transverse momentum. 
This effect, balanced against the cooling, yields2 an equilibrium emittance eqn (the 
q is for quantum, the n is for normalized) 

cqn = cq H 
Jz + <J, 73 7 ( ) 

where 

Since 

h Cq=55-- 
32fi mc 

3.8 x lo-l3 m 

P k! 1.7 x 1o-3 2 

m 2.2 x lo-lo 
1 

%n 
Jz +’ sJy 

r2 (HB) 

The function H depends on lattice parameters round the ring: 

H= 1-k P’ 2/4 r12 _ plvrll + pq 2 

P (44 

W) 

(44 

p and 7 are the lattice parameters in the bending plane, the hyphen indicating the 
differential with respect to length. Note that where B = 0 it does not matter what 
H is. 

Obviously the average over the lattice of a function like H is rather complicated 
and depends on the lattice. For a given number of bending magnets n it can be 
minimized and, assuming Jz = 1, c = 0 one obtains’ 

% e 8.3 x lo-l5 r3 

Unfortunately the lattice required to achieve this minimum involves a relatively 
large amount of length devoted to manipulating /?, p’, q etc between each magnet. 
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As a result it would tend to have a low fraction of magnets Fm. This is not only 
bad for the cooling rate (see equation (2)) b u will be bad for intrabeam scattering t 
also. I will therefore choose to consider a more conventional ring with Fm as large 
as possible and with a sufficiently small phase advance per cell that I can take 
the approximation that pz and q are constants around the ring. I will however, 
following Steffen, introduce one novelty5: 

I will assume that each bending magnet is really a wiggler whose average bending 
field B is finite but less than average absolute field B. I define 01 = average B in 
a magnet/local absolute B’s 

Remembering the definition of Fm, the average radius (R) of the ring is given 
by: 

R = P/(&I Fm) (6) 

Given these assumptions then 

since 

Thus6 

And using 

P w 1.7 x 1o-3 2 

H ~3 3.5 x lo5 

putting this into equation (4~): 

(74 

To see how good this approzimation is I again consider the SLC cooling rings 
for which pz M .77 m, B = 2 Tesla, Fm = .36, ~1 = 1, Jz = Jy = 1 and < = 1 
which gives Eqn w 1.8 x 10 -5. The published value is 2 x 10V5. 

A slightly more familiar form of equation (8) may be obtained by noting again 
Q = R//3= then for Jz = 1 and { = 0: 

%n m 3.8 x lo-l3 $ & (9) 
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Further, if I assume a 65” phase advance per half cell (SLC) then the bending angle 
0 per cell is 

2?r 65 e=- 
360 Q 

and 

% M 

2 x 10-13 7303 
J 

Fm ~11 
(10) 

z 

which may be compared with P. Wilson’s equation7 

=e3 
fqn N 4.8 X 10 -13 7 - 

Fm 

Thus my number is more optimistic than his, but also agrees better with the SLC 
ring. 

There is an obvious condition when using the wiggler. The local change in q 
within the wiggler must be kept small compared with the average 7 in the ring. 

For small ~1 the orbits within the wiggler will consist of alternating arcs on 
either side of an essentially straight axis. The maximum orbit deviation from the 
axis, a, is given by 

a = $/8p 

where f$ is the length of one arc, i.e. the length of an individual pole of the wiggler. 

The change in dispersion, q’, for unit dp/p, will be equal to a, and q’ should be 
held to some small fraction fw of the average q. Thus 

G q’=a=-= 
2cY 8p firl - fyRp: - fw@; Fm 

and thus 

ep = Pz (8aFmfw)“’ (11) 

&, the length of one pole of the wiggler magnet, can be compared with the total 
length of wiggler e, 

b = Fm 4 Pz (12) 

where 4 is the phase advance per l/2 cell (i.e. per bending magnet). 

The minimum number n, of wiggles per wiggler is thus 

nw L 
$2Fm 

8 ~1 fw 

or for 4 M 1 radian, Fm = l/2, fw = l/4 

(134 

1 
nwL - d- 4w 

W) 
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4. INTRABEAM SCATTERING 

In the above sections we have assumed that the beam current is small and 
scattering of particles within a bunch is negligible. If the current is raised then 
eventually this intrabeam scattering becomes significant and will eventually deter- 
mine the equilibrium emittance independent of the quantum fluctuation limit of 
equation (8). 

