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1. INTRODUCTION 

With the advent of quantum chromodynamics as a complete theory of the 
strong interactions, one can now anticipate understanding the underlying dy- 
namics and composition of both hadrons and nuclei at a fundamental level. In 
the last few years considerable progress has been made in calculating short dis- 
tance hadronic scattering and production amplitudes in terms of quark and gluon 
subprocesses. l-6 This in turn has led to a basic understanding of exclusive hadron 
and nuclear scattering processes at large momentum transfer as well as progress 
in describing the structure of hadronic and nuclear wavefunctions in terms of their 
fundamental quark and gluon degrees of freedom.7 

QCD has two essential properties which make calculations of processes at 
short distances or high momentum transfer tractable and systematic. The criti- 
cal feature is asymptotic freedom: the effective coupling constant od(Q2) which 
controls the interactions of quarks and gluons at momentum transfer Q2 vanishes 
logarithmically at large Q2: 

as(Q2) = 
4?r 

P los(Q2/A\cD) 
(Q2 xA2) (14 

[Here P = 11 - 8nr is derived from the gluonic and quark loop corrections to the 
effective coupling constant; nf is the number of quark contributions to the vacuum 
polarizations with 4m2f6Q2.] The parameter AQCD normalizes the value of a,(Qg) 
at a given momentum transfer Qi > A2, within a specific renormalization or 
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cutoff scheme. Recently cys has been determined fairly unambiguously using the 
measured branching ratio for upsilon radiative decay T(b6) + 7x:8 

ar,(O.157 MY) = ~~~(1.5 GeV) = 0.23 f 0.03 (l-2) 

Taking the standard MS dimensional regularization scheme, this gives Am = 
llQ+gi MeV. I n more physical terms, the effective potential between infinitely 
heavy quarks has the form [ CF = 4/3 for n, = 31,’ 

V(Q2) = -CJ’ 479(Q2) 
Q2 

av(Q2) = 4vr 
P hdQ2 /A$) 

(Q2 B- A$) 

where Av = e 5/6A MS z 270 f 100 MeV. Thus the effective physical scale of 
QCD is - 1 f;;;‘. At momentum transfers larger than this scale, oa becomes 
small, QCD perturbation theory becomes applicable, and a microscopic description 
of short-distance hadronic and nuclear phenomena in terms of quark and gluon 
subprocesses becomes viable. 

Complementary to asymptotic freedom is the existence of factorization theo- 
rems for both exclusive and inclusive processes at large momentum transfer. In the 
case of exclusive processes (in which the kinematics of all the final state hadrons 
are fixed at large relative mass) the hadronic amplitude can be represented as the 
product of a hard-scattering amplitude for the constituent quarks convoluted with 
a distribution amplitude for each incoming or outgoing hadron.lB3 (See Sect. 2.) 
The distribution amplitude contains all of the bound-state dynamics and specifies 
the momentum distribution of the quarks in the hadron. The hard scattering am- 
plitude can be calculated perturbatively as a function of ad(Q2). The predictions 
can be applied to form factors, exclusive photon-photon reactions, photoproduc- 
tion, fixed-angle scattering, etc. In the case of the simplest processes, 77 + MA%” 
and the meson form factors, rigorous all-order proofs can be given. 

The central unknown in the QCD predictions is the composition of the hadrons 
in terms of their quark and gluon quanta. ’ Recently, several important tools have 
been developed which allow specific predictions for the hadronic wavefunctions 
directly from the theory. A primary tool is the use of light-cone quantization to 
construct a consistent relativistic Fock state basis for the hadrons and their ob- 
servables in terms of quark and gluon quanta. The distribution amplitude and the 
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structure functions are defined directly in terms of these light-cone wavefunctions. 
The form factor of a hadron can be computed exactly in terms of a convolution of 
initial and final light-cone Fock state wavefunctions.” 

