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ABSTRACT 

As the velocity of a charged particle increases, its electric flux lines become 

more and more concentrated about the transverse plane, a circumstance that is 

sometimes construed to imply that the electric field in front of the particle is 

zero. This is never exactly true, but is often a valid approximation. The range 

of validity is discussed. 
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As the velocity of a charged particle increases, its electric flux lines become 

more and more concentrated about the transverse plane. This picture is some- 

times construed to mean that the electric field is zero in front of a very fast 

particle. For many purposes, this is a valid approximation, but we must remem- 

ber that it is still an approximation. No matter what the velocity of the particle, 

the field ahead of it never is zero. This becomes apparent if the field compo- 

nent along the direction of motion is integrated over the transverse plane. Here, 

Gauss’ Theorem constrains the longitudinal field component to be finite, and the 

approximation that sets it equal to zero breaks down. 

To see this, let D be the displacement vector along the direction of motion. 

The integral of D over the plane transverse to the particle motion is a relativistic 

invariant; it has the same value in the lab system and in the rest system, for D 

is the same in both systems, and so are the transverse coordinates appearing in 

the integral. In both the rest system and the lab system, the integral has the 

MKS value Q/2 in front of the particle, and the same value in back. Thus, in 

both systems, D must be different from zero somewhere in the transverse plane, 

and in such a way that its integral over the transverse plane is Q/2. 

To illustrate these remarks, expressions for D are derived below for: a particle 

in free space (A), and a particle in a conducting tube (B). We find that, in a 

calculation carried out to a limited order of accuracy, the field can be neglected 

in a certain region in front of the particle; however, setting the field equal to 

zero everywhere in front of the particle is impermissible, since it violates Gauss’ 

Theorem. These remarks apply when the field point is a finite distance from 

the particle; in contrast, as the field point approaches infinitesimally close to the 

particle, the field acquires a singularity corresponding to the derivative of a delta 

function. 



(A) Particle in Free Space. 

In the rest system, 

D,, = QZ, 
47rp + r2]3/2 ’ (1) 

where we have introduced a cylindrical coordinate system with the z’-axis along 

the direction of particle motion; the field point is at (r, z’) relative to the charged 

particle, which is located at the origin. 

In the lab system, 

Q7z 
Dz = 47r[(72)2 + r2]3/2 ’ 

again using a cylindrical coordinate system; the field point is at (r, z) relative to 

the charged particle, where z’ = 72. 

In either case, we find that 

co 

/ 
Q dr 21rr D, = T , 

0 

(3) 

as required by Gauss’ Theorem. Note that this result is independent of z (or 2’). 

Suppose we integrate only between r = 0 and r = 1572, where E < 1: 

(4 

We now see that if we are calculating to order E only, the field in the region 

from r = 0 to r = ~72 may be disregarded, since its contribution to the transverse 
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integral is of second order. If this is done, the remaining integration 

Co 
I 

Ql Q dr 2m D, = - 
2dm-z’ 

c7= 

satisfies Gauss’ Theorem to the same order of approximation. Note that D, # 0 

in the regiqn from r 3 ~72 to co. 

(B) Particle in a Conducting Tube. 

First, an identity. In the region from r = 0 to r = 1, 

SC’ - r’) = c Jo(w9Jo(hr’) 

r Qn ;Jf(%&) ’ 
(6) 

where the cr,‘s are the roots of Jo(a,) = 0. 

Therefore, for a particle located at the origin of the rest system, in a con- 

ducting tube of unit radius, the potential function is 

Eo+(r,Z’) = -$ c 

JO(a,r)e-anlz’l 
QI J2(a ) - 

%I n1 n 
(7) 

The components of the dielectric displacement vector are obtained from (7) 

by taking the negative gradient of (7); f i one then applies the usual relativistic 

transformation formulae (Dll = Dl,; Dl = 7Dy; z’ = 7z), the displacement 

vectors in the lab system are obtained. For z > 0, these are: 

D,(r,z) = p c J”(~2~~~)a’7z . 
an 

To verify Gauss’ Theorem, we integrate first along the surface of the tube to 
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a fixed value of Z, and then across the transverse plane: 

Z 

&2rD,=Q~1-e-an7z 
a, an Jl (an) 

1 

-1 
dr 27r rD, = Q  c e-a”7z 

0 
Qn an Jl (an) 

where the last integral is easily done by recalling that 

anrJo(anr) = -&rJl(a,r)) . 

The sum of the two integrals in (9) is 

c Q 
a, anJl(an) ’ 

(10) 

(11) 

This formidable-looking expression sums to just Q/2, as can be verified by mul- 

tiplying (6) by r and integrating over r from zero to unity. Thus, as expected, 

Gauss’ Theorem is again confirmed, provided we keep the exact expression for 

the fields. 

If we set z = 0, and integrate radially only from zero to the small quantity E, 

we find the result 

(12) 

For small E, this reduces to 

As in (A), we again conclude that, to order E, the field in front of the particle, in 

the region from r = 0 to r = E, can be neglected, but not outside this region, if 

Gauss’ Theorem is to be satisfied. 
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So far, the distance between the field point and the particle has implicitly 

been assumed finite. If, instead, it is allowed to approach zero, the right sides of 

(8) and (6) become essentially the same (r’ = 0). D, then is proportional to the 

left side of (6)) which is equivalent to the derivative of the delta function, and 

which characterizes the singularity of the field as z approaches zero. 

A similar result is obtained in case (A), since, as z approaches zero, the 

presence or absence of a conducting tube of unit radius is immaterial. 
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