In principle, it may be argued, intrabeam scattering within a spherical phase 
space will not charge that phase space and should not lead to a blow up. In practice, 
however, in any plausible electron cooling ring the phase space is very far from spher- 
ical. For instance a longitudinal momentum spread of 10-s at 3 GeV corresponds 
to a longitudinal Ape of .3 x 10 -6. This must be compared with the transverse 
momentum spread Apt which, even at cn = lo-* and p = 1 m, is 1.7 x 10B6. Thus 
Apt B Ap, and scattering transfers transverse phase space into the longitudinal. 
The resulting fluctuations in-the momentum would perhaps be harmless but for the 
dispersion. As for the quantum effect the fluctuations in momentum in the presence 
of dispersion cause orbit jumps and result in a blow up of the transverse emittance. 

The rate of growth due to these effects has been given* by 

where Ce ti lo-lo m2/(Amp set) and cvcrt = $Q~+. The H here is the same as 
that above (equation (4d)) but the average is of course different. 

Equilibrium is reached if this growth rate equals the quantum cooling rate l/Tq 
thus 

since 

Tq k: 8.3/ (B2 7 Fm) from (3) 

thus 

1.2 x 10-10 N H’/2 

( 0 

l/2 

Gn Cd 
s U* B’ 72 Fm Q P p;” 

(16) 

c.f. the SLAC cooling ring: N = 5 x lOlo, a, = 6 x 10s3, B = 2, 7 = 2.4 x 103, 
Fm = .36, < = 1, op = 7.3 x lo-‘, H = .017, By = 1.7, giving ccn ti 1.3 x 10e6 or 

4% Of Eqn- 
Defining the normalized longitudinal emittance: 

Ezn = 7 ap 02 

1.2 x 10-10 N 
l/2 

Ecn NN 
s ezn B2 7 Fm 

(17) 

(18) 
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Finally I can substitute for H from equation (7d): 

Gn B 2.9 x 1o-Q ; (&Ef2 ($’ 
(19) 

Equation (19) would be correct if the blow up due to quantum fluctuations were 
negligible. If the two are comparable one obtains:* 

1 
En B - 

1 ( 
l/2 

2 eqn + $a + &) 1 
In the following I will consider rings in which: 

cqn = Gzn 

and thus from equation (20): 

En fi: 1.2 Eqn 

w 

(214 

cw 

5. LONGITUDINAL EMITTANCE 

Synchrotron radiation not only cools in the transverse directions but also in 
the longitudinal. High momentum particles radiate more than low momentum 
ones and thus the momentum spread tends to reduce. Balanced against this the 
quantum fluctuations of the process itself tends to increase the momentum spread. 
An equilibrium is reached given2 by: 

AP -=u 
P P= 1.1 x 1O-5 (7 B)‘/’ mks (22) 

Jz is the longitudinal partition function which for normal separate function machines 
has the value 2. As noted above (equation (2b)) 

J2 + Jz + J, = 4 

as in general Jar = 1, thus 

JZ =3-J, (23) 

The total normalized longitudinal emittance czn is 

and is related then to the minimum momentum spread c$ and bunch length a: at 
the final collider energy 7’. 
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The bunch length a, is of course determined by the strength and frequency of 
the r.f.: 

RCY 
0, = 91 UP 

where Qd is the synchrotron tune 

thus 

(254 

where (mc2) is the electron mass in electron volts, U is the voltage energy gain per 
revolution, h is the harmonic number (number of r.f. cycles per revolution), up is 
beam momentum spread dp/p, and QZ is the horizontal tune. 

For our purposes however we can regard (Uh) as a free parameter and simply 
select czn from bunch length and energy spread at full collider energy (equation 
(24)). 

6. RINGS WITH QUANTUM AND INTRABEAM EMITTANCE MATCHED 

Recall equation (4~) 

e 2.2 x lo-lo J :,J r2 lHB) 
z Y 

and equation (18) 

1.2 x 10-10 
Gzn k: 

s 

Setting Eqn = Ecn = & and assuming that H is uniform about the ring, we can . 
eliminate H and obtain: 

7 = 3.57 x lo-* 
N’i2 ( Jz + <J,)‘/’ 

&2s &I2 &’ ~514 &I” (26) 

For instance, if for a linear collider we chose the parameters listed in section 1: 

I 
%a = 1.35 x lo-* 
a; = 10 -6 

7’ = 3 X lo6 cLn = czn = 10e2 m 
u; = .33% 

6 = .16 

N = 4 x lo* 

In order to operate at ek = 1.3 x lo-* we need on equilibrium emittance cn 
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- 

The ring radius R is given by 

R w 1.7 x 1O-3 ; &- 
m 1 

(29) 

