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ABSTRACT 

We explore a method to compute invariant tori in phase space for classical 

non-integrable Hamiltonian systems. The procedure is to solve the Hamilton- 

Jacobi equation stated as a system of equations for Fourier coefficients of the 

generating function. The system is truncated to a finite number of Fourier modes 

and solved numerically by Newton’s method. The resulting canonical transfor- 

mation serves to reduce greatly the non-integrable part of the Hamiltonian. Suc- 

cessive transformations computed on progressively larger mode sets would lead 

to exact invariant tori, according to the argument of Kolmogorov, Arnol’d, and 

Moser (KAM). The procedure accelerates the original KAM algorithm since each 

truncated Hamilton-Jacobi equation is solved accurately, rather than in lowest 

order. In examples studied to date the convergence properties of the method are 

excellent. One can include enough modes at the first stage to get accurate results 

with only one canonical transformation. The method is effective even on the bor- 

ders of chaotic regions and on the separatrices of isolated broad resonances. We 

propose a criterion for the transition to chaos and verify its utility in an example 

with 1: degrees of freedom. We anticipate that the criterion will be useful as 

well in systems of higher dimension. 



1. INTRODUCTION 

Although studies of chaotic motion have dominated nonlinear mechanics in 

recent years, the study of regular motion and its stability is still an urgent matter 

in several fields of research. In particular, problems of a new order of difficulty 

have emerged in the design of very large particle accelerators and storage rings. 

In such machines, par-titles must be held on narrowly confined orbits over stu- 

pendous intervals of time. For instance, in the proposed SSC (Superconducting 

Supercollider) a proton would make 10’ revolutions in a ring of 100 km circum- 

ference and interact 1012 times with localized nonlinear magnetic fields. Large 

deviations from desired orbits due to isolated broad resonances may be a dom- 

inant mechanism of particle loss. In regions of phase space where single broad 

resonances do not dominate, transitions to chaotic behavior associated with over- 

lapping resonances may contribute to beam degradation. 

To study these questions, designers of accelerators rely on low-order pertur- 

bation theory, isolated resonance models, and above all ‘particle tracking’.lm3 

In practice tracking amounts to calculating orbits of single particles in external 

fields for a few initial conditions, by approximate integration of Hamilton’s equa- 

tions. (Because of the special nature of the problem, the integration methods are 

not always the usual ones for ordinary differential equations; one uses the ‘kick 

approximation’, symplectic mapping methods, etc.) Much effort is devoted to 

creating integration schemes valid over large time intervals, but inevitable limi- 

tations on accuracy and computation time restrict the usefulness of the method. 

Although steady improvements in technique and computational facilities can be 

expected, it seems that tracking is not a fully adequate approach for the largest 

storage rings considered. In such rings, it is difficult to follow orbits over time 

intervals sufficiently long to judge their stability. Furthermore, one can usually 

afford to try only a few initial conditions. 

Thus we are led to study a possible complementary approach, namely im- 

proved methods for direct computation of invariant surfaces in phase space. Such 
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methods would be particularly useful if they could deal with strong nonlinear 

perturbations which result in large distortions of invariant tori or large scale 

chaotic behavior. To an encouraging extent the methods to be described do al- 

low strong perturbations, and they should be useful in a variety of problems in 

particle beam mechanics, celestial mechanics, semiclassical quantum mechanics, 

and plasma theory. 

The use of perturbation theory for approximate calculation of invariant tori 

has a long history, associated with names such as Stokes, Delaunay, Lindstedt, 

Poincard, von Zeipel, Birkhoff, and Siegel. References 4-6 provide an introduction 

and bibliography. In recent years new variants of perturbation theory 7-13 and 

other methods based on infinite expansions l4 have been carried to high orders 

with the help of computer programs that do symbolic manipulation. Although 

convergence has not been proved, the results must be taken seriously because of 

good agreement with direct integration of Hamilton’s equations. On the other 

hand, the one scheme that is known to be convergent, the Kolmogorov-Arnol’d- 

Moser (KAM) superconvergent perturbation theory,495 has received scant atten- 

tion as a possible computational device. The point to be emphasized in com- 

parisons to the present work is that most current schemes, being based on series 

expansions of one type or another, increase rapidly in complexity as they are 

carried to higher order. 

Our concern in the present paper is to introduce iterative methods in which 

the algebraic complexity at the nth iteration does not increase with n. Our 

approach stems from a point of view that is elementary in functional analysis 

and modern numerical analysis; namely, to state the problem as a fixed point 

problem on an appropriate vector space, and then apply techniques suggested by 

the contraction mapping principle, the implicit function theorem, and Newton’s 

method. 15’16 Such methods are generally more tractable than series expansions, 

both in theoretical studies and in numerical realizations. 

Our fixed point problem is equivalent to the Hamilton-Jacobi equation for 
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the generating function G of that canonical transformation which makes the 

Hamiltonian a function of action variables alone. By separating the linear part 

of the equation and taking a Fourier transform, we are able to write it as 

g = A(g) , (14 

where g is a vector made up of the Fourier amplitudes of G regarded as a function 

of angle variables. If the equation (1.1) is truncated so as to include only a finite 

number of Fourier modes, then one may show both theoretically and numerically 

that it can be solved by simple iteration (starting with g = 0) under appropriate 

restrictions on the Hamiltonian and the region of phase space considered. For 

faster convergence in a wider domain, one can instead solve (1.1) by Newton’s 

method. Newton’s method provides a deeper view of the problem, since it entails 

an examination of the Jacobian matrix of g - A(g) and its singularities. In the 

present exposition we emphasize Newton’s method, but we observe that plain 

iteration also works very well in many cases of interest. 

We emphasize that computer programs to implement our method are short 

and simple, and the computation time required is modest. Unlike high-order 

perturbation theory there is no need for symbolic manipulation programs. Accu- 

racy can be enhanced merely by increasing the number of Fourier modes, at least 

up to a certain limit. In a region of parameter space far from the transition to 

chaos, our experiments are consistent with the hypothesis that one can include 

any number of modes, to achieve arbitrary accuracy. To expand the mode set, 

we use a solution achieved with one set of modes as the starting point for an 

iteration involving a larger set. By contrast, in a region very close to transition 

it is difficult to extend the mode set beyond a certain range. Beyond that range 

convergence suffers, and accuracy increases slowly if at all. Nevertheless, one can 

include enough modes to get impressive accuracy, as judged by comparison with 

numerical integration of Hamilton’s equations. 

Faced with a limitation on the size of the mode set, which might in principle 

apply in parameter regions far from transition as well as near, how can one 
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achieve arbitrary accuracy? The answer we propose is to embed our algorithm in 

a KAM iteration, which entails a sequence of canonical transformations chosen 

to make the non-integrable part of the Hamiltonian progressively smaller.5 

Each step of the KAM iteration invokes an approximate solution of the 

Hamilton-Jacobi equation, the approximation being taken to lowest order in the 

perturbation that survives at that step. Each step involves a finite number of 

Fourier modes of the generating function, the number being increased at the next 

step. Our proposal is to modify the KAM algorithm by replacing the lowest or- 

der solution of the Hamilton-Jacobi equation in a finite mode space by a precise 

Newton solution of that equation. The standard KAM method is retrieved by 

taking just the lowest order solution of (1.1) by plain iteration, namely g = A(O), 

for the generator of a KAM step. Since we get a vastly better solution of the 

Hamilton-Jacobi equation by solving the truncated (1.1) precisely, we can be sure 

that the modified KAM sequence will converge under the original conditions of 

the KAM proof, but better yet we can expect a great acceleration in the rate 

of convergence, most probably under weaker conditions. In order to test this 

idea in practice, we have carried out two KAM steps numerically for a simple 

nonintegrable Hamiltonian. Using an accurate solution of the Hamilton-Jacobi 

equation at the first step, and a lowest-order solution at the second, we find in 

general very small corrections to the results of the first step. 

A great practical advantage of the emerging scheme over ordinary perturba- 

tion theory or standard KAM theory is that we usually have to deal (modulo tiny 

corrections) with only one canonical transformation. Consequently, the invariant 

torus is given explicitly as a Fourier sum, and one avoids the usual awkward step 

of solving a chain of nonlinear equations for successive canonical transformations. 

It goes without saying that any approximation based on a finite mode set 

cannot reveal the full structure of phase space for a non-integrable system. In 

reality the invariant tori are defined only on a Cantor set in frequency space, while 

the finite mode approximations are locally smooth functions of frequency on open 
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sets. Smooth interpolations of the invariant tori (physical only on a Cantor set!) 

have been constructed by Pdschel17 and Chierchia and Gallavotti; l8 undoubtedly 

the finite mode model follows such interpolations to some approximation. 

An essential feature of the KAM iteration is the control of small divisors by 

varying actions in the course of iteration, so as to hold small divisors constant. In 

application of the Newton method to (1.1) th e issue of small divisors is altered, 

since zeros of the determinant of the Jacobian are crucial, rather than zeros of the 

traditional simple divisors w . m. Consequently, a somewhat different technique 

for controlling frequencies is called for. There are different possibilities which we 

outline. For the numerical calculations we choose a method which is probably 

not optimum regarding rate of convergence, but it works well enough for the 

present purposes. The choice of an optimum method is still under study. 

In Section 2 we recall the Hamilton-Jacobi formalism, and give two different 

statements of the Hamilton-Jacobi equation in terms of Fourier amplitudes of 

the generating function. In Section 3 we derive explicit formulae for Newton’s 

method applied to the truncated Hamilton-Jacobi equation. Section 3 includes 

a discussion of methods for iterative determination of the action parameter so 

that the final frequencies will have the desired non-resonant values. Section 4 is 

concerned with successive canonical transformations. 

In Section 5 we begin numerical considerations by reviewing some issues re- 

garding numerical Fourier transforms and other points of computer programming 

for the task at hand. Section 6 is concerned with testing the method in a sol- 

uble example, namely the 4th order isolated resonance model in 1: degrees of 

freedom, which is locally integrable. We find a large domain of convergence for 

Newton’s method in this example, and report the interesting discovery that the 

domain can be made still larger by artificially introducing an initial frequency 

shift in the Jacobian matrix. In Section 7 we give numerical results for a non- 

integrable example, the two-resonance model in 1) degrees of freedom. This is 

mathematically similar to the problem of a particle interacting with two waves. 19 
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We take the two resonance frequencies to be on either side of the golden mean 

and calculate the KAM surface with frequency at the golden mean as a function 

of perturbation strengths. We then explore convergence of the Newton iteration 

for a sequence of perturbation strengths leading up to the critical value at which 

the KAM surface breaks (‘transition to chaos’). We propose a criterion for the 

transition, intrinsic to the Hamilton-Jacobi method, and check it against numer- 

ical integration of Hamilton’s equations. Section 7 ends with consideration of a 

second canonical transformation. 

In Section 8 we show how Greene’s residue criterion fits into the Hamilton- 

Jacobi formalism. 20’21 Although the discussion digresses from our main theme, it 

may help to relate our viewpoint to current ideas. In Section 9 we comment on 

the outlook for further work and briefly review related studies by other authors. 