A second important tool is the use of QCD sum rules to provide constraints on 
the moments of hadron distribution amplitudes. 3 This method has already yielded 
important information on the momentum space structure of hadrons which we re- 
view in Sect. 4. A particularly important advance is the construction of nucleon 
distribution amplitudes, which together with the QCD factorization formulae, pre- 
dict the correct sign and magnitude as well as scaling behavior of the proton and 
neutron form factors.3 

Another recent advance has been the development of a formalism to calcu- 
late the moments of distribution amplitudes using lattice gauge theory.12 The 
initial results are extremely interesting - suggesting a highly structured oscillat- 
ing momentum-space valence wavefunction for the meson. The results from both 
the lattice calculations and.QCD sum rules also demonstrate that the light quarks 
are highly relativistic in the bound state wavefunctions. This gives further indica- 
tion that while non-relativistic potential models are useful for ennumerating the 
spectrum of hadrons (because they express the relevant degrees of freedom), they 
are not reliable in predicting wavefunction structure. 

2. EXCLUSIVE REACTIONS 

We will be interested in hadronic and nuclear processes in which all final par- 
ticles are measured at large invariant masses compared with each other, i.e., large 
momentum transfer exclusive reactions. This includes form factors of hadrons and 
nuclei at large momentum transfer Q and large angle scattering reactions such as 
photoproduction 7p + z+n, nucleon-nucleon scattering at large momentum trans- 
fer, photodisintegration yd + np at large angles and energies, etc. A crucial result 
is that such amplitudes factorize 1-3 at large momentum transfer in the form of a 
convolution of a hard scattering amplitude TH which can be computed perturba- 
tively from quark-gluon subprocesses multiplied by process-independent “distri- 
bution amplitudes” $(z, Q) w K contain all of the bound-state non-perturbative h’ h 
dynamics of each of the interacting hadrons. To leading order in l/Q the scattering 
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amplitude has the form 

M= 
/ 0 

‘TH(xj,Q)IIg$(xj,Q)ldxl. 
Hi 

(24 

Here TH is the probability amplitude to scatter quarks with fractional momentum 
0 < Zj < 1 from the incident to final hadron directions, and f$H; is the probability 
amplitude to find quarks in the wavefunction of hadron H; collinear up to the 
scale Q, and 

[dz] = fi dzj6 
j=l 

P-2) 

The key to the derivation of this factorization of perturbative and non-perturbative 
dynamics is the use of the Fock basis {$ n x;, k,;, A;)} defined at equal 7 = t + z/c ( 
on the light-cone to represent relativistic color singlet bound states. The A; specify 
the helicities; x; E (kf+kf)/(p’+p’), (~~XI xi = l), and kli, (cr.I kl;,o), are 
the relative momentum coordinates. Thus the proton is represented as a column 
vector state tiQQQ, T,LJ~~~~, +!~,,,q~ . . . In the light-cone gauge, A+ = A0 + A3 = 
0, there are no ghosts, and only the minimal “valence” Fock state needs to be 
considered at large momentum transfer; any additional quark or gluon forced to 
absorb large momentum transfer yields a power-law suppressed contribution to 
the hadronic amplitude. For example, at large Q2, the baryon form factor can be 
systematically computed by iterating the valence Fock state wavefunction equation 
of motion wherever large relative momentum occurs. To leading order the kernel is 
effectively one-gluon exchange. The sum of the hard gluon exchange contributions 
is the gauge invariant amplitude TH. The residual factor from the wavefunction 
is the distribution amplitude $B which plays the role of the wavefunction at the 
origin in the analogous non-relativistic calculation. Thus we obtain the form: [See 
Fig. l(a)] 

where to leading order in a,(Q2), TH is computed from 3q -t- 7* --+ 3q tree graph 
amplitudes: [Fig. l(b)] 

xi, j y) (24 



and 

~B(x~,Q) =/I d2k,l+v (xiA;)e(Q2 - hi) P-5) 
is the valence three-quark wavefunction [Fig. l(c)] evaluated at quark impact 
separation bl - O(QB1). Since $B only depends logarithmically on Q2 in &CD, 
the main dynamical dependence of &(Q2) is the power behavior (Q2)-2 derived 
from scaling of the elementary propagators in TH. Thus, modulo logarithmic 
factors, 

(a) 

(b) ff + f$ + 

(C) F. = * + 

Fc + 
E + 

ii!! + . . . 
=oE + . . . 

