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I 

Over the past ten years there have been many discussion of chiral symmetry 

breaking ( xSB) in strongly coupled lattice gauge theories.“] A certain percentage 

of these studiesi21 work with a nearest neighbor fermion Hamiltonian, using either 

the naive discretization of the Dirac equation or Susskind’s staggered fermions.[31 

Many authors claim to find spontaneous breakdown of continuous symmetries in 

these models. I have always been puzzled by this since the models in question 

are always equivalent to NF flavors of staggered fermions and the symmetries in 

question are simply the isospinlike transformations between the different flavors. 

Of course, one can choose a basis for the continuumfermion fields such that these 

symmetry generators carry rys’s (and one121 usually does), but the result is still 

puzzling. 

Several years ago I found a resolution of this puzzle, but, since interest in 

these matters seemed to have waned, I neglected to write it up. The confusion of 

several colleagues over the past two years has convinced me that there may still 

be some interest in presenting it. 

We will work within the context of the l/N approximation and discuss the 

effective potential for local bilinears (-l)‘$~~(r)q!~j (r) whose expectation values 

break the flavor symmetry. We prove the following things. 

1. At N = 00 QCD has several inequivalent degenerate vacua, some of which 

break the flavor symmetry, but one of which does not. These vacua are 

separated from each other in field space-they are isolated minima of the 

potential. 

2. The degeneracy of the N = 00 vacuum is accidental; a consequence of the 

fact that at N = 00 different flavors contribute additively to the vacuum 

energy. At next order in l/N the degeneracy is split and the symmetric 

vacuum is preferred. 

Note that, as a consequence of the isolation of the N = 00 minima, the l/N 

expansions around the symmetry breaking vacua will show no signs of disease 

(until their large order behavior is studied). The tunneling amplitude from these 
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false vacua to the symmetric vacuum is of order eeN. This reconciles the re- 

sults of previous authors with the naive prejudice that the flavor symmetries are 

unbroken. 

A more general derivation of the results that flavor symmetries are unbroken 

may be obtainable by use of the methods of Witten and Vafa.14] I have not 

investigated this avenue of approach since it gives no insight into the apparently 

consistent ljicture of symmetry breaking found in previous work. 

The Hamiltonian that we have to study is 

H = Hgauge + i c xiw?&) 
m 

x [U(q z + 6+&(x - 6%) - u+(z, 5 - fqo(5 - +?A)] 

(1) 

i is the flavor index running from 1 to NF. Hgauge is the usual lattice gauge 

Hamiltonian for an SU( N) gauge group. 

The effective potential is defined as the Legendre transform of the vacuum 

energy in the presence of a source term 

6H = ~(-l)‘xtmijxj m+=m. (2) 

The (-1)’ in (2) is necessary for charge conjugation invariance. Without it we 

would be studying the theory in the presence of chemical potentials for fermion 

number densities, rather than the &/J effective potential. 6H breaks the sin- 

gle unit translation symmetries which are the true residues of chirality on the 

lattice.13’ It also breaks SU(N) ‘f 1 m is not proportional to the unit matrix. 

By an SU(N) rotation, we can choose a basis for the +‘s for which m is 

diagonal 

SH - ~(-l)zm,x~xi . (3) 
i 
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It is then easy to derive a path integral formula for the vacuum energy 

e-w({m;>) = 
s 

du e-S(U) ,czl L(mi) . 
(4 

Here S is the continuous time Euclidean action for the pure gauge theory and 

eLcrn) is the determinant of the lattice Dirac operator 

eL = det Cqm(x) (U(x,y)G(y - x + 6%) - U’(x,y)6(y - x - 6)) 
( 

. (5) 
m 

In the large N limit the average of the product of two gauge invariant functions 

factorizes and 

Nt 

Wb%H = - 2 (w%)) 
i=l 

=- - 
5 s dU e-S(U)L(mi) 

J dU e-S(U) ’ 
i=l 

This is the exact analog of the Coleman-WittenL5’ argument for continuum QCD.“’ 

The effective potential V ({ &}) is also a sum of independent terms for each quark 

V({@,}) = ~U@i) * 
i 

In the continuum large N theory we can always choose the rni (and thus $i) 

to be positive by a continuous chiral rotation. A non-trivial minimum of V 

has each cbi at a non-trivial minimum of U. Since there is no reason for U 

to have more than one minimum, all the 4i must be equal. On the lattice, 

however, the transformation that takes m to -m is discrete and changes the 

gauge field configuration. it is essentially single unit lattice translation. Thus 

L(mP) # L(- m,U) although (Ln(m)) = (L”(-m)). Consequently, U(4) will 

have two non-trivial minima at f 40, if it has any at all. 