2. THE HAMILTON-JACOBI EQUATION 

We discuss a system with d degrees of freedom having a time-dependent 

Hamiltonian periodic in time (in colloquial nomenclature, a system of ‘d + l/2 

degrees of freedom’). In the angle-action variables of the unperturbed problem 

(a, J), the Hamiltonian is written as 

H(@, J, 0) = Ho(J) + V(Q, J, 0) , (24 

where bold-faced quantities are d-component vectors and 0 is the time. The 

perturbation V is periodic in 8 with period 27r, 

V(Q,J,O) = V(@,J,8+2w) . (2.2) 

In a circular accelerator, 8 would be the azimuthal position of a particle rather 

than the actual time. In accord with the definition of angle-action variables, V 

is also periodic in each component of @  with period 27r. It is trivial to specialize 

the following work to the case of a time-independent Hamiltonian. 
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We seek a canonical transformation (@, J) I+ (q, K) in the form 

J = K + G&@,K$) , P-3) 

* = @ + GK(@,K,e) , (2.4 

such that the Hamiltonian becomes a function of K alone. Subscripts denote 

partial differentiation. The Hamilton-Jacobi equation to determine G is the re- 

quirement that the new Hamiltonian HI indeed depend only on K; namely, 

Hu(K+G@)+V(@,K+G*,8)+Gg=HI(K) . P-5) 

By Hamilton’s equations in the new variables, K will be invariant, and $P will 

advance linearly with the time: 

K = constant , 

*=we+go , 

where 

PHI 
O= i3K 

(2.6) 

P-7) 

is the perturbed frequency. Once a G satisfying (2.5) is known, the invariant 

surfaces J = J(@,e) are given explicitly by (2.3), with K as a parameter. On the 

other hand, to find the orbit (J(0),@(8)) f or a given initial condition one must 

solve the nonlinear equation (2.4) for 

a! = aqll,K,8) . P-8) 

Then the orbit is obtained through (2.8), (2.6), and (2.3), with initial conditions 

determined by the constants (K, !l?o). A method to solve (2.4) is given at the 

end of this section. 
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By (2.3) and the physical meaning of angle-action variables it is clear that 

we want a G which is periodic with period 2x, in each component of a. Also, 

because the Hamiltonian is periodic in 8, the section of the invariant surface at 

0 = 80 must be identical to that for 8 = 80 + 2?rn. Therefore we look for a G that 

is periodic in B as well as in Q. (There are also solutions of the Hamilton-Jacobi 

equation that are not periodic in 8, which are useful for finding time evolution 

over a finite interval, but those do not concern us here.) In view of the periodicity 

a Fourier analysis of G is appropriate: 

G(fD, K, 0) = c gmn(K)ei(m’@-no) , (2-g) 
m,n 

where n and the components of m run over all integers. To state the Hamilton- 

Jacobi equation in terms of the coefficients gmn we first subtract and add terms 

to write it as follows: 

wdK) -G* + Ge = - [Ho(K + Gs) - Ho(K) -we(K) . Ga + V(@,K + G*,,q] 

+ [HI (K) - Ho(K)] . 
(2.10) 

The components of wo are the unperturbed frequencies, 

~HO 
W”=dK * (2.11) 

Let us now take the Fourier transform of (2.10) for m # 0. The final term on 

the right side, HI - Ho, is independent of angles and makes no contribution for 

nonzero m. Hence 

2r 2r 

i(w0 - m - n)gmn = - 
1 

/ J - - * @+I+1 
d@de e-ib+-4 x 

0 0 
(2.12) 

[Ho@ + Ga) -Ho(K) - wo*Ga++(@,K+G~,8)] , m#O 

where 

Ga = c imgmnei(m’@-ne) . (2.13) 
m,n 

Equations (2.12) and (2.13) form our object of study. They constitute a closed 
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system to determine gmn, m # 0, and hence Ga, with K as a parameter. Once 

Ga is known, HI is obtained by averaging (2.5) over angles, since Go has zero 

average: 
2r 2* 

dQd6’H(@,K + Ge,8) . 
0 0 

(2.14) 

Next we can take the Fourier transform of (2.5) for m = 0 but n # 0 to determine 

QOn: 

2r 2u 
. 
tngon = (2r;d+r / / 

. . . &i-&j pe H(O,K+Ga,O), n#O. (2.15) 
0 0 

The one remaining amplitude go0 may be put equal to zero, since any other value 

would merely shift %l? by a constant. By taking inverse Fourier transforms we 

see immediately that a solution of (2.12) and (2.13) leads to a solution of the 

Hamilton-Jacobi equation through application of (2.14), (2.15), and (2.9). The 

perturbed frequencies are given by (2.7) and (2.14) as 

2r 2* 

w = ($+l / J --- diDdO H&&K + G*,0) . (1 + GKO) . (2.16) 
0 0 

After dividing (2.12) by ;(w. m - n), we see that (2.12) and (2.13) together may 

be summarized succinctly as 

g = A(g) , (2.17) 

where g = [gmn] is a vector made up of the Fourier amplitudes of G, and 

2* 2r 

A 
i 1 

mn = (w. . m - n) (2r)d+l J / ‘. * 
da&j e-i(m?&n8) 

(2.18) 
0 0 

[H(@,K + Ge,B) - He(K) - wg .Ga] , m # 0. 

Solution of (2.17) by iteration is discussed in the following section. 
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To specialize the equations to the case of a conservative system we merely 

drop all reference to n and 8 : put n = 0 where it occurs algebraically, delete the 

8 integration and its associated factor (27r)-l, and ignore (2.15). 

The Fourier development of G with respect to B may be inappropriate if 

the Hamiltonian is not a smooth function of 8. An extreme example is the 

Hamiltonian of the ‘standard map’, 

H@,J,e) = ;J2 - ~“““sp(e) (2.19) 

where k is a constant and Sp is the periodic delta function with period 27r. In this 

case the Fourier series of H with respect to 8 does not converge, and the equations 

stated above would need special interpretation. Another important example is 

a model for accelerators in which the 8 dependence of magnetic fields producing 

nonlinear forces is conveniently and accurately represented as a sequence of square 

steps. The corresponding Hamiltonian has the form 

H(@, J, fl) = Y - J + U(@, J)f(e) , (2.20) 

where Y is constant and f(0) is zero except over short intervals, centered at 

nonlinear magnets, on which it is constant. The regions of nonzero f represent a 

very small fraction of the full domain [0,27r], so that f has almost a delta-function 

character. 

To handle such cases we can avoid Fourier developments in 8, while retaining 

that for the @  dependence, by using a closed expression for the Green function 

of the operator 
a 

zW-m+,, - (2.21) 

This operator appears in (2.10) after a Fourier transform with respect to @  alone: 

2r 2n 

J / 
.*. d&-im.0 x 

0 0 
(2.22) 

[H(@,K + Ga,e) - Ho(K) - wo - GD] , m # 0, 
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where 

Ga = c imgm(t9)dm-* . (2.23) 
m 

The Green function of (2.21) corresponding to periodic boundary conditions is 

iv, 0 = 

as is easily verified by 

function, 

, (2.24) 

direct computation. Here /J = m . we and h is the step 

h(z) = ; 
x>o 

. 
x<o 

(2.25) 

Application of this Green function in (2.22) gives an integral equation for gm(8): 

2s 

Sm(e) = 
i 

2 sin(7rwo . m) / 

de/ e-im~wo[O-O’+r8gn(O’-8)] x 

0 
2* 2r 

dae-irn.* [H(@,K + cb(ee’),e’) - 
0 0 

Here sgn is the signum function, 

sgn(x) = 1 1 x>o 
. 

-1 x<o 

- Ho(K) - wo - &@‘)I . 

(2.26) 

(2.27) 

For the Hamiltonian (2.20) the final factor of the integrand in square brackets 

reduces to 

ww + Gde’))f(e’) . (2.28) 

Consequently, the unknowns of (2.26) are the g,(e) restricted to the support of 

f(0). Once those restricted functions are known, their extensions to all 8 are 

determined automatically by the right hand side of (2.26). Over any interval on 

which f(e) is zero, gm(0) is equal to a constant times exp(-im . woe). 
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It is easy to check that a solution of (2.26) is necessarily continuous (if the 

Hamiltonian is piecewise continuous) and periodic in 8 with period 27r. Deriva- 

tives of a solution are not necessarily continuous; their smoothness will depend 

on that of the Hamiltonian. A delta function in the Hamiltonian, as in (2.20), 

will lead to a discontinuity in g,,,(8). 

Although the invariant tori given by (2.3) are usually the objects of interest, 

one sometimes requires the individual orbits. To compute the latter one must 

first obtain GK, say by a method given at the end of the next section, and then 

solve (2.4) for 0. One could solve for @  by Newton’s method, but there may also 

be interest in the following method which gives an explicit formula in terms of 

integrals that can be evaluated numerically. We expand GK in a Fourier series 

in \E, rather than @: 

GK(@,K,d) = ~lYm(K,B)eim’@ , 
m 

(2.29) 

where 
2r 2r 

-- rm(KYe) - (Zi)d / / 
. . . de GK(@,K,8) e-im’s . (2.30) 

0 0 

Since GK is periodic, (2.4) implies that when 4i changes by 27r, so does $i, while 

all other components +j are unaffected. Let us suppose that the Jacobian matrix 

alit/a@ = [a$i/a4j] is nonsingular, so that 4i in turn changes by 27r when T,L+ 

does so, while all other +j are constant. We can then change integration variables 

in (2.30) : 

41(0)+27r ~d(o)+2s 

rm = &)d 
- / . . . / da det(d%P/d@) GK csirn.* 

41(o) h(O) 
2r 2s 

d@ det(&P/d@) GK emirn’@  . 

0 0 

(2.31) 

The point of this step is that Q is available as an explicit periodic function of 
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@  through (2.4), and the integral (2.31) can then be evaluated without knowledge 

of the inverse function Q(I). Thus the desired explicit representation of @  is 

Q = Q + ~I’,(K,B)eim~~ , (2.32) 
m 

where 

iu 2* 

rm = (&d / / 
- - - d@ det (1 + G~K) c?-~~‘(@+~K) GK . 

0 0 

(2.33) 

3. ITERATIVE SOLUTION OF THE 
HAMILTON- JACOBI EQUATION 

We now write equations for iterative solution of (2.17). It should be borne 

in mind that the equations are intended to apply to a reduced version of (2.17) 

having only a finite number of Fourier modes, even though the truncation will 

not be acknowledged in the notation of this section. The details of the truncation 

are covered in Section 4. 

The operator has been defined so that (2.17) can be solved by simple iteration, 

g(n+l) = A(gbd) , g(o) = 0 , 

,(4 -9 9 n-00, 
(34 

provided that the Hamiltonian is suitably restricted, and wg a m - n # 0 on the 

set of modes (m, n) included. This follows easily from the contraction mapping 

principle, as is shown in Appendix A. The proof requires weak nonlinearity, a 

condition which is specified precisely in terms of V, VK, and H:. Of course, the 

bounds on Hamiltonian parameters depend on the values of the divisor we .rn - n, 

and thus on K. As is usual in such matters, we find that the restrictions on H of 

the existence proof are excessively pessimistic. Numerically we find convergence 

under much weaker conditions. 
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To see clearly the structure of A(g), let us subtract and add V(0, K, 0) in 

the integrand of (2.18) so as to obtain 

2s 2r 

Am,(g) = &A + i 
1 

/ / * * ’ wo - m - n (2r)d+l 
dgide e-ib@-ne) x 

0 0 

iHo@ + @d - Ho(K) - we(K) - Ga + V(@,K + c&j, e) - V(qK, e)] 

where g(l) is the familiar result for g in lowest order perturbation theory, 

2r 2r 

gg), = i 1 
* * * w0 - m - n (27r)d+1 / J 

dadi3 t~-~(~‘~-‘%(@, K, 0) . 
0 0 

(i.2) 

(3.3) 

Equivalently, g (l) = A(0) is the first iterate of the sequence defined in (3.1). By 

Taylor’s theorem the bracketed expression of (3.2) is of order V2, since G itself is 

of order V, according to lowest order perturbation theory. This quadratic depen- 

dence on a quantity which can be made small is responsible for the contractive 

property of A. 