Figure 1: (a) Factorization of the nucleon form factor at large Q2 in QCD. 
The optimal scale Q for the distribution amplitude 4(x, &) is discussed in 
Ref. 1. (b) Th e ea mg order diagrams for the hard scattering amplitude 1 d’ 
TH. The dots indicate insertions which enter the renormalization of the 
coupling constant. (c) The leading order diagrams which determine the 
Q2 dependence of $B(X,Q). 

one obtains a dimensional counting rule for any hadronic or nuclear form factor 
at large Q2(helicity X = A’ = 0 or 6) l3 

P-6) 
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where n is the minimum number of fields in the hadron. Since quark helicity 
is conserved in TH and 4(x;, Q) is the L, = 0 projection of the wavefunction, 
total hadronic helicity is conserved at large momentum transfer for any QCD 
exclusive reaction.13 The dominant nucleon form factor thus corresponds to Fl (Q2) 
or GM(Q~) ; the Pauli form factor F2 (Q2) is suppressed by an extra power of Q2. 
In the case of the deuteron, the dominant form factor has helicity X = A’ = 0. 
The general form of the logarithmic dependence of F(Q2) can be derived from the 
operator product expansion at short distance or by solving an evolution equation 
for the distribution amplitude computed from gluon exchange [Fig. l(c)], the only 
QCD contribution which falls sufficiently slowly at large transverse momentum to 
effect the large Q2 dependence. 

The distribution amplitude for a baryon is determined by an evolution equa- 
tion which can be derived for the Bethe-Salpeter equation at large transverse 
momentum projected on the light-cone: 

2d 3cF 
Q aQ2 + 2/3 -) 4(x;, Q) = 9 /Idy]V(zi, yi)l(Yi, Q), (2.8) 

where GF = (rz,” - 1)/2n, = 4/3, CB = (n, + 1)/2n, = 2/3,p = 11 - (2/3)nf, 

and V(xi, yi) is computed to leading order in cys from the single-gluon-exchange 
kernel. The evolution equation automatically sums to leading order in as(Q2) all 
of the contributions from multiple gluon exchange which determine the tail of the 
valence wavefunction and thus the Q2-dependence of the distribution amplitude. 
The general solution of this equation is 

4(Xi, Q) = x1x2x3 gutI (e,$)m7n dn(xi), (2-Q) 

where the anomalous dimensions 7n and the eigenfunctions in(xi) satisfy the 
characteristic equation: 

x1”2X3 (-7n + %) dn(Xi) = y /‘[dY]V(xi,Yi)dn(yi). 
0 

(2.10) 

In the large Q2 limit, only the leading anomalous dimension 70 contributes to the 
form factor. 
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A useful technique for solving the evolution equations is to construct com- 
pletely antisymmetric representations as a polynomial orthonormal basis for the 
distribution amplitude of multiquark bound states. In this way one obtains a 
distinctive classification on nucleon (N) and delta (A) wave functions and the 
corresponding Q2 dependence which discriminates N and A form factors. The 
antisymmetrization technique is presented in detail in ref. 14 for nuclear systems. 

The result for the large Q2 behavior of the baryon form factor in QCD is 
thenlm3 

GM(Q2) = &‘z2) ,c, d,, (hz$) -7m-7n 
, 

(2.11) 

where the 7 ,, are computable anomalous dimensions of the biryon three-quark 
wave function at short distance and the d mn are determined from the value of the 
baryon distribution amplitude 4B(X, Qi) at a given point Qi, and the normaliza- 
tion of TH. The dominant part of the form factor comes from the region of the 
x integration where each quark has a finite fraction of the light cone momentum; 
the end point region where the struck quark has x = 1 and spectator quarks have 
z - 0 is suppressed by quark (Sudakov) form factor gluon radiative corrections. 

In Table I we give a summary of the main scaling laws and properties of 
large momentum transfer exclusive and inclusive cross sections which are derivable 
starting from the light-cone Fock space basis and the perturbative expansion for 
QCD. 

