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ABSTRACT 

The relations (z)“‘- (2)“’ = O(X) and ($)“‘- (2)“’ =0(X2) 

are given by means of renormalization group equations in the standard SU(3) x 

SU(2) x U(1) model with three generations. Thus the key ingredient of Fritzsch 

mass matrix is obtained which yields the mixing angles of quark sectors in good 

agreement with recent experiments. 
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The standard SU(3) x SU(2) x U(1) model [l] is remarkably successful in de- 

scribing the observed strong, weak and electromagnetic interactions, phenomeno- 

logically. However, an unsatisfactory feature of the present model is the large 

number of parameters which are put in by hand. In the three generation version, 

there are three gauge couplings, nine quark and lepton masses, three mixing an- 

gles, one phase factor,. the W boson mass and the Higgs mass. One of the most 

puzzling aspects of particle physics at the present time is observed generation 

structure of quarks and leptons. The problem in particle physics is that of ex- 

plaining the quark masses and their mixings. They will serve as important clues 

in search for the more fundamental theory from which the standard model can 

be obtained as the low-energy effective theory. For example, recently buttressed 

string theory seems to provide the grand unified theory of everything, the result- 

ing ten-dimensional theory is N = 1 supersymmetric theory [2], from which the 

SU(3) x SU(2) x U(1) model can be derived as the low energy effective theory. 

Now we assume that the unified theory of interactions is a non-Abelian gauge 

theory based on a simple group G which breaks to SU(3) x SU(2) x U(1) at a 

mass scale I&. If the renormalization group equations describing the evolution 

of the various couplings in the theory passes stable infra-red fixed points, then 

resulting value towards these fixed points will be determined by low energy SU(3) 

x SU(2) x U(1) gauge group [3]. I n statistical physics, we know that there are 

several fixed points in the scalar theories with several couplings. The fermion 

masses in terms of a fixed point were studied either for ordinary SU(3) x SU(2) 

x U(1) model or recently for supersymmetric grand unified theories [4]. Their 

main interest predicts the top quark mass or the masses of the fourth generation. 

In this paper, we would like to discuss the renormalization group constraints 
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in the regularities of fermion masses and mixing angles. Because the rate of 

convergence to infra-red fixed point values is different for the different couplings, 

for example, the large Yukawa couplings converge very fast to their fixed point 

values, the small Yukawa couplings slowly converge to fixed points. So a small 

perturbation is introduced near the fixed points, when we consider the entire 

quark mass-matrices. We found, that the success of the Fritzsch mass matrix [5], 

which is reproducing the observed pattern of the Kobayashi-Maskawa mixing 

[6], can be explained by standing the renormalization group equations of Yukawa 

and gauge couplings near the infra-red fixed points. 

In standard SU(3) x SU(2) x U(1) model with three generations, quark and 

lepton sectors are 

UiR, D;R 

Ei 

( > Ni L' 
ER, NR 

where i = 1,2,3 is color index, U=u,c,t(?); D=d,s,b, E=e,p,r; N= 

ue, uj.4, UT- 

There is one Higgs doublet with hypercharge Y = 1, 

4 = (i0(4 4+(x) = 
) ( 

4+ (4 &(v + H(x) + ix(x) ) 
where < H(x) >=< x(x) >= 0 and 

< r#‘(x) >= v = l/[fi GF]~/~ = 246 GeV 

Only observable Higgs particle is neutral scalar boson H. The self interaction of 

the Higgs field and all the interaction of Higgs boson H with gauge bosons and 
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fermions are determined by the masses of these particles, which is proportional 

to the mass of these particles. The Yukawa couplings 

LTY = 4’ [ELMDDR + URM&UL + ELMLER] 

(1) 
+c)‘+ 

.[ 
DLMDDR - &M,+DL + ~LMLLR 1 i- h.c. 

where Mu, MD, ML are non-hermitean 3 x 3 matrices. In this notation, the one- 

loop renormalization group equations for the Yukawa couplings and the gauge 

couplings take the following form [7], 

dMu 3 
’ dt - = 2 c"UM& - MDM;) Mu + (T - gU)Mu 

di& 3 
’ dt - = 2 c”DMA -MuM$)MD + (T - gd)MD 

P-1) 