Defining 

F(g)mta = i(Wo * m - n)(g - A(g)),, , 

we also consider the Newton iteration 

F,(g(P)) (g(p+‘) - ,(P)) + F(g’P’) = 0 , g(O) = 0 , 

where F, is the Jacobian matrix (Frdchet derivative) of F: 

(Fg)mn,mfnt = p - 
m’n’ 

(3.4 

P-5) 

(3.6) 

At each iteration one solves the linear system (3.5) for 6g = g(P+l) - g(P); then 

g(P+l) is computed as g(P+l) = 6g + g(P). 
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In the Newton method the first iterate g(l) already involves terms of all 

orders in V, in contrast to the first iterate (3.3) of plain iteration. Of course 

one is not compelled to begin either iteration, (3.1) or (3.5), with g(O) = 0 as we 

have indicated, but the choice usually proves to be quite adequate in practice. 

However, in Section 7 we encounter cases in which a different choice of g(O) is 

required. 

The amplitudes gmn are not all independent, due to the requirement that G 

be real. In fact, 

Smn = SLm,-, . (3.7) 

To keep track of independent amplitudes one could use sine and cosine series 

with real amplitudes, but the bookkeeping proves to be easier if one retains 

exponential series while removing redundant complex amplitudes. For instance, 

with li degrees of freedom (2.13) can be rewritten with the help of (3.7) as 

G$ = 2Re c c imgmn t-~?(“#-~‘) . (3.8) 
n=-co m=l 

Since the operator A(g) depends on g only through Gd, (2.17) can be considered 

as a system to determine just the amplitudes that appear in (3.8), namely, 

Smn 9 m>l, -oo<n<oo . w 

To give an explicit expression for the Jacobian F,, let us specialize to 1; 

degrees of freedom for notational convenience, and make use of (3.8). By formal 

differentiation, Fg applied to an arbitrary vector h is seen to be as follows: 

2A 2r 

El (SPI mn =i(mwo(K) - n)hmn + 1 
(W2 / J 

d+ de e-i(m4-ne) x 

0 0 

[HK(+, K + G,+, 0) - we(K)] x 2Re c c im’h,,,,, dm’~-n’e) . 
n’ m’>l 

(3.10) 
Because of the ‘real part’ instruction in the final factor, this is not a linear function 
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of the complex variable hml,l, although it is linear in the real and imaginary parts 

of h,t,l separately. Thus to solve (3.5) as a set of linear equations one must regard 

it as a real system to be solved for the real vectors 

Re(g(P+l) - g(P)) 

Im(g(p+l) - g(P)) 1 * 
(3.11) 

Assembling the real and imaginary parts of (3.5) to make such a system, and 

reversing the order of integration and summation in (3.10), we find that (3.5) 

has the form 

(3.12) 

where Xmn = m(gmn (p+l) _ gc& and the sums on matrix indices are understood to 

include only the modes indicated in (3.9). The matrix elements are given by 

A(mnIm’n’) = (~0 - n/m)&m:&nt , 

lrr(mnlm’n’) = Re[L( m-m’,n-n’)-L(m+m’,n+n’)] , 

&(mnlm’n’) = -Im[L( m - m’,n - n’) + L(m + m’,n + n’)] , 

Li,(mnlm’n’) = Im[L( m-m’,n-n’)-L(m+m’,n+n’)] , 

Cii(mnlm’n’) = Re[L( m - m’, n - n’) + L(m + m’, n + n’)] , 

(3.13) 

where 

2A 2r 

/ J 
d4 de e.-i(p+xe)[HK(~, K + G4, 0) - we(K)] . (3.14) 

0 0 

Thus a Newton iteration requires only one more Fourier transform than a plain 

iteration, namely (3.14) which determines the coefficient matrix of the linear 
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equations (3.12). Furthermore, there is the computational advantage that the 

coefficient matrix is symmetric; symmetry follows from the property 

Jqp, A) = q-p, -A)’ . (3.15) 

A notable feature of the Newton iteration is that individual small divisors 

wo - n/m -do not occur. This is in sharp contrast to perturbation theory (in- 

cluding KAM theory) and the simple iteration (3.1). It does not mean that the 

famous small-divisor problem has gone away completely, however, since the Jaco- 

bian FB(g) might have singular points as a function of K. The latter correspond 

to zeros of the determinant D of system (3.12), 

D(g;K) =det(A+L) , 

(3.16) 

The determinant D(g(P); K) appears as a divisor in iterate g(P+l). 

With any finite number of modes it should be possible to choose K so as 

to avoid zeros of D, but in principle it might happen that K would have to be 

changed at each iteration. In the examples we have treated numerically it was 

easy to choose a fixed K so that no zero of D was encountered in the course 

of iteration. We had only to pick K so that the unperturbed frequency we(K) 

was not too close to any n/m on the moderately large set of (m, n) permitted. 

Moreover, it is easy to prove that for sufficiently weak nonlinearity such a choice 

always leads to a non-vanishing D (see Appendix A). 

If a solution of (2.17) is reached without encountering a zero of D, then the 

frequencies of the corresponding quasi-periodic motion on a torus are given by 

(2.16). Although w is typically close to we(K), one does not know the exact value 

of w until the calculation is finished. For some purposes it would be better to 
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know the final value of w at the outset. In particular, we should like to fix w at 

an appropriate ‘non-resonant’ value when we study the breakup of invariant tori 

as perturbation strengths are increased. The condition that w be non-resonant, 

which must be satisfied on a KAM surface, is 

1 
w-m-n (3.17) 

for all m, n with m # 0, for some fixed /3 and 7. According to (2.16), w is a 

function of g, gK, and K. By arranging an iteration in which all three of these 

arguments vary, we devise a method such that the final frequency is specified at 

the start. 

We continue in 13 degrees of freedom and restrict the unperturbed Hamilto- 

nian to be quadratic in J: 

Ho(J) = uJ + aJ2/2 , a # 0 . (3.18) 

The generalization to an arbitrary HO in d + l/2 degrees of freedom is only a 

matter of elaborating notation. By analogy to a! # 0, in the generalization one 

must impose the KAM condition 

det (3.19) 

in the region of phase space considered. This is a condition for the frequency 

map (K I+ we(K)) to b e invertible; it must be possible to set the unperturbed 

frequencies by setting the actions. 

Let us define KO so that wo(Ko) = w, where w is the desired final frequency: 

w=wo(Ko)=v+aKo. (3.20) 

Since frequency shifts are typically small, it is reasonable to begin an iteration 

with K = Ko. Using (3.18) and (3.20) one can rewrite (2.16), the expression for 
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(3.21) 

To verify (3.21), observe that Gg and G&K have zero average over (4,e). Since 

V~(q5, K, 0) also has zero average, it is easy to check that a(K - KC,) is second 

order in the perturbation strength. That makes it reasonable to incorporate Eq. 

(3.21) into an iterative scheme. 

In addition to the vector equation (2.12) for g and K, and the scalar equation 

(3.21) for g, gK, and K, we invoke the derivative of (2.12) with respect to K, in 

order to close the system with a vector equation for g, gK, and K. The resulting 

set of equations is the following: 

F lmn = 

F 2mn = 

F3 = 

i[mwo(K) - n]gmn + - (2$ 
0 0 

IaG~/2+V(AK+G~,8)] =0 , mfo, (3.22) 

2r 2r 

iImwo(K) - n]gK,mn + - (2i)Z 
0 0 

[a$ + h&4 K + $,e) Ill + G& = 0 9 m # 0 , (3.23) 

2r 2r 

a(K - Ko) + c2;12 
/ / 

d4 de 

0 0 

[‘YG~ + h&W + G&))][l+ Gr+m] = 0 . (3.24) 

Under suitable conditions these equations may be solved by simple iteration. Suf- 

ficient conditions for convergence, a bit stronger than those for (2.12) alone, will 

be presented in a later publication. A solution by Newton iteration is also feasi- 

ble. Although we expect that such an iteration will afford the best convergence, 

in the present work we use a method that is somewhat easier to program. 
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The method may be described as a hybrid of Newton and plain iteration. 

Starting with K = Ko, we solve (3.25) for g by Newton iteration. We substitute 

g in (3.26), which then becomes a linear equation for gK. The coefficient matrix 

of this equation is Fig, the Jacobian already computed in the Newton iteration. 

After solving (3.27)for gK, we substitute g, gK, and K into the right-hand side 

of (3.21), and call the result a new value for K. We next use gK to extrapolate 

g to the new value of K: 

s+gK(K-Ko). (3.28) 

To repeat the cycle we return for another Newton iteration of (3.29) at the new 

K, with (3.28) as the zeroth iterate. In practice, we find that (3.30) does not 

have to be solved very accurately before extrapolation to the next K. In fact, 

we usually do only one or two Newton steps with (3.31) before finding a new gK 

and extrapolating. 

4. SUCCESSIVE CANONICAL TRANSFORMS AND 
EXPANSION OF MODE SET IN A K.A.M. FRAMEWORK 

The iterative methods of the previous section apply to the Hamilton- Jacobi 

equation restricted to a finite set B of Fourier modes. For any B, the iterations 

are guaranteed to converge for sufficiently weak nonlinearities, the latter being 

defined in Appendix A. Unfortunately, the conditions of Appendix A require 

that the strength of nonlinearities decrease at a rapid rate as the mode set B is 

expanded. Although the conditions in question are crude sufficient conditions for 

convergence, undoubtedly far from being necessary, the situation motivates one 

to seek a scheme in which an indefinite expansion of B with a fixed Hamiltonian 

could be justified theoretically. 

On the other hand, in our numerical experiments with Newton’s method we 

do not encounter a limitation on the mode set, as long as we begin an iteration 

with a solution obtained on a smaller set and stay away from the difficult pa- 

rameter region close to the break-up of the KAM curve. Rigorous analysis of a 
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procedure to expand B seems to be a hard problem, however, which we have not 

yet seriously studied. 

Lacking a precise knowledge of how the Newton method behaves under ex- 

pansion of the mode set, we propose to expand the mode set within a KAM 

framework. Successive canonical transformations give smaller and smaller resid- 

ual perturbations, which can be handled by successive truncated Hamilton- Ja- 

cobi equations on larger and larger mode sets. 

If G is the generating function obtained from the first truncated Hamilton- 

Jacobi equation, then the original Hamiltonian H is transformed by G into 

Hl(*,K,e) = H(@,K + Ga,B) + Go. (4.1) 

Because of the truncation, HI is not purely a function of K as in the ideal 

situation of Eq. (2.5). Th e new perturbation VI is HI minus its average: 

Hl(*,K,e) = Hlo(K) + Vl(VW’), 

2r 2r 

HdK) = (Z,;d+l d31tdBHl(9,K,8). 

0 0 

(4.2) 

P-3) 

A new truncated Hamilton-Jacobi equation, based on (4.2) and a bigger mode 

set, is used to construct a new generating function Gi(@,K,O), and so on. To 

define notation, we write the second canonical transformation and Hamilton- 

Jacobi equation as 
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K=&+Gla, (4.4 

*I = * + GIK~ , (4.5) 

Hl(*tKl + G la,e) + G le = Hz(Kl) . (4.6) 

To express HI as a function of 9 and K, rather then 4 and K, we use the 

Fourier method described at the end of Section 2. With 

H@,K,6’) = c Hrmn(K)ei(m~~-ne) 
m,n 

(4.7) 

we have 

2* 2r 
Hl mncK) = (2n;d+l J / 

. . . dQdedet(1 + G#K)fZ- im~(tbkGK)+id 

0 0 (4.8) 
x [H(*, K + Ga, 0) + Gel . 