Table I Comparison of Exclusive and Inclusive Cross Sections 

Exclusive Amplitudes Inclusive Cross Sections 

M - II 4(xi, Q) @ TH(xi, Q) C.&J - n G(xa, Q) 8 d+a, Q) 

4(x, Q) = ~Q[~2kd&(x, k,) G(x, Q) = En ~Qld2kilidxl’l~~(x,k~)12 

Measure 4 in 77 --) MA? Measure G in f2p + eX 

CiEH Ai = AH CiEH Xi # XH 

Evolution 

$f$$$ = as .f[dylV(x, y)+(y) $$$$ = as $ dy P(x/Y)G(Y) 

limQ-+d(X9 9) = ni Xi * Caavor 8 limp+, G(x,Q) = b(x)C 
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I 

Power Law Behavior 

&(A + B -+ C + D) E hf(0c.m.) $&CAB --) CX) E C wf(0c.m.) 

n=nA+nB+nC+nD 

TH: expansion in os(Q2) 

End point singularities 

T&t = na i- nb i- bc i- nd 

d& expansion in CX, (Q2) 

Complications 

Multiple scales 

Pinch singularities 

High Fock states 

Phase-space limits on evolution 

Heavy quark thresholds 

Higher twist multiparticle processes 

Initial and final state interactions 

As shown in Fig. 2 the power laws predicted by perturbative QCD are consis- 
tent with experiment.15 

0 2 4 6 

O2 (GeV*) I,IU ._ 

Figure 2: Comparison of experiment with the QCD dimensional counting 
rule (Q~)~-'F(Q~) - constant for form factors. 

The near constant behavior of Q4G~(Q2) at large Q2 [see Fig. 31 provides a 
direct check that the minimal Fock state in the nucleon contains three quarks and 
that the quark propagator and the qq -+ qq scattering amplitudes are approxi- 
mately scale-independent. More generally, the nominal power law predicted for 
large momentum transfer exclusive reactions is given by the dimensional counting 
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rule .A4 - Q4-nroTF(Bcm) where ~T-JT is the total number of elementary fields 
which scatter in the reaction. . The predictions are apparently compatible with 
experiment. In addition, for some scattering reactions there are 

c-- 
>, 0.6 
c7 

b Proton doto 

Neutron data 

0 IO 20 30 102 IO3 IO4 
(GeV*) 5207A8 

Figure 3: Perturbative QCD predictions for the proton (curve a). and the 
neutron (curve b) form factors given by ref. 3. The data are from ref. 15 

IO ’ 

2 100 
i- 
Y 
+ 
Y 
I+ 
I= 

+? 

\ 
Ll 

2 3 

M r+TT- (GeV) 199684 

Figure 4: Measured cross sectiori16 *for 77 --t T+T- plus 77 --) K+K- 
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integrated over the angular region ] cos 6* ] < 0.3. The errors contain sys- 
tematic as well as statistical contributions. The curve is the perturbative 
QCD prediction. 

contributions from multiple scattering diagrams (Landshoff contributions) which 
together with Sudakov effects can lead to small power-law corrections, as well as 
a complicated spin and amplitude phase phenomenology.2p17 As shown in Fig. 4, 

recent measurements of 77 -+ z+z-, K+K- at large invariant pair mass are 
beautifully consistent with the QCD predictions l3 which are essentially indepen- 
dent of the shape of the-distribution amplitude. In principle it should be possible 
to use measurements of the scaling and angular dependence of the 77 -+ lb40i$f” 

reactions to measure the shape of the distribution amplitude ~M(z, Q).1° Thus 
far experiment has not been sufficiently precise to measure the modifications of 
dimensional counting rules predicted by QCD. 

The actual calculation of d(z,Q) f rom QCD requires non-perturbative meth- 
ods such as lattice gauge theory, or more directly, the solution of the light-cone 
equation of motion1 

The explicit form for the matrix representation of VQCD and a discussion of the 
infrared and ultraviolet regulation required to interpret this result is given in ref. 
1. 

Checks of the normalization of (Q2)“-lF(Q2) re q uire independent determina- 
tions of the valence wavefunction, as has been obtained through QCD sum rules. 
[See Sect. 41 It h as also been suggested that the relatively large normalization 
of Q4GpM(Q2) at large Q2 can be understood if the valence three-quark state has 
small transverse size, i.e., is large at the origin. l8 The physical radius of the proton 
measured from J’l(Q2) at 1 ow momentum transfer then reflects the contributions 
of the higher Fock states qqqg, qqqqq (or meson cloud), etc. A small size for the 
proton valence wavefunction (e.g., Ri** - 0.2 to 0.3 fm) can also explain the large 
magnitude of (k:) of the intrinsic quark momentum distribution needed to un- 
derstand hard-scattering inclusive reactions. The necessity for small valence state 
Fock components can be demonstrated explicitly for the pion wavefunction, since 