(2.2) 

dML 3 
“-Jr=2 MLM+~L+(T-~)ML 

and 

da; _ bi 4 --- 
dt (47r)2 ‘% 

(24 

(3) 

b3 = 3, b2 = -1, bl = -11 

T = Tr 3 (MDM,+ + MUM&) + MLML+ 1 gu = 32?ra3(t) + 9 r&a(t) + g rq(t) 

g(j = 32m3(t) + 97ra2(t) + 5 7r cq(t) 

g( = 97q(t) + 157rrar(t) 

(4 
(5.1) 

(5.2) 

(5.3) 

cty E gf/4r, i.e., gs(t), gz(t) and gl(t) are SU(3), SU(2) and U(1) gauge cou- 

plings, respectively. From Eqs. (2.1) - (2.3) we see that the gauge contributions 
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increase the fermion masses but the Yukawa contributions tend to decrease their 

masses. So the critical points are determined by zero of the right of Eqs. (2.1) - 

(2.31, 

% (MUM; - MDMA) MU + (T - g,)Mu = 0 (6.1) 

3 
5 t”DM,+ -Mu@) MD + (T - gd)MD = 0 (6.2) 

; MLML+ML + (T - gL)ML = 0 (6.3) 

This is a system of coupled non-linear equations. The fixed point of lepton 

sectors and that of quark sectors cannot be realized simultaneously. Here we 

only consider the fixed points of quark sectors which depend on the initial values 

of the gauge and Yukawa coupling of the /J = Mx. The solutions of Eqs. (6.1) 

and (6.2) are 

(a) Mu = 0, MD=O 

(b) Mu=0 + MD=O 

(c) MD=O +- Mu=0 

(4 MY # 0, MD#~ 

For the case of (d), from Eqs. (6.1) and (6.2), we have 

Tr[MU + MD] = ; (gu + gd) 

Mu - MD = 4y(t) I 

(7.1) 

V-2) 
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where 
Mu = MUM&, MD = MDMA 

Obviously, Mu and M-D are hermitean matrices, which can be diagnosed by two 

unitary matrices U and V, UU+ = 1, vv+=1 

UMuU+ = diag (mi, rn:, rn;) 

VMDV+ = diag (mi, mf, rnt) 

The Kobayashi - Maskawa matrix is 

MKM = UV+ 

(8.1) 

(8.2) 

(9) 

Equation (7.1) g ives a sum rule of quark masses 

c mip + C m2down = [y Tg3(t) + i rTg2(t) + v Tg1(t)](24b)2 GeV2 , 

which were studied for the mass of top quark. Our interest is to discuss Eq. (7.2). 

From Eq. (7.2), (8.1) and (8.2), we have 

diag (mi, rnz, mf) - f rcq(t)l= UMDU+ (10.1) 

and 

diag (ms,mz, rni) - $ ml(t)1 = VMuV+ (10.2) 

which means the MD(Mu) also can be diagnosed by unitary matrix U(V). So, 
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in general, we have 

Mu = @MD (11) 

Thus, the charge 2/3 up and -l/3 down quark mass ratio in each generation 

should be the same. 

m3/2 = generation independent 
m-1/3 

(12) 

In fact, the quark mass values have the following hierarchical structure [8], 

mu mc mt 5.1 MeV, 1.35 GeV, 30 - 50 GeV(?) 
(13) 

md ms mb 8.9 MeV, 175 MeV, 5.3 GeV > 

From Eq. (13), we see that the quark mass ratio 3 = m, is a better approxi- 
mb % 

mation than that of 5 = 3. In my opinion, it is not difficult to understand. 
md ms 

Because the structure of the fixed points in above cases have very rich prop- 

erties, which not only depends on the initial values of the gauge and Yukawa 

couplings but also depends on the values of the matrix elements. The rate of 

convergence of heavy quark mass matrix element is more fast than that of light 

quark mass matrix element. The first generation masses are small. We need to 

give the correction of Eq. (11) so that it gives larger corrections for 5 = 3 
md ms 

than for 3 = 3. The corrections just reflect the fact the properties in the 
ms mb 

neighborhood of an infra-red fixed point may be very complex. 