For our example 7 = 4.8 x lo’, B = 2, Fm = .5 and a! = .06 thus 

R = 130 m 

Now 

Qz = ; ti 390 
z 

Qy = ; fi: 100 
Y 

Now we can look at what up and a, are. For up I will use equation (22), which 
is for quantum fluctuations only. It will at least give the right order of magnitude 

1.1 x 1O-5 (7 B)‘i2 

which for Jz = 1, 7 = 4.8 x lo3 and B = 2 gives 

UP M 1.0 x 1o-3 

u, is then given by 

0, = ha/(7 Up) 

which for cgn = 10e2, 7 = 4.8 x lo3 gives 

a, = 2 x low3 m 

Finally we calculate the cooling rate given by equation (2) 

8.3 1 
7=X B’7Fm 

which for 7 = 4.8 x 103, B = 2, Fm = .3, Jz = 1: 

7 = .9 x 10m3 set 

We note that the diameter is not so unreasonable, it is less than PEP. The 
cooling rate is relatively fast and most parameters are not unreasonable. But the 
tunes are very high. Will such a ring have any acceptance? 
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some what lower than this. I take 

en = 3/4 c’ w 1 x lo-* m rad 

choosing 

<=l i.e. full 5, v mixing 

and 

Jl =J,=l normal partition functions 

Fm = -5 50% full of bending magnets 

B=2 (20 Kg) 

By = 1.4 m 

then 

7 = 4.8 x lo3 

EC = 2.4 GeV 

The pZ we can now obtain from equation (8) turned around, and with equation (21) 

2’3 
Pz B 22 (Jz + <Jy)‘J3 

$/3 

ffl 
B Fa3 

(27) 

h our example En = lo-*, B = 2, Fm = .5, Jz = J, = c = 1: 

CY;‘~ & = 4.8 x 1O-2 

Now if (~1 the wiggler parameter were equal to 1 this implies a flZ of 5 cm which is 
not very reasonable at E = 2.4 GeV. So what is a reasonable &? At SLC & B .77 
m, at a 7 of 2.4 x lo3 and quadrupole apertures, a, of 2.5 cm. Scaling gives 

Pz 0~ (a 7)lJ2 

Or normalizing to the SLC cooling ring 

Pz 2 .1 (a 7)lJ2 bw (28) 

If we take the aperture, a, to be 2.5 mm (note that the beam will be only tens 
of microns in diameter) then for 2.4 GeV 

&(reasonable) = .34 m 

and thus (~1 B .06. 
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7. ACCEPTANCE 

I know of no generally accepted scaling law or equation for the acceptance of a 
lattice. What follows is therefore not to be taken too seriously. I will assume that 
the acceptance is limited by non-linear effects coming from sextupoles inserted to 
correct chromaticity (i.e. changes of Q with momentum). As before I will assume 
a lattice with essentially constant values of p, < etc, i.e. a lattice with a sufficiently 
small phase advance per cell that I can think of the focussing as being continuous. 

I define k to be a focussing strength, 4 the quadrupole lengths and G the 
quadrupole field gradients: 

k=&G (30) 

/? oc l/k’J2 (31) 

and note 
2dp=-dk=dp 

P kp 
(32) 

In order to correct this variation of p with momentum we insert sextupoles around 
the ring. Again we assume that the phase advance is so small that the sextupole 
effect is essentially continuous and corresponds to a variation Ak of the focussing 
strength k with the average radial position AR of the beam: 

& Ak=Sdr=Sqg 

where S is the sextupole strength. Adding this term to equation (32) we obtain 

2dL-dk Ak 

P k +k 

& S dp =-- 
P P p 

(34 

So, for no charge in tune p (d/3 = 0) we require 

S 
k =- 
r7 

(35) 

If the sextupole strength is provided by sextupoles of length & at every quad 
length e, then we note that 

and since in a sextupole 

B=&-r2 
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so 

(37) 

and since 

k=tqB, 
42 

and 

S 
k =- 
rl 

we find 

(38) 

w-0 

For our example a = 2.5 mm, v = 9 x lo-’ so &/J!$ = .7 which means a lot of 
sextupole! 

Now for a small enough emittance the effect of the sextupole strength is only 
seen as a charge in quadrupole strength. As the emittance rises however the more 
extreme orbits will see the nonlinear effects of the sextupoles. The relative magni- 
tude of these non linear effects can be assessed by looking at the charge of focussing 
strength Ak’ arising from the maximum amplitude of oscillation u. 