In order to define and solve the new Hamilton-Jacobi equation (4.6), the K 

dependence of HI will be needed, but generally in a much smaller region than 

was required for the J dependence of H. Numerically, one might solve the old 

equation for a few values of K, and then use a finite-element basis, such as a 

spline basis, to interpolate those values. The values of K should be centered at 

that K = K, which gives the desired frequency w by one of the algorithms of the 

previous section. Comparing (2.16) and (4.3) we see that the frequency function 

used in those algorithms is actually aHio(K)/aK = wie(K); (In Section 3 we 

pretended that this was the true expression for the frequency, but because of the 
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truncation it was only an approximation!). Just as we started the first Hamilton- 

Jacobi iteration with K such that w(K) = w, it is appropriate to start the second 

one at a new action Ki such that wrc(Kr) = w, which is to say at Ki = K,. If 

the second equation (4.6) is solved only in lowest order perturbation theory, as 

in our calculation reported in Section 7, then the only value of Kr needed is K,. 

5.- NUMERICALALGORITHMS 
AND~ELE~TI~N~FM~DES 

Successful application of the methods of Sections 3 and 4 requires attention 

to a few issues of numerical analysis and programming, which we now review. 

The first requirement for numerical modeling of (2.17) is an integration rule for 

the 0,8 integrations of (2.18). We discretize integrals so as to make the Fast 

Fourier Transform (FFT) applicable. For a function f(4) of period 27r we take 

1 J-l 
N- - 

J 
C e-wQ/J)f(2*j/J) s f”(m) . 
j=O 

(5.1) 

This apparently naive integration rule, based on equally spaced mesh points 

with equal weights, is suited to functions f which are well-approximated by 

trigonometric polynomials.22 In fact, f(m) = f”(m) ezactly for Irnj < J - p if 

f(d) is a trigonometric polynomial of degree p; i.e., if 

f(4) = 2 j(n)ein4. 
n=-p 

(5-2) 

This statement will be recognized as an elaboration of Nyquist’s criterion. To 

prove this we introduce (5.2) in the right-hand side of (5.1) and find 
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K(m, n) = f ‘2 ei(n-m)(2rj/J) 
j=O 

(5.4 

Evaluation of the geometric sum (5.4) shows that K(m, m) = 1, and K(m, n) = 0 

for m # n provided that (n - m) / J is not an integer. But the latter ratio will 

never be a non-zero integer if Irnl < J-p, since InI 5 p. For an arbitrary f(d) one 

can appraise accuracy experimentally by checking validity of the approximation 

f(4) = C f”(m)eim4, 
maC 

(5.5) 

where C is some appropriate subset of the values m less in magnitude than J; 

for instance, all m with Irnl 2 [J/2]. 

Our finite dimensional model of (2.17) is obtained by approximating the a, 8 

integrals as in (5.1), and by truncating the Fourier series for Ga. In l-1/2 degrees 

of freedom 

Gq = 2Re c imgmnei(m~-ne), 
(m&B 

(54 

where B is some finite set with m 2 1. Having chosen B such that its elements 

satisfy m 5 M- 1, how should one choose the number of points in the discretiza- 

tion of integrals? Let !P(4,0) d enote the bracketed expression in the integrand of 

(2.18). The assumption that (2.17) can be modeled on the set B is equivalent to 

saying that \E (evaluated near a solution of the truncated equation) is dominated 

by modes within B. Thus 9 is a trigonometric polynomial of order M - 1 in 
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4 and order N - 1 in 8, plus a remainder, assumed to be small, which contains 

in general modes of arbitrarily high order. If we take 2M and 2N mesh points 

for the 4 and 8 integrals respectively, then the Fourier transform of the afore- 

mentioned trigonometric polynomial will be represented exactly for [ml 5 M, 

InI 5 N, thus for all modes in B and more. It therefore seems reasonable to start 

with 2M, 2N mesh points. We do so, and then assess the amount of change as 

additional mesh points are included. In our calculations to date, the inclusion 

of additional mesh points has been necessary in a few cases, but we have never 

required more than 4M, 4N. 

In connection with Newton’s method, there is a point concerning discretiza- 

tion that we wish to emphasize. One should first specify a discretization of the 

nonlinear system, and stay with that same discretization when the Jacobian is 

computed for the Newton linearization. One might be tempted instead to derive 

the exact Jacobian Fs, as in (3.10), and then discretize it independently, say with 

a set of mesh points different from that used for F itself. To understand that 

temptation, note that if the integral L(p, A) of (3.14) is approximated as a sum by 

an FFT with 2M and 2N points for r$ and 8, respectively, then only the output 

of the FFT for 1~1 5 N - 1, 1x1 5 N - 1 approximates the integral, according to 

the view developed above. On the other hand, evaluation of the Jacobian matrix 

(3.13) requires 

OLPL~(M-~) , -2(N-l)<X<2(N-1). (5.7) 

To approximate L(/.L, A) on the full intervals (5.7) would require about twice as 

many mesh points. In fact, it would be an error to use twice as many points for 

L as for F! If we take 2M, 2N points for $,0 in both L and F, and accept the 

full range (5.7) of ~1 and X as provided by the FFT for L, then we in fact get 

the exact Jacobian of the discretized nonlinear system, even though many of the 

FFT values for L are not good approximations of the integral (3.10). We are 

aware of other studies in which inconsistent discretizations of a function and its 

Jacobian led to poor convergence of the Newton iteration. 
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In some cases the equations (3.12) are nearly singular and must be approached 

with care. That is the case near the transition to chaos, as discussed in Section 

7. We have solved the equations without difficulty using the program LEQ2S of 

the IMSL program library,23 but have had some trouble with less sophisticated 

routines. LEQ2S uses Bunch’s method,24 which is efficient for real symmetric 

indefinite matrices. It improves the solution by iteration, if necessary, returning 

an error message if iteration fails to produce a solution to the working precision. 

The error message was never received in the examples of Section 7, even though 

the matrices had normalized determinants as small as 10-28. Also, there was 

little change in results in passing from single to double precision. 

For Newton iteration the selection of the mode set B is a crucial matter. 

For solution of (2.17) by plain iteration it is not a bad choice to let B consist of 

all modes up to limits, say 1 < m 2 M - 1, InI 5 N - 1. Let us call this set 

Bo. It is a poor choice for Newton’s iteration, because on the one hand most of 

the modes in Bo have negligible amplitudes, while on the other hand the corre- 

sponding Jacobian matrix is typically very large and sparse. A bit of numerical 

experimentation shows that a mode is negligible if it is not both fairly close to 

resonance (worn - n small) and driven by the perturbation, either directly or 

through harmonics. For this reason it is appropriate to “let the equation decide” 

which modes are important. We employ a simple auto-adaptive algorithm as 

follows. We take at least 2M, 2N mesh points for 4,8 integrations throughout 

the Newton sequence, so that we are able to evaluate A(g),, of (2.18) for all 

(m, n) E Bo. After computing a Newton iterate g(P) we evaluate ImA(g(P))mn/KI 

for all (m,n) E Bo, and identify as “appreciable” those modes for which this 

quantity exceeds in magnitude some preassigned a. For the next iteration, B 

consists of just the appreciable modes, in the sense that in (3.5) all vector in- 

dices are restricted to those modes. After the gkz’l are obtained from (3.5) for 

(m,n) E B they are summed to form a new Ga, and hence A(g(p+‘)). After a 

few iterations, typically 3 or 4 in the examples we have treated, B converges to a 

definite set (perhaps with a slight ambiguity concerning the highest mode num- 
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bers). Further iterations with fixed B serve to refine the solution. After a little 

experience one can choose the lower bound a reasonably, taking into account 

limitations due to the choice of M, N and rounding error. To give an example of 

the smallness of B compared to Bo, we mention runs described in Section 7 with 

M = 128, N = 64. In this case Bo had 16129 elements, while B typically had 

fewer than 120. Consequently, the computation time for solution of (3.12) was 

not great; much more time was required for the inevitable Fourier transforms. 

6. TESTING THE METHOD IN A SOLUBLE EXAMPLE 

For a first view of the convergence properties of our method we examine a 

simple case in which the exact answer is available in analytic form; namely, the 

4th-order single-resonance model in If degrees of freedom. The Hamiltonian is 

H(+,K,d) = vJ + ;aJ2 + cJ2 cos(4qS - 0) , (64 

where V, (Y, and IZ are constants. In this example the Hamilton-Jacobi equation 

(2.5) can be solved by an Ansatz to the effect that G(gS,K,O) depends on 4, f3 

only in the combination 44 - 8. Then Go = -$Gd, and the Hamilton- Jacobi 

equation is 

(-;)(K+G~)++(K+G+)2+r(X+G4)2cos(4qM) = Hi(K)-;K . (6.2) 

Hence 

(+)“+4E(f+ecos4$)] 
112 

J=K+G+= 
2 (; + ccos4?@ 9 (6.3) 

where 

E = HI(K) - :K = constant , 
(64 

+44-e . 

Equation (6.3) gives the family of invariant surfaces J(c$, 8; E) parametrized by E, 

whereas our method based on solving (2.17) will give J(+, 0) parametrized instead 
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by K. The relation between the two parameters is obtained by integrating (6.3) 

with respect to 4, noting that the integral of G4 is zero by periodicity. Then 

2r 

(6.5) 

provided that the integral exists. 

We wish to explore completely the dependence of J on parameters Y, o, E, 

and E, and see to what extent the iterative solution of (2.17) can reproduce the 

exact J in various regions of parameter space. Let us first introduce parameters 

more convenient for the purpose, as follows: 

J= 
f - u I 1 1 f [1+ $a + cos4?#/2 

2E a+cos4$ , 

4Ec 
7= (+/)” * 

(6.6) 

(6.8) 

Clearly the parameter I( a - v)/2c/ just determines the scale of J; we shall hence- 

forth take it to be 1. To allow for both signs of (a - ~)/2c, notice that a change in 

sign of E is equivalent to rotating the figure by z/4: J($) + 5($-m/4). We shall 

therefore take (a - v)/~E to be +l, since that choice gives us all curves, modulo 

rotation and scale change. The special case v = l/4 will be treated separately. 

In Appendix B we show how the various types of curves evolve as parameters 

vary. Here we review the results in a series of graphs. We plot the points 

(z, y) = ( J1i2 cos $, J1i2 sin $J); this yields a surface of section at 0 = 0 in the 4 

coordinate. In each figure we show separatrices (if any), and a few other typical 

curves corresponding to various values of 7. Figure 1 is for the case a = 0 in which 

the nonlinear term of HO is absent. In this case there is unbounded motion on 
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invariant curves which extend to infinity, a feature which persists for 0 5 Ial < 1. 

As a varies from 0 to +l, the inner separatrix evolves into a square, and the outer 

separatrices into straight lines continuing the sides of the square. As a varies from 

0 to -1, the four segments of the inner separatrix become more concave inward, 

while the corners (hyperbolic fixed points) move out to infinity. Figure 2 shows 

the situation at a = -0.9. As a increases through +l, the separatrices ‘connect 

at infinity’ and then move in to enclose islands as shown in Figures 3 and 4 for 

a = 1.05 and a = 20, respectively. Unbounded curves that were symmetrical 

about y = fz turn into islands, while those symmetrical about the x and y 

axes turn into bounded curves with 90’ rotational invariance. Indeed, within 

a certain distance of the origin Figs. 1 and 3 are similar in appearance. As a 

decreases through -1, the separatrices move to infinity, leaving only curves with 

90’ rotational invariance, as shown in Fig. 5 for a = -1.01. As a -+ -00, the 

curves become concentric circles. For the degenerate case Y = l/4 see Appendix 

B. 