%?I~ is constrained by sum rules derived from z+ -+ @V and z” -+ 77. One 
finds a valence state radius Riq - 0.4 fm, corresponding to a probability P& - a. 
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3. HADRONIC WAVEFUNCTIONS IN QCD 

In order to make further contact between QCD and experiment, we require 
knowledge of the hadronic wavefunctions. The most convenient representation of 
the wavefunction is in terms of its Fock components {&} defined at equal r on the 
light-cone. Given the t&, we can calculate current matrix elements (form factors) 
in terms of overlap integrals, structure functions from l&j2 integrated over the 
k,;, and distribution amplitudes from $~~a or T,&~~ integrated over the k,;. 

Is it conceivable that the light cone equation of motion 2.12 for QCD could 
be solved? Recently, H.C. Pauli and I have begun a program to see whether a 
numerical evaluation is possible. The basic step is to impose periodic boundary 
conditions in z- = z--t. The light-cone momenta k+ = k” + k- of each constituent 
take on discrete values 

k+ = Fn, n = 1,2... 

with k- = w. The total charge Q and total light-cone momenta P+ = Ck%T 
commute with HLC and thus can be simultaneously diagonalized. In the case of 
field theories, 1 space and 1 time dimension, there are only a finite number of Fock 
states that can have a given P+, since the k+ are positive and the sum is conserved. 
Thus HLC has a block diagonal form and can be readily diagonalized by analytic 
or numerical methods. We have applied this procedure to the Yukawa t&,l~ and 
Schwinger models (QED with massless and massive fermions in 1 + 1 dimensions) 
with very encouraging results. In the case of massless fermions it is necessary to 
include zero mode k+ = 0 Fock components. The renormalization procedure and t 
other technical aspects are discussed in ref. 19. The spectrum obtained from the 
Yukawa model agrees with that obtained using much more arduous methods. In 
the case of the Schwinger model one immediately finds that the Q = 0 spectrum 
is equivalent to that of non-interacting bosons of mass squared e2/z. 

In the case of QCD in 3 + 1 dimensions one can introduce the k, degrees of 
freedom with a discretized Cartesian or cylindrical basis. By choosing light-cone 
gauge A+ = 0 all the gluon degrees of freedom are physical. Unlike lattice gauge 
theory there are no difficulties with doubling of the fermion spectrum. We expect 
that increasingly accurate results for the spectrum and wavefunctions will be ob- 
tained as the “harmonic resolution” K = LP+/27r is increased since this allows a 
finer sampling of the z; dependence of &he wavefunctions. Further discussion on 
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the role of K is given in ref. 19. 

Until complete solutions are obtained, we need to be content with constraints 
derived indirectly from theory. As emphasized in Sect. 2, there are indications 
that the oulence wavefunction is more compact and relativistic than the overall 
properties of the hadron. The first indications from both lattice gauge theory12 
and QCD sum rules3 (see the next section) suggest that the pion distribution 
amplitude is highly structured in momentum space. 

4. QCD SUM RULE CONSTRAINTS ON HADRON WAVEFUNCTIONS 

Useful constraints3 on the lowest moments of the distribution amplitude can 
be obtained using the QCD sum rule approach of the ITEP Group or by resonance 
saturation of vertex functions. 2o Although the numerical accuracy of these com- 
plementary methods is not known the general agreement between their predictions 
and overall consistency with other hadron phenomenology lends credence to their 
validity. 

Let us first illustrate the QCD sum rule method for the case of the pion 
distribution amplitude. The moments (zn) are expressible as matrix elements of 
gauge invariant local operators: 

(z - P)“+‘jx(xn) = (fllO,(x)l7r(p)) - (n/J7 - 27s(iz. 5)n(ll~(p)) 
1 

where ( ,=/ Xn dx xn4+) 
-1 

Here x = xl -x2, (x0) = 1, jr E 133 MeV, $‘ is the pion four momentum, .zP is a 

light-like vector: z2 = 0, z. p = p+, and E,=s, - Er, where g=sp -igAz . $. 
This relation is simplest in the gauge .a. A+ = 0. The state In) is the true QCD 
vacuum. 