Ak’=-S8 (40) 

My assumption will be that non linear effects will become serious when this shift in 
focussing strength becomes a significant fraction fs of the normal focussing strength 
k 

(41) 

now 

so 

Now in order to reduce intrabeam scattering it is desirable to have py > & 
and for the same reason one likes strong mixing so that ey w cz. Under these 
circumstances 6 will be in the vertical direction y: 

i&y = 
7 fi q2 

PY 

* 7 fj P,” 

R2 Py 

Q 
iny = 7 fi R 1 

9: 

(434 

W) 
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the fraction, or fudge factor, fs we can obtain from the SLC example 

i?n(SLC) = lo-’ = 2.4 x 10’ f; 5.6 s 
. 

fs = 2.5 x 1O-2 

i.e. our scaling law implies that when the non linear focussing is more than 2.5% 
of the linear focussing the orbits become unstable. A not unreasonable conclusion. 

Our scaling law thus predicts: 

Q i?ny fin 6 X lo-' 7 R J 
Q', 

(45) 

For our example Paz = 1.6 x low6 which is very small, but still 160 times the 
equilibrium emittance. 

8. CONCLUSIONS 

I have summarized the assumptions in our example in Table I, and the calculated 
parameters in Table II, together with those for the SLC ring. As noted before there 
seems nothing impossible about such a ring although the magnet apertures of 2.5 
mm, the tune of 390, and acceptance of 20 microns are certainly daunting. 

Table I 
Assumed Parameters of Example (A) 

Including Variations Assumed in Later Examples 

Collider Energy 1 E’ 1 1.5 + 1.5 I TeV 

Collider Luminosity 1 L! 1 1o33 I cmB2 set-l 

Final Focus I P* I l-0 I 
Final Bunch Length 0: 1.0 w 

Final Mom. Spread 6 3.0 x lo- 3 (D : 3.3 x lo-‘) 

, Beamstrahlung Mom. Loss 6 .16 (B : .32) 

Horizontal-Vertical Mixing < 1 

Partition Function JZ 1 (C : 2) 

Dipole Fraction of Circ. Fm 

Dipole Field I B 

Tune Ratio 

Magnet Apertures 

Qz/Qar 
a 

Phase Advance/$ Cell 

dv/q in Wiggle 

4 

fw 

sext./quad. Strength I f 8 

65’ I 
.25 I 

12.5 x 1O-2 I 
13 



Table II 
Calculated Parameters for Example A 

and Comparison with SLC Cooling Ring 

I IEX-AI SLC I 1 

%n Quantum cn Equilibrium .8 x lo-* 2x10B5 m 

Gn Coulomb en Equilibrium .8 x lo-* 1.3 x 10m6 m 

N Particles/Bunch 4 x 108 5 x 10'0 

f Pulse Repetition 3 x 103 120 Hz 

I P Power/Beam 1 .3MW 1 70KW 1 1 

I E of Cooling Ring I 2.4 I 1.2 1 GeV 1 

I R Radius of Ring I 130 I 5.6 1 m I 

I a Wiggler B/B I .06 I 1 I I 
I e Wiggler 

I e Pole I 28 I - I cm I 
I ?I Chromaticity 1 9x10-' ~1.7x10-2~ m I 

I P 2 I .34 I .77 1 m I 

I P Y I 1.4 I 1.7 1 m I 

I 390 I 7.25 1 1 

I Qtl I 100 I 3.25 1 1 

I I &ext &uid I 1.0 I I I 
I tn Acceptance 11.6x IO-S/ 1 x 10-z I m I 

(a-> Acceptance 20 /.krn 2.6 mm 

h/h 160 500 

I QP dp/p in Ring 1 lx 10-3 1.73 x10-q I 

02 

7 

in Ring 2 5.9 mm 

Cooling Time Constant .9 3 msec 
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In order to see how the ring depends on the assumptions, I have calculated 
a number of rings changing each assumption in turn (see Table III). What do I 
conclude: 

1. Only a small gain is obtained (example C) by messing with the partition 
functions. 

2. A very significant gain is made by using higher (presumably superconducting) 
bending fields. Example E using 4 Tesla magnets has a radius reduced from 
130 to only 40 meters and the Q has dropped from 390 to 210. The physical 
acceptance has gone up a bit (20 p to 27 ~1) and the cooling rate has gone up 
too. Whether such advantages would compensate for the great complication 
of superconducting magnets I do not know, but this should be studied. 

3. A reduction in the ring diameter is obtained (example G) by allowing &, to 
be much larger than &. For /3,/& = 40 the diameter has dropped from 130 
to 54 meters. But the acceptance has dropped and is now only 26 times the 
equilibrium value. This is not in principle unacceptable, the ring could be fed 
from another pre cooling ring, but we must remember that the acceptance law 
is not reliable and only lattice tracing would tell us how bad this example is. 