If 40 # 0, large N lattice QCD (with Susskind fermions) has 2NF-1 inequiv- 

alent vacua where each 4; is f 40. (Note that two vacua with aZE the & reversed 

are equivalent. They are related by a discrete lattice chiral transformation-a 

one unit translation.) All but one of these minima spontaneously break SU(Nf). 
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This degeneracy is clearly due to the “additive quark” nature of the N = 00 

limit. We next examine the l/N corrections to the vacuum energy. The value 

of the effective potential at any of its minima is given by a value of lV({mi}) 

at rni = 0. W is multivalued at m = 0. The branch of W corresponding to 

a particular pattern of signs for the ~$i is picked out by choosing the opposite 

pattern of signs for the rni (to lower the energy) and then taking m ---+ 0. 

The l/N correction to the vacuum energy is the dispersion of xi L(mi): 

sw({mi>) = - (( i C-+-4 )2-(p(mq2) . (8) 

Since we are interested in configuration in which the rni are equal up to a sign, 

the term which breaks the degeneracy is 

- C (L(mi)L(mj)) . (9) 
i#j 

Each term in the sum is either (L2(m)) or (L(m)L(-m)). Since L(m) # L(-m) 

for fixed gauge field configuration 

((L(m) - L(-m))2) > 0. (10) 

(Note that this is a strict inequality; > is not 2) and 

(L2(4) > w4-+4) - (11) 

The vacuum energy is lowered by having all the c+$ equal. Thus, as advertised, 

l/N corrections to the effective potential choose the symmetric vacuum. 

It should be emphasized again that the consequences of this result cannot 

be seen in finite orders of the l/N expansion around a particular vacuum. The 

zeroth order degenerate vacua are isolated and tunneling between the false vacua 

and the true one is an ewN effect. 



CONCLUSIONS 

The results of this investigation lead one to question again the conven- 

tional interpretation of the even-odd “continuous chiral symmetry” of Euclidean 

Susskind fermions. This symmetry can be realized in the continuum either as a 

vector current or an “axial isospin” current $+752’s+ and can be either sponta- 

neously broken or conserved in the continuum limit. 

The two vacua (in which the symmetry is broken respectively conserved) 

are related by a continuous chiral transformation and are degenerate and have 

identical physics. This is not so on the lattice and the question of which vacuum is 

preferred in weakly coupled near-continuum QCD has never been answered. The 

issue is not really resolved by Monte-Carlo calculations (which prefer the vacuum 

with spontaneous breaking) because they work with a mass term which orients 

the vacuum in the direction which spontaneously breaks the “chiral” symmetry 

and “extrapolate” their results to zero mass.* 

The conventional picture of spontaneous breakdown of the even-odd symme- 

try is based on strong coupling large N expansions. We have seen that such 

considerations can be misleading in the Hamiltonian formalism unless all vacua 

are taken into account and l/N corrections to the effective potential computed. 

Indeed, in the time continuum limit, the even-odd symmetry becomes one of the 

flavor symmetries we have studied here. So the conventional calculation certainly 

chooses the wrong vacuum in the time continuum limit. Unfortunately, on a Eu- 

clidean lattice the symmetric vacuum corresponds to the expectation value for a 

one link operator and it is not possible to extend the simple arguments we have 

made here. 

* This probably means that the resolution of the question will have little practical effect on 
Monte-Carlo calculations if one believes that reasonable results can be obtained at fairly 
large values of the mass term. Even if the weakly coupled lattice theory prefers the vacuum 
in which the “chiral” lattice symmetry is unbroken, the mass term may be seen as a trick 
for forcing the lattice system into a spontaneously broken vacuum which becomes physically 
equivalent in the continuum limit. 
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However it seems a bit unreasonable for the asymmetric vacuum to be en- 

ergetically preferred for all finite values of the time lattice spacing and to be 

disfavored in the time continuum limit.’ I suspect that there is at least a finite 

range of time lattice spacings and gauge couplings for which the conventional 

calculations are finding a meta stable false vacuum. Perhaps this is even true for 

the Euclidean symmetric version of the theory. 

Even in this case there is a possible escape for someone who would like to 

believe that the l/N-string coupling expansion around a spontaneously broken 

vacuum can eventually be made into a tool for calculating the properties of 

physical hadrons. (Similar remarks reply to the Hamiltonian calculations of Ref. 

2.) The meta stable symmetry breaking vacua of the lattice theory share many 

properties with some of the degenerate vacua of the continuum. Even if the 

lattice vacuum preserves the even-odd continuous symmetry, some states which 

break this symmetry become degenerate with the vacuum in the continuum limit. 

It is not implausible to expect that these are meta stable states which are smooth 

extrapolations of the vacua found in many strong coupling, large N calculations. 

Then the conventional calculational schemes would work (in principle), although 

their theoretical justification would be somewhat more complicated than one had 

thought. 

t Actually, there is a scenario where this is reasonable. Imagine plotting the difference in 
energy between the symmetric and asymmetric vacua in the time lattice spacing (a), -l/N 
plane. We now that if a = 0 it is negative for a range of N near N = 03 and vanishes at 
N = 00. There might be a line of zeroes in the a - h plane coming in to the origin.(see 
fig.1) Then the symmetric vacuum would be preferred on the small N side of this line. The 
finite “2 theory would have a first order phase transition at a finite value of N.At strong 
coupling, where one link operators probably are suppressed, this scenario is particularly 
plausible. 
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