In order to obtain constraints on the (x”) one considers the correlation function 
between two of the On: 

Ino(z, !I) = i 
/ 

&Y e’q’Y(nlT On(Y)Oo(O)I~) 

= (Z * Q)n+21no(q2). 

The “signal” between 0, (‘1 and On(y) is carried by the pion, higher meson res- 
onances, and the continuum. At high q2 + -oo,y2 - 0 (1/Q2) and the opera- 

tor product expansion allows one to calculate Ino as an expansion in powers of 
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l/q2 involving perturbative and (G2) and (&J) “vacuum condensate” contribu- 
tions. On the other hand, 1no(q2) can be computed from a dispersion integral over 
hadron intermediate states. The dual indentification of the power law and reso- 
nance contribution (expressed via a Bore1 transformation) then leads to numerical 
constraints on the lowest moment: The best fit obtained in ref. 5 is 

(x2)r = 0.40, (X2)& = 0.04 - 0.07 

(T~)~ = 0.24. 

((x4)~, is small b u not determined accurately.) The value of the renormalization t 
scale p2 is of the order 1.5 to 2.5 GeV2. 

The relatively large values for the second and fourth moments imply that the 
pion distribution is quite broad. An additional constraint on the distribution 
amplitude is that 4 vanishes at least as fast as 4Fympt at the endpoints x -+ 
fl. Together these constraints imply a double-humped distribution; the model 
proposed in ref. 5 is 

&(x,/L) = :x2(1 - x2). 

There are a number of approximations which make it difficult to assess the 
numerical accuracy of the results. Nevertheless the distribution amplitudes derived 
by Chernyak and Zhitnitsky3 serve as useful forms for making QCD predictions 
for exclusive processes. 

One of the consequences of the QCD sum rule approach is a striking depen- 
dence of the shape of the gmeson distribution amplitude on its helicity. This can 
be traced to the fact that the (t,!&!$~) contribution changes sign because of the 
helicity dependence of the gluon-exchange interaction. A simple model for the p 
distribution amplitude which satisfies the moment constraints is: 

1 
15 
-21x2 x = fl 

V(s9 cl) = hsympt Cx) 
1+ ; ((xl f”,,,2 - ;) x =o. 

In each case the evolution from p = 500 MeV can be computed by expanding 
in terms of two lowest order Gegenbauer polynominal eigensolutions. The strong 
helicity dependence of the p distribution amplitude has interesting consequences 
for the angular dependence of 77 + pp cross sections. 
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The requirement that the nucleon is the I = 4, S = 1 color singlet representa- 
tion of three quark fields in QCD uniquely specifies the xi permutation symmetry 
of the proton distribution amplitude: 

qw) cJc -!- [qupt + upldt d -2Ut+t] ++2~3) +h(x3x2xl)l 

+ 5 [+pt - “t”1dtl +V[&V(~3x2xl) - hV(xlx2x3)j 

+ (1 + 2) + (2 + 3) 
The neutron distribution amplitude is determined by the substitution & = -& 
(u + d). Moments of the nucleon distribution amplitude can be computed from 
the correlation function of the appropriate local quark field operators that carry 
the nucleon quantum numbers. 

The model wavefunction proposed in ref. 3, consistent with the derived mo- 
ments, is 

hV(x1x2x3) = hqmpt' [ 
11.35(x: + $) + 8.82~: - 1.68~3 - 2.94 - 6.72(x; - ~1) 1 

where 4=vrnpt = 120 ~1~2x3. The renormalization scale is ~1 s 1 GeV. The 
normalization of the nucleon valence wavefunction is also determined: 

f~(k = 1 GeV) = (5.2 f 0.3) x low3 GeV. 

A striking feature of the QCD sum rule prediction is the strong asymmetry implied 
by the first moment: 65% of the proton momentum (at PZ =+ 00) is carried by 
the u quark with helicity parallel to that of the proton. [See Fig. 5.1 The two 
remaining quarks each carry - 15 to 20% of the total momentum. 

$.,,(x) =V(x)-A (xl 

Figure 5: QCD sum rule prediction for the proton distribution amplitude. 
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From ref. 3. 