In Figures 6, 7 and 9 we show results obtained by Newton’s method applied 

to (2.17), beginning iteration with g = 0. Each graph is a separatrix obtained 

by numerical solution of (2.17) using the value of K given by the formulas of 

Appendix B, (B9) and (BlO). We present results for separatrices only, since in 

this example they are the most difficult cases to compute. For a fixed mode set, 

convergence and accuracy are much better on curves far from separatrices. 

We use the method of mode selection described in the previous section, 

which leads as expected to a set B including only harmonics of the perturba- 

tion: (m,n) = X(4, l), X = 1, 2, ... , 31. The set Bo from which this set was 

selected consists of all (m, n) such that 1 5 m 5 127, In\ 5 31. The numbers of 

integration points for 4,0 integrals were 512, 128 respectively. Calculations on 

the VAX 8600 were done first in single precision then repeated in double precision 

(roughly 7 then 16 decimal digits accuracy). 
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We measure convergence by the normalized residual 

r = lb - AMI 
llsll ’ 

where double bars indicate the Hermitian norm 

(6.9) 

(6.10) 

We monitor the condition number of the Jacobian matrix A + L by computing 

the normalized determinant DN. 25 This is defined as the determinant D divided 

by the product of the Euclidean row lengths of the matrix. We find DN to be a 

useful although crude ‘condition number’ of the Jacobian. A DN becoming much 

smaller than 1 in the course of iteration is a possible warning of an impending 

singular Jacobian. 

In Figures 6 and 7 we show the cases a = 0.98 and a = -0.9, respectively; 

the latter is to be compared with Figure 2. In both cases the residual r was 

about 10V7 (in single precision after 7 iterations) or lo-l6 (in double precision 

after 9 iterations). Away from the separatrix similar residuals are found after 3 

or 4 iterations. Graphs indistinguishable from Figures 6 and 7 can be made in 

5 iterations in single precision, and with about half as many integration points 

in each variable. Figure 9 shows the case of a = 20, to be compared to Fig. 4, 

which has inner and outer separatrices corresponding to two different values of 

K; compare (B9). This is an easier case requiring fewer modes and about half as 

many iterations. 

Except near the vertices of the separatrices, where there is a little rounding 

due to truncation of the Fourier series, the agreement with the exact values is 

good. For instance at a = 20 on the outer separatrix there is agreement to 8 

significant figures at 4 = z/4, 5 figures at 4 = z/8, and 2 figures at 4 = 0. 

Curves away from separatrices, having continuous derivatives, are more accurate 

globally. 
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A difficult case is a = 1.05 on the outer separatrix (not the inner). Here 

Newton’s method fails to converge if g = 0 is the starting point. In fact for 

1 < a 5 1.2, sequences beginning at g = 0 do not converge. One can try stepwise 

continuation from larger a, but we have found an easier method which provides 

convergence from g = 0. The procedure is to perturb the diagonal of the Jacobian 

matrix A + L by a small positive constant 6 which is gradually decreased as the 

iteration proceeds. The initial 6 is somewhat smaller than we(K) - l/4. For 

a = 1.05 we start with 6 = 0.015, whereas we(K) - l/4 = 0.052. Keeping 6 at 

this value for the first three iterations, and then decreasing it gradually to zero, 

we produce in 9 iterations the curve of Fig. 8, to be compared to Fig. 3. In 

single precision the residual r is 1.7 x 10W6. 

Curves such as those of Fig. 9, which may be regarded as typical in many 

applications, can be produced by simple iteration of (2.17), in very small com- 

putation time. The more difficult cases require Newton’s method. 

The relative difficulty of computing separatrices seems not to be associated 

with a very ill-conditioned Jacobian. For instance, DN is of order 10s3 in the 

calculation of Fig. 9. In comparison to values encountered near the transition to 

chaos this is not small; see Section 7. 
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Figures l-5: 4th order single-resonance model. Typical sections of invariant 
surfaces at 8 = 0. (ficos4, fisin$) is plotted from the formula (6.6). 
The parameter a of (6.7) has the values a = 0, -0.9, 1.05, 20, -1.01 for 
Figures l-5 respectively. 

Figures 69: 4th order single-resonance model. Separatrices at 8 = 0, 
obtained by solving the Hamilton-Jacobi system (2.17) by 
Newton’s method. The parameter a of (6.6) has the values 
a = 0.98, -0.9, 1.05, 20 for Figures 69, respectively. For a = 1.05 the 
Newton method was’modified as explained in Section 6. 
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7. TWO NEIGHBORING RESONANCES AND CHAOTIC 
BEHAVIOR; A NON-INTEGRABLE EXAMPLE 

We now pass from the trivial case of the preceding section to a non-integrable 

case in which chaotic motion can arise; namely, a two resonance model in 1 l/2 

degrees of freedom. The Hamiltonian is 

ti = uJ -+- ;aJ2 + cl J512 cos(54 - 38) + c2 J2 cos(84 - 58) . (7.1) 

At small 61, ~2 we find a KAM curve at a perturbed frequency near 

w _ 5’12 - 1 
t- 2 

= (golden mean) - 1 = 0.6180339.. . (74 

and try to investigate its breakup as the E’S are increased. The frequency w, lies 

between the two resonances, 3/5=.6 and 5/8=.625. For convenience we choose 

u = 0.5, Q! = 0.1, so that the corresponding K is near 1. The unperturbed 

resonances are said to be at J = Jr, where Y + aJr = n/m = 3/S, 5/8; thus . 
Jr1 = 1, Jr2 = 1.25. 

We use the Newton method to solve (2.17) for the KAM curves, incorporating 

variations of K during iteration so as to hold the frequency close to the desired 

value w*. The method described at the end of Section 3 was used to vary K, 

with a change of K at every iteration. 

The half widths of the resonance islands are estimated by 

C Jrn12 [ 1 112 
AJ=2 r o! (7.3) 

for the term cJmi2 cos(m+ - d) . W e s h ow results for a sequence of cases with 

c’s and A J’s as follows: 

i) cl = 2~~ = 6 x 1O-5 

AJ1 = 0.049 AJ2 = 0.054 
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ii) ~1 = 2~2 = 8 x 1O-5 

AJ1 = 0.057 A J2 = 0.062 

iii) El = 2Ez = 10-4 

A J1 = 0.063 AJ2 = 0.070 

iv) El = 2Ez = 1.2 x 10-4 

A 51 = 0.069 AJ, = 0.076 

v) ~1 = 2~2 = 1.25 x 1O-4 

AJ1 = 0.070 AJ, = 0.078 

By the resonance overlap criterion26 and the magnitudes of the AJ’s, one 

can expect these cases to be stochastic or nearly so, for some regions of J in the 

interval [ Jrl, Jr2], since Jr2 - Jr1 = 0.25 is comparable to A 51 + A J2. 

We immediately face the question of how to recognize the arrival of stochas- 

ticity in the Hamilton-Jacobi formalism. One possibility is that the canonical 

transform equation (2.4) d evelops a singularity so that one can no longer solve 

for 4 = ~J($J, K e), even if G exists and is known. That can happen if the Jacobian 

of (2.4), 

develops a zero for some (4,fI). Another possibility is that the Jacobian A + L 

of the Hamilton-Jacobi system (2.17) b ecomes singular. We try to monitor the 

calculation for both of these possibilities, by plotting a$/&$ and by computing 

the normalized determinant DN of the Jacobian as defined in Section 6. Here 

we actually plot a$/a+ at 8 = 0. Since the function’s minimum with respect 

to 4 does not vary much with 8, this gives a good indication of the presence or 

absence of zeros. 

To appreciate the meaning of a$/@ it is worthwhile to note that 

a+la# = aJ/aK , (7.5) 

where $J and J are both regarded as functions of 4, K, and 8. Thus the heuristic 
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picture of a+/ad = 0 is that two curves that differ infinitesimally in their K 

values make contact. 

In Figures 10 to 13 we show J(4,0) plotted against 4/27r at 0 = 0, for cases 

(i) to (iv). Figures 14 to 17 show the corresponding graphs of a$/a4. The 

buildup of high modes is quicker and more pronounced in a$/ab than in J. The 

anticipated zeros of aq/&j seem on the verge of appearance in case (iv), Fig. 17. 

We find, however, that as the E’S are increased the behavior of a$/a+ becomes 

increasingly sensitive to the number of modes included in the truncated Hamilton- 

Jacobi equation. We must therefore treat the question of mode selection before 

trying to estimate the critical E’S for appearance of zeros. 

The computations for Figures 10 to 17 were based on mode sets selected by 

the method of Section 5, with the parameter a taken to be lo-lo. Recall that a is 

a lower bound for allowed values of ImA(g),,/KI; typically the maximum value 

of the latter is around 5 x 10s3 in these examples. In each case the calculation 

was done first with 8 Newton iterations on a relatively small mode set B selected 

from an initial set Bo consisting of all ( m,n) with 1 5 m 5 63, 1721 5 31. The 

starting point of the Newton sequence was g = 0. The result of this iteration was 

then taken as the starting point for 8 additional Newton iterations on a larger 

set B selected from a Bo made up of all (m,n) with 1 5 m 5 127, In/ 5 63. For 

the 4 and 0 integrations there were 256 and 128 mesh points, respectively, for the 

first 8 iterations, and 512 and 256 for the second. The calculations were done in 

double precision, but single precision usually produces graphs that are visually 

indistinguishable from those shown. Double precision is required to compute 

the residual perturbation after one canonical transformation and to rule out the 

possibility of severe rounding error. The results were not materially affected by 

varying a over the range 10m8 to lo- 12, but at the smaller values the mode set 

is needlessly large. In single precision a must not be smaller than 10e8, to avoid 

inclusion of modes at the level of round-off noise. 

In Tables 1 and 2 we give data on the computations for cases (i) and (iv), 
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respectively; cases (ii) and (iii) have intermediate behavior. For each iterate g(P) 

we tabulate the number 7Zg of modes in B, the normalized residual r defined in 

(6.9), the normalized determinant DN of the Jacobian matrix defined following 

(6.10), and AU/W, which is the fractional deviation of the frequency from the 

desired value w*. The frequency was computed by (2.16), with the integral ap- 

proximated on the same mesh used in the main calculation. At the end of each 

stage of the calculation we give a final value (Aw/w)f of the frequency deviation, 

and the ratio VI/V, where v is the absolute value of the original Hamiltonian 

perturbation V averaged over (4, e), and ~1 is a similar average of the residual 

perturbation VI as defined in (4.2). 

We see from Table 1 that the method works very well in case (i). The conver- 

gence is rapid, the residual perturbation is smaller than the original perturbation 

by a factor 6 x 10m8, and the final frequency has the desired value to machine 

accuracy. Expansion of the mode set from stage one (40 modes) to stage two 

(77 modes) served to decrease the residual perturbation substantially. There is, 

however, no change at the level of visual inspection of the graphs of J and 3$,/&j 

between stage one and stage two. 