It is expected that there are non-perturbative effects near the fixed points, 

especially for the first generation. Because the physical fixed points can only be 

reached if the Yukawa couplings are sufficiently large. So, we assume that the 
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right of Eqs. (2.1) - (2.3) t en s d t o zero, but not equal to zero, i.e., 

; (MUM; - MDM,+) + (T - gu) = A/2 (14.1) 

4 (MDMA -MUM&) + (T - gd) = -A/2 (14.2) 

where A is very small. 

It is noted that Eqs. (14.1) and (14.2) keep the sum rule of quark masses 

Eq. (7.1) invariant, but Eq. (7.2), therefore Eq. (11) change into the following, 

Mo=PMu+A (15) 

where A = l/6 WA, which is also small and A2 is neglected. 

From Eq. (15)) we have 

UV+VMDV+VU+ = /3 UV+VMuV+VU’ + UV+VAV’VU+ 

i.e., 

MKM[ diag (md,ms,mb)]M~M = a diag (mu,mc,mt) + A (16) 

where A = UAU+ = l/6 AU+ is small also. 

Now we can show that Eq. (16) indeed gives larger corrections for 3 = m, 
md ms 

then for 2 = 2. 
ms mb 

An explicit representation of the Kobayash-Maskawamatrix is [9] 

Cl SlCQ SlSQ 

M KM= -S1C2 ClC2C3 - s2sge i6 ClC2S3 +s2s3e i6 
(17) 

-S1S2 ClSZCQ +c2s3e i6 ClS2S3 - c2cge i6 

where si = sin 8i, ci = cos oi, i = 1, 2, 3. 



Inserting Eq. (17) into Eq. (16), the diagonal elements of Eq. (16) give the 

following three relations, 

b-h = m&f + m8sTci + mbsfs$ + A11 

b-b = m&C; •t ma (CfCiSi + S$i - 2C1C2C3S2S3 COS 6) 

+ mb (Cft+g •k Sz$ + 2C1C2C3S2S3 COS 6) d- A22 

(18.1) 

(18.2) 

pmt = m&s; + ms (Cf&$ d- C$g -/- 2QC2C3S2S3 COS 6) 

+ mb (c~s~s~ + cic?j - 2ClC2C3S2S3 COS 6) + A33 (18.3) 

Adding both sides of the above three equations, we get 

P= md+ms+mb+TrA 
m,+m,+mt (19) 

For mb >> m, >> md and mt >> m, >> m,, considering only the first two 

generations, from Eq. (18.1) and (19), it is easy to show 

Comparing with other terms in Eqs. (18.1) and (19), we know that h - 0(X2), 

where X = (MKM)~~ N 0.225. 

Now we consider the model with three generations. From Eq. (18.2) and (19), 

we also have the following approximate result, 

(21) 

An acceptable assumption is that the diagonal matrix elements of the matrix A 
A22 

have the same order of magnitude. Thus we have, approximately, - 
Imid 

- 0(X3). 
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Then, from Eq. (20) and (21), we have 

Because we. have (see Eq. (13)) 

and from Eq. (13), (20) and (21), we get the following results, finally, 

(r$‘” - (ry2 11 O(X) 

p!)” - (F?)“’ Eo(A2) 

(22) 

(23) 

(24 

Equations (23) and (24) are the very interesting results which were obtained 

from the discussion of the renormalization group equations. As the reference 

[lo], recently, show that Eqs. (23) and (24) are the key ingredient that is needed 

for Fritzsch matrix to yield a set of Kobayashi-Maskawa angles in close agreement 

with the observed pattern. 

So, our conclusion is that we can do regularities of fermion mass and mix- 

ing angles based on the renormalization group equations near the infra-red fixed 

points. It means that if the renormalization group equations describing the evo- 

lution of gauge couplings and Yukawa couplings possess stable neighborhood of 
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the infra-red fixed points - 
,A 

- 0(X2) 
> 

then in continuing from the scale of 

unified interactions to ~1 the couplings will be swept towards these neighborhoods 

of the fixed points irrespective of their initial values. It seems that the mass ma- 

trix of quark sectors and their mixing angles will be determined by the low energy 

gauge group SU(3) x SU(2) x U(1) mainly. 
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