4. As would be expected the ring gets bigger if the magnet apertures are in- 
creased (example F). 

5. Far more serious, however, is the ring diameter increase if the momentum 
spread of the beam is reduced (example D). This is a serious question. I had 
assumed .3% Ap/p at 1.5 TeV and no dilution. This implies 3% Ap/p at 150 
GeV if the final bunching were performed at this energy. The short bunches 
(1 p) are desirable to suppress wake field effects but some have suggested 
that small momentum spread may also be required. If really true (and I 
personally doubt it) this would have serious consequences for the attainability 
of emittances of 10e8. 

6. If even lower beam power per luminosity is required. (For a 5 TeV machine, for 
instance), then we may attempt to obtain an even lower emittance (example 
H). This does look pretty bad. The sextupoles are 5 times as long as the 
quads and the acceptance is only 3 microns! 

7. The power can be more easily reduced by allowing a higher beamstrahlung 
energy loss (example B) the resulting higher current in the cooling ring does 
make the ring larger and more expensive but to no where near the extent of 
a lower emittance. 

8. Finally I give the parameters of a lo-’ m radian emittance case. With a 
radius of only 7 meters it would be a lovely ring to try and build. Note, 
however, that this would not be suitable for the SLC. The number of particles 
per bunch is far too low. 

I would like to thank Bob Siemann for starting me on this study, and albert 
Hoffman for his frequent help. 
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Table III 

Calculated Parameters of Various Cooling Rings 

Example A B c D E F G H I 

6 beamstrshlung Partition f Mom. Spread Magnetic Field Magnet Aperture Ratio of Tunes Emittance at Emittance at 

= .32 J, = 2 at Final Focus B = 4 Telsa a=lOmm WQ, = 40 Final Focus Final Focus 

(*W (1) u:, = 3.3 x 10-4 (2) (2.5 mm) (4) f:, = 1.35 x 10-Q c’, = 1.35 x 10-7 

(3.3 x 10-3) (1.35 x 10-Q) (1.35 x 10-S) 

en Equilibrium m 10-E 10-s 10-s 10-s 10-s 10-s 10-s 10-Q lo-’ 

N Electrons/Bunch 4 x 10s 1 x 10” 4 x 10s 4 x 10s 4 x 10s 4 x 10s 4 x 10s 1.3 x 10s 13 x 10s 

f Pulse Frequency kHs 3 .37 3 3 3 3 3 3 3 

P Power/Beam MW .3 .l .3 .3 .3 .3 .3 .09 .9 

E of Ring GeV 2.4 3.8 2.6 6.6 1.1 2.1 1.4 6.7 .8 

R of Ring m 130 300 130 800 50 290 54 2500 7 

Ql Wiggler B/B .06 .04 .07 .03 .04 .02 .09 .009 .4 

&I Length Wiggler cm 19 24 20 32 13 36 15 32 12 

Lp Length of Pole cm 8 9 9 9 4.5 10 8 5 13 

tl Chromaticity m 9 x lo-’ 6 x lo-’ 10 x lo-’ 4 x lo-’ 11 x lo-’ 14 x lo-’ 13 x lo-’ 1.3 x lo-’ 60 x lo-’ 

I% m .34 .43 .36 .57 .23 .6 .27 .57 .2 

BP m 1.4 1.7 1.4 2.3 .9 2.5 10.6 2.3 .8 

91 Horisontal Tune 390 690 350 1400 210 450 205 4400 34 

QV Vertical Tune 100 173 90 350 50 110 5 1100 8 

:ext /&ad .7 1.0 .6 1.6 .6 1.8 .5 4.8 .l 

fn Acceptance m 1.6 x lo-’ 1 x 10-e 2.2 x 10-B .57 x 10-s 1.7 x 10-e 1.8 x lo-’ .3 x 10-8 6 x 1O-8 4.4 x 10-s 
* =Y Acceptance P 20 15 25 10 27 34 30 3 150 

Ln/ en 160 100 200 57 170 180 26 56 440 

UP dp/p in Ring 1 x 10-s 1.3 x 10-s 2.2 x 10-3 1.7 x 10-s 1 x 10-s 1 x 10-s .8 x 1O-3 1.8 x 1O-3 .6 x 1O-3 

ffz in Ring mm 2 1.0 .8 .04 4.3 2.4 4.2 .4 9 

7 Cooling Time msec .9 .6 .8 .3 .5 1.0 1.5 .3 2.5 
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