In passing through the cases from (i) to (iv) the convergence gradually be- 

comes slower. The situation at case (iv) is shown in Table 2. Here the expansion 

of the mode set from stage one (40 modes) to stage two (117 modes) gives rel- 

atively little decrease in the residual perturbation. It is gratifying that VI/V is 

still small compared to 1, even though much bigger than in case (i). 
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Table 1 

Case (i) ~1 = 2~ = 6 x 10m5 

P nB r DN Aw/w 

1 2 8.4 x~O--~ 1. - 

2 16 4.5~10-~ .51 1.2 x 1o-4 

3 36 6.0~10-~ 0.027 -3.9 x 10-6 

4 39 4.0 x lo-l2 0.027 9.9 x 1o-8 

5 40 6.9 x lo-l4 0.027 -3.5 x 1o-g 

6 40 1.7 x lo--l5 0.027 8.9 x lo--l1 

7 40 2.4 x lo--l6 0.027 -2.2 x 10-12 

8 40 2.7 x lo-l6 0.027 5.4 x 10-14 

IQ/v = 1.1x 10-5 , (Aw/w)~ = -6.7 x lo-l6 

1 61 2.6 x lo-l1 3.8 x 1O-g 4.1 x lo--l1 

2 68 1.5 x lo--" 3.0 x lo+ 6.4 x 10-l' 

3 73 2.1 x lo-lo 4.6 x lo-lo -1.4 x lo-l2 

4 75 4.0 x lo-l3 6.1 x lo-l1 9.7 x lo-l4 

5 76 4.2 x lo--l4 6.0 x lo-l1 -7.7 x lo-l4 

6 77 1.7 x lo-l4 5.2 x 10-l' -5.0 x lo--l5 

7 77 < 3 x 1O-3g 5.2 x lo-l1 -1.9 x lo--l5 

8 77 < 3 x 1O-3g 5.2 x lo-l1 4.5 x lo-l7 

Q/V = 6.4 x 1O-8 , (Aw/w)~ < 3 x 1O-3g 
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Table 2 

Case (iv) ~1 = 2~2 = 1.2 x 10m4 

P nB r DN Aw/w 
1 2 3.3x10-5 1.0 - 

2 17 4.4x10-4 .13 5.1 x 1o-4 

3 3.7 1.4 x 1O-5 1.6 x 1O-5 -4.5 x 1O-5 

4 42 l.l~lO-~ 2.6~10-~ -4.4~10-~ 

5 43 2.2~10-~ 2.7~10-~ 1.9~10-~ 

6 43 1.8~10--~~ 2.7~10-~ -5.3~10-~ 

7 43 1.1 x lo-l1 2.7 x 1O-5 1.5 x 1O-7 

6 43 2.6x10-l2 2.7~10-~ -4.4~10-~ 

Ul/U = 7.3 x 10-4 ) (Aw/w)! = -4.0 x 1O-g 

1 98 7.1 x 1O-7 3.2 x 1O-2o 1.6 x 1O-6 

2 113 1.4 x 10-8. 1.4 x lo-20 4.5 x 1o-6 

3 117 1.4 x 10-g 1.1x 10-20 -1.5 x 10-6 

4 117 1.2 x lo-lo 1.1 x lo-20 4.7 x 10-7 

5 117 2.1 x 10-l' 1.1 x 10-20 -1.5 x 10-T 

6 117 7.3 x lo--l3 1.1 x 1O-2o 5.3 x 1O-8 

7 117 1.3 x 10-12 1.1 x 10-20 -2.1 x 1o-8 

8 117 1.2 x lo-l3 1.1 x 1O-2o 1.5 x 1O-8 

2)1/u = 1.5 x 10-4 , (Aw/w)~ = -1.6 x~O-~ 

In case (iv) the function a+/@ changes appreciably between stage one and 

stage two; on the other hand J(4) changes little. In particular, the minimum 

value 0f a$/a4, our object of interest, changes from 0.45 to 0.35 when the mode 

set is expanded. This leads us to consider a further expansion of the mode set. 

It turns out in case (iv) that the set of Table 2, 117 modes, is already close to the 
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biggest that can be used, at least without extreme delicacy in the computation. 

We were able to add a few more modes by gradually expanding the set Bo from 

which B is selected, at constant a, taking at each stage the previous solution 

to start a sequence of 5 iterations. Finally with Be consisting of all (m,n) with 

1 5 m 5 147, 1721 5 73, we obtained a solution on a set B containing 146 modes, 

with r = 8.6~ 10-11, DN = 3.0~ 10-26, and WI/Z) = 2.8~ 10s4. Beyond 146 modes 

it was difficult to achieve convergence. In passing from 117 to 146, the measure 

of residual perturbation VI/V no longer decreased; in fact it nearly doubled. The 

minimum of aqa+ went through values as small as 0.22, and ended at 0.29. 

A 4% increase in perturbation strengths takes us from case (iv) to case (v) 

with ~1 = 2~2 = 1.25 x 10m4. This small step produces a large change in behavior. 

In case (v) a solution could not be generated starting at g = 0 as was done in the 

previous cases. Starting instead with the solution of case (iv), Table 2, and using 

the same Bo we could generate in 5 iterations a solution with B containing 121 

modes, and r = 9.8 x 10-l’, DN = 4.0 x 10-22, VI/V = 2.8 x 10m4. Expanding the 

mode set as far as possible we arrived at a solution with 156 modes, f = 2.7x 10mg, 

DN = 4.4 x 10-28, and VI/V = 3.3 x AO- 4. The graph of 3$/a+ for the solution 

is shown in Fig. 18; its minimum value is close to zero, namely 0.077. Thus, our 

best guess for cl = 2~2 at the first appearance of a zero of a$/&$ is 1.25 x 10m4, 

the value of case (v). The curve J(q5) in case (v) looks much the same as in case 

(iv). 

For an independent check of accuracy and to locate empirically the transi- 

tion to chaos we have performed numerical integrations of Hamilton’s ordinary 

differential equations, taking initial conditions on our alleged invariant tori at 

the surface of section 8 = 0. The integration program used was not ideal for our 

purposes, but it allowed us to maintain sufficient accuracy for a few thousand 

turns (a turn meaning one intersection of an orbit with the surface of section). To 

control accuracy we did “backtracking”: after N turns forward in 8 we reversed 

steps to do N turns backward, and demanded that the initial and final values of 

(J, 4) agree within an error considerably smaller than the error we would tolerate 
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after 2N forward turns. 

In Fig. 19 we show points generated for case (i) in a run with 4000 (forward) 

turns, plotted together with an enlargement of a small segment of the curve of 

Fig. 10. A further enlargement would be necessary to see any clear discrepancy 

between the points and the curve; the agreement appears to be better than one 

part in 106. In Fig. 20 we show similar results for case (iii), on a somewhat 

larger scale; from a run with 4000 turns. The agreement is still good, and there 

is no sign of stochastic behavior. Points for case (iv) from a run with 3000 turns 

are shown in Fig. 21. Here there is a noticeable scatter of points about the 

curve, the latter being from the run of Table 2 entailing 117 modes. It is hard 

to say whether the scatter represents chaotic behavior or merely a high-order 

island chain corresponding to high modes not included in the Hamilton-Jacobi 

equation. Finally, in Fig. 22 we show points for case (v) from a run with only 

1500 turns. Here the appearance of chaotic behavior is quite definite; case (v) 

seems to be a little beyond transition. On the basis of backtracking experiments 

we think if unlikely that the scatter in Figures 21 and 22 is due to numerical 

error. As expected, the number of turns allowed by the backtracking criterion 

decreases sharply as the transition to chaos is approached. 

In summary, the hypothesis that the transition to chaos corresponds to the 

first appearance of a zero of a$/a4 seems consistent with our experience in 

integrating Hamilton’s equations. The Hamilton-Jacobi method, in the form 

based on a single canonical transformation, appears to over-estimate slightly the 

critical perturbation strengths; we cannot say by how much until more careful 

integrations have been performed. Weighing the evidence, we provisionally put 

the transition at ~1 = 2~2 = (1.2 f0.05) x lo- 4. It should be possible to refine the 

estimate based on the Hamilton- Jacobi method, but it will be necessary to make 

at least one additional canonical transformation, in order to allow sufficiently 

many modes. Of course, the complementary work on Hamilton’s equations should 

be improved, perhaps with help of methods guaranteed to produce a symplectic 

map. 27 Notice that it would be difficult to study the breakup of a prescribed 
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KAM surface by integration of Hamilton’s equations alone. Finding a point 

on the surface to take as an initial condition would be a formidable task in 

itself. By combining the Hamilton-Jacobi method and Hamilton’s equations, one 

commands an approach which is much more powerful than either method alone. 

As is seen in Tables 1 and 2, the normalized determined DN is impressively 

small compared to 1 near transition. For fixed c’s it is strongly dependent on 

the number of modes, decreasing sharply as the number is increased. At fixed 

Bo it also decreases rapidly as the E’S are increased, indicating that a singularity 

of the Jacobian is being approached. For the Bo of stage one (1 5 m 5 63, 

InI 5 31) we found DN = 2.7 x 10T2, 4.0 x 10S3, 4.6 x 10m4, 2.7 x 10m5, for 

cases (i)-(iv) respectively, while for stage two (1 5 m 5 127, InI 5 63) we found 

DN = 5.2 x lo-“, 3.4 x 10-13, 2.3 x 10-16, 1.1 x 10b2’. Finally in case (v) on the 

largest mode set employed, DN = 4.4 x lo- 28. Notice that the decrease of DN 

as a function of cl = 2~2 is very much steeper in stage two than in stage one,as 

is reasonable if stage two represents a better model of the exact Hamilton-Jacobi 

system. 

In all experiments we have found that a$/c34 acquires a zero before DN 

vanishes, although DN is always very small when a$/&$ has a zero. For c’s 

slightly larger than in case (v), say ~1 = 2~2 = 1.3 x 10V4, we find solutions with 

negative minima of a+/+5 but with DN still positive. These may have to do 

with “cantor?‘, (tori with gaps, that exist beyond transition) and are interesting 

objects of further research. Perhaps DN = 0 has to do with a final disappearance 

of cantori. In any event, smallness of DN should be useful as a quick indicator 

of near-chaotic regions when one wishes to avoid the relatively costly calculation 

of a+/a4. 

As was noted above, the residual perturbation after one canonical transfor- 

mation turned out to be quite small, even when the KAM surface is close to 

breakup. That is encouraging for study of the critical region by means of further 

transformations. As a first step in such a program, we have computed the sec- 
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ond canonical transformation in lowest order, for cases (i) - (iv). We first found 

Vl($, K,8) by means of (4.2), (4.3), (4.7), and (4.8), and then calculated the 

generating function Gr of (4.4), (4.5) from its Fourier coefficients, 

2r 2r 
i 1 

91 mn = 
wm - n (27r)2 

/ dll, / dBe-i(m+‘e)Vl (+, K, 0) , 

0 0 

where w and K are the final values of frequency and action obtained in the 

previous calculation of G. We used 512 and 256 mesh points for (T,LJ,~) and 

8 integrations, respectively, and retained values of m and In( up to 255 and 

127, respectively, in (7.6). Th’ 1s computation must be done in double precision, 

because VI owes its smallness to close cancellations. 

We present results in terms of the residual torus distortion, K - Kl = G1~; 

the notation is that of Section 4. The main torus distortion, associated with the 

first canonical transformation, is J - K = Gd. In Table 3 we give the ratio of 

the averaged absolute values of these quantities, 

@Jh -= w - w = Wld> 
AJ (IJ - KI) NPI) ’ (7.7) 

the averages being over $J or 4, and 8. This ratio is small compared to 1 in cases 

(i)-(iv) , but because of small divisors not as small as ur /v. Except for fine details 

on a scale defined by Table 3, the tori obtained by the first canonical transfor- 

mation would seem to be good representations of the actual KAM surfaces, even 

close to breakup. , 4 
I Table 3 I 

case 

(9 
(ii) 

(iii) 

(4 
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Figures 10-13: Two resonance model. Section of invariant surface at 8 = 0: 
J plotted us. 4/27r. Figures 10-13 correspond to cases (i)-(iv), respectively. 

Figures 14-17: Two-resonance model. aJ/ilK = 1 + G+K at 8 = 0 plotted 
vs. 4/2n. Figures 14-17 correspond to cases (i)-(iv) of Section 7, respec- 
t ively. 

Figure 18: Two resonance model. dJ/dK = 1 + G+K at 6 = 0, plotted us. 
+/27r. Case (v), the best candidate for the transition to chaos on the basis 
of Hamilton-Jacobi solutions alone. 

Figure 19: A small segment of the curve of Figure 10, case (i), plus points 
from numerical integration through 4000 turns. 

Figure 20: A small segment of the curve of Fig. 12, case (iii), plus points 
from numerical integration through 4000 turns. 

Figure 21: A small segment of the curve of Fig. 13, case (iv), plus points 
from numerical integration through 3000 turns. 

Figure 22: A small segment of the curve of Fig. 18, case (v), plus points 
from numerical integration through 1500 turns. 

55 



8. THE RESIDUE CRITERION 

In this section we would like to make the connection between John Greene’s 

residue criterion 20,21 and the associated Hamilton-Jacobi equation. To do this 

we need to solve the H-J equation over a finite time interval, locate an appropriate 

fixed point of the resulting map, and linearize about that point to calculate the 

residue. 

To solve the H-J equation over a finite time interval it is necessary to respecify 

the problem and convenient to change notation slightly. We consider a canonical 

transformat ion (4, J) I+ (4i, Ji) defined implicitly by 

J = Ji + $&, Ji, 4 6) , 
4i = 4 + !GJi(d, Ji,‘,‘i) 

(84 
7 

where Bi is the initial time. The H-J equation which is appropriate for the finite- 

time map consists of the requirement that the new Hamiltonian be identically 

zero 

H(4, Ji + i&e) + $8 = 0 . (8.2) 

In this case the new coordinates are the initial conditions provided that we also 

impose the boundary condition 

S(d, Ji,W i) = 0 . 

In this case 9 is not a periodic function of 8; however, it does satisfy 

Sk4 Ji,e + 2754 + 274 = $(4, Ji,W i) , 

(8.3) 

(8.4 

since the original Hamiltonian is periodic in 8. 
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To study the neighborhood of a periodic orbit with period 2rq, we note that 

such a periodic orbit is a fixed point of the map in (8.1) at (~$0, Jo) provided that 

S&o, JoA + 2vA) = 0 , 
$Ji(40, Jo, ei + 2% ei) = 0 

(8.5) 
. 

To calculate the residue of that fixed point we linearize for small deviations about 

it by setting 

4 = 40 + WJ , 4 = do + wi , 

J=Jo+6J, Ji = Jo +SJi s 
(8.6) 

From (8.1) ‘f 1 we now keep terms linear in the deviation from the fixed point we 

obtain the linear map 

where all partial derivatives of 5 are evaluated at (40, Jo, 6i + 2?rq, 6,). Denoting 

the matrix above as M,, the frequency or tune u* of the oscillation about the 

fixed point is given by 

Trace(M,) = 2 cos 27ru, = l+ P+ $4~)~ - $449~~ 
l+&J 

. 
(8.8) 

Therefore, the residue is given bya0 

R = :[2 - Trace( = S+&JJ - $0~~ 

> l+$4J ' 

In the case of an integrable system with Hamiltonian Ho(J) we find 

P-9) 

5 = -Ho(J)6 (8.10) 

which yields R = 0. 
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In the case of a nonintegrable system we test the existence of some KAM 

curve with irrational frequency o by considering the residues R, of a sequence 

of periodic orbits of increasing period 2nq, as n -+ 00. The elements of the 

sequence correspond to frequencies in the continued fraction representation of w, 

say Pllql, P2lq2, - - -. According to Greene there are three distinct cases: 

1. R -P 0, there is a KAM curve with frequency w. 

2. R --+ foe, there is no KAM curve with frequency w. 

3. R -P Ro, the transition case. 

If attention is restricted to solutions $ with bounded second derivatives, then 

case (2) can arise only if 

1 + $,)Jcn) --) 0, n + 00 . (8.11) 

This recalls our condition that 1 + G+K should first acquire a zero at transition; 

cf. Section 7. The latter condition refers to the G which generates an orbit 

covering an invariant surface, which is a different object from the G(n) of (8.11). 

Nevertheless, for large n the orbit generated by $cn) lies close to the surface 

generated by G. The failure of either condition, 1 + $d~(“) # 0 or 1 + G,+K # 

0, means that the corresponding canonical transformation, (8.1) or (2.4), is no 

longer well defined. It seems reasonable that the two conditions (the former taken 

in the limit n + 00) should fail simultaneously as parameters approach critical 

values. Further exploration of the meaning of cases (1) - (3) in the Hamilton- 

Jacobi formalism might be rewarding. 
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9. OUTLOOK AND REMARKS ON RELATED WORK 

Our method and results were described briefly in Section 1, and the most 

important numerical results were described in detail in Section 7. Here we suggest 

lines for further investigation and mention current work by other authors. 

We have seen that iterative solution of the truncated Hamilton-Jacobi equa- 

tion provides an effective method to approximate invariant tori, even under ex- 

treme conditions, for the case of certain simple Hamiltonians in 1: degrees of 

freedom. We believe that these Hamiltonians entail most of the generic diffi- 

culties, and therefore we expect equally good convergence in more complicated 

systems. Computations to test this expectation, especially for models of acceler- 

ators, are underway. 

It will also be interesting to test the method in problems of higher dimension. 

We have verified that solutions by plain iteration are feasible in 23 degrees of 

freedom, 28 but we have not yet explored Newton’s method and near-chaotic 

regions in that case. We expect that the generalization of a$/&$ = 0, namely 

det(1 + G~,K) = 0, will be a correct criterion for the breakup of KAM tori in 

higher dimensions. 

A feature of our method which may be favorable for its application to com- 

plicated systems is that it reduces most of the computation to performing the 

Fast Fourier Transform. This suggests the use of enhanced FFT algorithms, for 

computers using vector or parallel processing, which are now being developed.2g 

In the example of Section 7 we were able to estimate the critical perturbation 

strengths for breakup of the golden mean KAM surface to an accuracy that seems 

to be about 5%. More careful work will required to improve the estimate. It 

should be emphasized that the example of Section 7 is much more difficult than 

examples studied more accurately in the literature, for instance area-preserving 

maps of the plane such as the standard map and the quadratic map. 20,21 In 

our scheme such maps can be treated with one-dimensional Fourier transforms 
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rather than the two-dimensional transforms required in the present examples. 

Therefore we should be able to treat simple maps with considerable refinement, 

using many more Fourier modes than we used the present study. In particular it 

should be possible to study self-similar behavior on progressively smaller scales. 

A stringent test of our method will be to calculate the critical parameter value lc, 

of the standard map, and compare the result with the accepted value determined 

by Green’s -residue criterion. 

In Section 7 we mentioned that it would apparently be necessary to perform 

at least two canonical transforms to improve the computations very close to tran- 

sition. Another possibility, perhaps more inspiring, would be to modify Newton’s 

method in some way, so that more modes could be included in the first canonical 

transformation. In the literature there are several proposals for improving the 

behavior of Newton’s method near a singularity of the Jacobian. 30-33 

To relate our approach to other work, we note first that it may be regarded 

as an instance of Galerkin’s general method for solving an operator equation by 

finite-dimensional projections.‘5’34935 More specifically, it resembles the ‘har- 

monic balance’ technique for solving nonlinear ordinary differential equations as 

applied in electrical engineering by Kundert and Sangiovanni-Vincentelli.36 

In an interesting paper in accelerator theory, Guignard and Hage137 have 

treated the equations of motion (in second order Lagrangian form) by successive 

linearizations. Although this recalls Newton’s method, and may share its good 

convergence properties, issues concerning periodicity of coefficients are treated in 

such a way that the resulting scheme is quite different from our Newton method. 

Frequencies are approximated by rationals, so that each linear equation in a 

sequence can be treated by Floquet theory. Another scheme depending on ap- 

proximation by rationals is that of Eminhizer, Helleman, and Montroll.38 These 

authors avoid small denominators by imposing the requirement of rational fre- 

quencies . 

Forest 3g has applied the Lie-algebraic approach to obtain explicit formulas 

60 



for approximate invariants as functions of the original canonical variables. This 

gives an implicit representation of the invariant torus, rather than the explicit 

parametrization of Eq. (2.3). 

Zanetti and Turchetti4’ studied a circle map close to transition, using Fourier 

series and perturbation theory for direct computation of the invariant torus. This 

work is somewhat akin in spirit to ours, and anticipated our finding that modified 

classical techniques can be used near the transition to chaos. 

Working with analytic perturbations (the standard map and its relatives), 

Greene and Perciva14’ studied convergence of the Fourier series for the invariant 

torus with near-critical perturbation strengths. Their technique was much differ- 

ent from ours, but a similar study of convergence could be done in our formulation 

by moving the contours of angular integrations into the complex plane 
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APPENDIX A 

EXISTENCEOFSOLUTIONS OFTHETRUNCATED 

HAMILTON-JACOBI EQUATION 

When the action parameter K and the Hamiltonian H are suitably restricted, 

the Hamilton-Jacobi equation for the truncated periodic generating function, 

Eq. (2.17),. h as a unique small solution which can be computed by iteration. 

Furthermore, that solution is locally a smooth function of K. The region of 

smoothness in K shrinks as the number of Fourier modes is increased. Under 

somewhat stronger restrictions on the Hamiltonian, similar statements apply if 

the frequency w rather than the action K is specified. We now make these 

statements precise by proving some theorems. The proofs are elementary, but 

they give a worthwhile first view of the problem. 

For the analysis at fixed K the equation in question is (2.17), 

g = A(g,K), (AlI 

where the vector function A is defined by (2.18), with G4 given by the truncated 

Fourier series 

Gg = 2Re c imgmnei(m4-n~) 

(m,n)EB 
(A21 

The set B is any finite set of pairs of integers (m,n) such that m 2 1. For 

notational simplicity we take li degrees of freedom; the generalization to higher 

dimensional phase space will be obvious. In (Al) the argument K refers to the 

explicit occurrence of K in H(+, K + G4,6), Ho(K), and we(K) = HA(K). 

We seek a solution at some K = Ko such that 
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wo(K)m-n#O, (m,n)EB. (W 

We suppose that I$‘( J) , V (4, J, 8)) and VJ (4, J, 0) are real and continuous for 

for some positive R independent of +,8. We regard (Al) at K = Ko as a fixed 

point problem for the vector z = {x,,,,,}, where 

Xmn = m gmn-&?l 
c > , (m,n)EB. w 

The gi; are the coefficients of g to lowest order in perturbation theory, as defined 

in (3.3). The quantity xmn, being generally smaller than mgmn, is an appropriate 

object for an iterative analysis. In terms of x the problem is 

x = B(x,K) WI 

B(x,lqmn = * 1 - 
mu,;;;“1 - n (27r)2 Jl 

(-j&jee-‘(m+4 

W ) 

[ffo(K + Gg) - Ho(K) - u(K)Gg + V(4,K + G4,8) - V@,K,8)] . 

We consider (A6) on a complete metric space S, with distance d(x, y) = 1 Ix - yI I, 

where 

llxll = ( “yB IxmnI - bw m,n 
The space S, is the ball with radius 7, 

ST = {x I ll4l 2 7} * w 

We look for conditions on the Hamiltonian such that for some 7, 
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(a) x E Sr implies B(x,K) E S,. 

(b) There is a /3 < 1 such that 

lp(xl) - J3(52)1) 5 PllXl - x211 

for all xl, x2 E S, . 
(*lo) 

If (a) and (b) hold, the contraction mapping principle implies that there is a 

unique solution g E S,. Further, that solution is obtained by iteration, starting 

with any element of ST. 

If x E Sr, then from (A2) we see that 

IG& I IGP’I + I$ - GP’I I r + dllxll I I’ + d7 , 

where 

r =supIGy(d,e)1 , 
fPJ 

(All) 

WJ) 

d=2 c 1. 
m,nEB 

W) 

Here Gf’ is the part of G+ due to g(l), and d (‘diameter of B’) is twice the 

number of elements in B. To find conditions for (AlO), we start by restricting 7 

and the perturbation V so that 

r+d-y<R. (Al4 

Then by (A4) and (All) the H amiltonian functions evaluated at J = Ko + G4 

are within their domains of continuity when x E S,. Let us define 
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C= max 
m 

(m,n)EB wo(&)m - n ’ 

c = sup sup I%4 Jdw, 
4,e IJ-K0l-a 

6’ = sup sup IW#J, J, q, 
4,e IJ-K~I<R 

Cl!= sup IH;(J)l. IJ-Kol<R 

W5) 

Pl6) 

(Al7) 

(Al*) 

A crude upper bound for I’ is 

r 5 Cdq m-4 

but since one can often get better bounds in specific cases we shall write results 

in terms of r itself. 

Now if x E S,, the mean value theorem applied to (A17) gives 

Ilmll 5 c [; ( r + dy)2 + E’ (r + dr)] ; 

thus B(x) E ST and condition (a) holds if 

c(r + d7) [$r + dr) + Er] I 7 bw 

For the contraction condition (AlO) consider G,+,, G+, corresponding to x1, x2 

respectively; clearly 

I$, - $21 I+1 - 2211 . W2) 

Note this lemma: 
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If U(U) has a continuous second derivative for lzll < 6 and b(u) = a(u) - 

a’(O)u, then 

lb(q) - b(u2)l 5 I4 ; 4 sup I+4 I, 
lul<t 

(AW 

Applying the lemma tie u(u) = HO (Ko + u) we have 

Hence (AlO) holds provided that ’ 

C [ad@’ + dy) + ddl < 1. (A25) 

The sufficient conditions for a solution, (A2l)and (A25), may be put into a 

more appealing form. Inequality (A21) is 

P(7) = a72 + by + c = 47 - 7+)(7 - 7-) 5 O 

u=Cd2; , b = Cd@‘+ 6’) - 1 , W6) 

C=cr(tr+c’) 

The roots 7& of P(7) must be real, and 7- 5 7 5 7+, for (A21) to hold. The 

discriminant is 
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D = b2 - 4uc = (1 - &d)2 - 2aI’Cd. 

Regarded as a polynomial in 8, D has roots 

EL = 
1 f (2arCd)@ 

Cd ’ 

WV 

(A28) 

Reality of 7* requires I! 5 E- or 6’ 2 E+, but the contraction condition (A25) 

requires c’ < l/Cd, so that only E’ 5 E- is allowed. Inequality (A25) is more 

restrictive than 7 5 7+; it requires 

7<7= 
1 - Cd@? + E’) 

aCd2 Wg) 

Thus (A21) and (A25) require 

7- 5 7 < 7, PW 

E’ 5 E-. Wl) 

Conversely, (A30), (A31) imply (A21), (A25). 

We must verify that (A30) a 11 ows 7 > 0, as is necessary by the definition of 

7. Since c = u7+7- and b = -u(7+ + 7-), the roots 7+ are positive if b < 0. But 

it is easy to show that b < 0 is implied by (A31). 

Accounting for (A30), (A31), and (A14), we can now summarize the results 

in 

Theorem 1: Suppose that we(K) m - n # 0, (m,n) E B, and that H!(J), 

v(4, J, 0) and W, J, 0) are real and continuous for ] J - Ko] < R and 

4, B E [0,27r]. Then Eq. (Al), t runcated to the finite mode set B, has a 

unique solution in the ball S, of (A9) with 
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1 - Cd(aI’ + 8) - [(l - c’Cd)2 - 2cuI’Cd]‘/2 < 7 
aCd2 - 

1 - Cd(cYl? + c’) R - r 
aCd2 ’ d 1 

W2) 

provided that . 

For any finite mode number set B and any R, it is possible to choose the 

Hamiltonian parameters I’, 8, Q so that (A33) holds and the set of 7 satisfying 

(A32) is not empty. Provided that (R - I’)/d > 7-, the only further restriction 

on the Hamiltonian parameters is (A33). Sufficient conditions for (A33) to hold 

are E’ < 1/4Cd, aI’ < 1/4Cd, or, in view of (A19), E’ + (20x)li2 < l/Cd. 

Notice that the solution referred to is the same for all 7 in the interval (A32). 

Thus, the solution is actually in S, 1 S,-, for any 7 obeying (A32). The solution 

can be obtained by iteration of (A6), beginning with any x0 E S,, say x0 = 0. 

Iteration of (Al) beginning with g = 0 leads to precisely the same sequence so 

that in a numerical calculation there is no point in using (A6). 

To show that the solution of Theorem 1 is locally a smooth function of K we 

apply the implicit function theorem to 

3(x,K) = x - B(x,K) = 0. (A34 

The idea of the argument is that if (A3) holds at K = Ko, it also holds in some 

neighborhood of Ko, by continuity. To ensure that we stay in the domain (A4) 

of the Hamiltonian functions, we replace the requirement (A14) by 
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I? + d7 < R’ < R, W5) 

where the difference between R’ and R allows for a small variation of K. We ask 

whether the unique solution x = x0 in S, at K = Ko belongs to a family x(K), 

IK - Kol < 6, x(K0) = x0. The function 3(x, K) is continuously differentiable in 

both arguments, x and K, in some neighborhood of (x0, Ko). If the Jacobian 3z 

is nonsingular at (x0, Ko), then the implicit function theorem guarantees that the 

desired solution family x(K) exists, and in fact has a continuous K derivative, in 

some neighborhood of Ko. A sufficient condition for regularity of the Jacobian is 

II&(xo, Ko)lI = sup llBz(y;F)“‘l < 1 
h 

bw 

Calculating the Jacobian as in Section 3 and using mean-value arguments as 

above, we see that (A36) h o Id s under our previous contraction condition (A25). 

Theorem 2: Replace R in (A32) by some R’ < R. Then under the condi- 

tions of Theorem 1 so modified, the unique solution g+ of (Al) in S, for 

K = Ko is a member of a family of solutions g(K), defined and continu- 

ously differentiable with respect to K in some neighborhood of Ko, such 

that g(K0) = g+. 

APPENDIX B 

FORMULAS FOR INVARIANT CURVES IN THE 

qTH ORDER RESONANCE MODEL 

We wish to explore the function J(4) of Eq. (6.6) for various values of a and 

7, with the factor (l/4 - Y)/~E put equal to 1. 

There is a qualitative difference between the cases Ial < 1 and Ial > 1; we 

discuss them separately. Let us define the square root symbol in (6.6) to be 
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i always nonnegative, and patiently treat in order the various cases as follows. 

On each branch we quote inequalities that follow directly from the requirement 

J > 0. 

(A.l) The branch J = l-[l+~~~;~;d)l”~ 

7<0 . 

(A.1.a) J > 0 for all II, if and only if 

1 
---770 

1+u - 

(A.1.b) For 7 < -A, 

(A.2) The branch J = w 

u+cos4$J>o (t) 

(A.2.a) J > 0 for all $J satisfying (t) if and only if 

1 
--<7 

1+a 

(A.2.b) For 7 < -&, 
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In Figures 1 and 2 we show phase space plots of (x, y) = ( J1i2 cos $, J1i2 sin $) 

for case (A). Th ese may be regarded as surfaces of section at 8 = 0, where $J = 4. 

Each plot is for fixed a, and shows a few curves from each family that exists at 

that a; the curves of a family correspond to various 7. 

Figure 1 is for the case of no nonlinear term in the unperturbed Hamiltonian, 

a = 0, whereas Fig. 2 is for a = -0.9. The bounded closed curves near the origin 

are from (A.1.a) with 
-1 

-<7<0 . 
1+u ( w 

The separatrix corresponds to the lower limit of 7. The unbounded curves sym- 

metrical about the x and y axes are from case (A.2.a) with 

-1 
-<7<00 . 
1+u w 

The unbounded curves symmetrical about the lines y = fx are made up of cases 

(A.1.b) and (A.2.b) together; for the same 7 the two cases give fragments which 

fit together to make continuous curves, for 

-1 
-co<75--- 

1+u ’ 

(B.l) The branch J = l-[l+$-t-~y~~)l”1 

(B.1.a) a < 0. J > 0 for all T/J if and only if 

-00<7<0 

(B.1.b) a > 0. J > 0 for all 1c, if and only if 
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1 
--<<<O 

1+u- 

(B.1.c) a > 0. For 7 < -&, 

U$COS~$J~~ , hence -,:1<7 

(B.2) The branch J = l+[l+$a(a:y4$)11’2 

a > 0 only 

(B.2.a) J > 0 for all q!~ if and only if 

1 --<7 
1+u- 

(B.2.b) For 7 < -&, 

U+COS~T)<& , hence -,‘1<7 

Figures 3 shows the case a = 1.2. The curves near the origin correspond to 

case (B.1.b) with 
-1 

-<7<0 , 
1+u - W) 

the lower limit of 7 giving the separatrix. The outside curves, invariant under 

rotation by 90°, correspond to (B.2.a) for 

-1 
-<<<oo . 
1+u- 

The islands, having no rotational symmetry, correspond to cases (B.1.c) and 
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(B.2.b) together with 
-1 -1 

-FrI--- u-l a+1 * VW 

Each island has an outer piece given by (B.2.b) and an inner piece given by 

(B.1.c); the pieces join at the turning points where dJ/dll, goes to infinity. 

It is easy to see how Figure 1 evolves into Figure 3 as a crosses 1. The ends 

of the infinite separatrices join at 00 on the lines y = fx when a = 1, and then 

move inward. Unbounded curves that were symmetrical about y = fx turn 

into islands, while those symmetrical about the x and y axes turn into bounded 

curves with 90’ rotational invariance. Indeed, within a certain distance of the 

origin Figures 1 and 3 are similar in appearance. 

The remaining case a < -1 is shown in Figure 4 for a = -1.01. This 

corresponds to (B.1.a) with 

-00<7<0 . w 

Here all curves have symmetry under 90’ rotations, and they approach concentric 

circles under further decrease of a. Comparing to Figure 3, we see that separa- 

trices have gone to infinity, so that no unbounded curves can turn into islands as 

they did for positive a. 

In the special case v = l/4, 

J= [u+t~~4+]1’2 ’ (B8) 

which consists entirely of curves with 90’ rotation symmetry, all unbounded for 

Ial < 1, all bounded for Ial > 1. For Ial < 1 there are no stable trajectories that 

stay close to the origin in phase space. 

The action integral (6.5) g iving the invariant K makes sense only for the 

bounded curves having symmetry under 90’ rotations. For unbounded curves it 

is divergent, while for islands J is defined as a real function only between turning 
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i points, not on the whole interval [0,27r]. Correspondingly, our Hamilton-Jacobi 

formalism applies only to the rotationally invariant curves, which are the KAM 

surfaces that we aspire to compute. 

For E corresponding to bounded separatrices it is possible to evaluate the 

integral (6.5) analytically. For ]a] < 1 on the separatrix, 

K = 1 ‘+ (1 _ ,2)-l/2 ln 21’;;;t;,;)1’2 . 
7r 1 Pw 

For a > 1 on the separatrices 

K = a 9 (a2 - 1)-l/2 tan-1 
1 2 u2 

i: z @\I : il:, 1 , @w 
where the upper (lower) sign corresponds to the separatrix outside (inside) the 

islands. 
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