The striking shape of the CZ wavefunction is due to the fact that only the first 
few eigensolutions to the nucleon evolution equation are used as a basis. Since 
one is so far from full evolution, there is no compelling reason why this should be 
correct. The essential feature of the sum rule predictions is the strong asymmetry, 
together with the value of f~ which give perturbative predictions for the proton 
and neutron form factors consistent both in sign and magnitude with experiment. 

_ [See Fig. 2); 

5. APPLICABILITY OF PERTURBATIVE QCD EXCLUSIVE PROCESSES 

An important question in QCD phenomenology is the range of applicability of 
the factorization formula and perturbation theory for exclusive processes. Recently 
Isgur and Llewellyn Smith 21 have argued that the non-perturbative contributions 
could be dominant even at very large momentum transfer, obscuring any possibility 
of empirically testing the perturbative predictions. 

The Isgur-Llewellyn Smith discussion is based on several assumptions: 

(1) They note that the asymptotic form of the distribution amplitude gives 
contributions to Q2FK and Q4G,u which are M i and 10m2 of the observed pion and 
nucleon form factors, respectively, at the largest Q2 measured. However, dasyrnpt 
is not expected to be applicable to physical hadrons until enormous Q2 where 
the non-singlet structure functions are fully evolved to delta-functions at x=0. 
Furthermore, we note that those perturbative predictions that are independent of 
the shape of distribution amplitudes such as the 77 + ?r+zr- and 77 -+ K’K- 
cross sections are in excellent agreement with experiment in form and magnitude. 
(See Sect. 2.) As noted in Sect. 4, the wavefunctions derived by Chernyak 
and Zhitnitsky3 consistently give form factor predictions in agreement with the 
experimental sign and magnitude. (See Fig. 2) 

(2) It has been claimed that nonperturbative contributions to electromagnetic 
form .factors calculated from the overlap of non-relativistic. quark-model wave- 
functions can be numerically large even though such contributions are asymp- 
totically power-law suppressed compared to the hard-scattering perturbative con- 
tributions. Such calculations are highly sensitive to the boosted form of hadron 
wavefunctions. If $NR N exp[-ak2], then the boosted wavefunction has the form 
+LC - (exp - akt/x(l - x)] in light-cone variables. Using the Drell-Yan convo- 

15 



lution formula this form gives a strongly (Gaussian) suppressed contribution at 
large g2 as shown at this workshop by Jacob and Kisslinger. The calculations of 
ref. 21 are based on wavefunctions which are only power- law suppressed at x = 1 

and exponentially in k:, apparently violating rotational invariance. 

(3) IsgurL1 has argued that higher-twist contributions (1/Q2)“+’ can domi- 
nate leading twist (~Y,/Q’)~ contributions until very large Q2 since the latter are 
numerically suppressed by the small value of ad(Q2). However we note that in 
explicit calculations of the higher twist terms one finds at least as many powers of 
cys(Q2) as occur in the leading twist result. 

(4) In some cases, perturbative calculations are sensitive to endpoint regions 
of integration in z;, and are thus numerically sensitive to non-perturbative effects. 
This criticism is particularly valid for the Chernyak and Zhitnitsky wavefunction 
in which a spectator quark in TH carries only - & of the light-cone momentum. If 
the quark propagators have an intrinsic mass-scale p2 then the proton form factor 
has denominators of the form, 

- Q2 + M/(x)(y) - Q2 + 36~~. 

This would not be inconsistent with the mass corrections of the phenomenological 
form factors if ~5200 MeV. 

Clearly the QCD sum rule wavefunctions have potential difficulties with end- 
point singularities unless this region is strongly suppressed in 2’~ - e.g., by the 
Sudakov quark form factors. A more compelling reason to be suspicious of the ap- 
plicability of the QCD hard scattering formula to exclusive reactions is the striking 
behavior of the spin asymmetry AN and spin correlations observed at ~~21 GeV 
in large angle pp --) pp scattering.23*24 However, here the theory is much more 
complicated than the form factor predictions, because of Landshoff pinch singu- 
larities. The strong spin dependence of baryon wavefunctions as indicated by the 
QCD sum rule approach may also be very relevant to the eventual understanding 
of the anomalous spin results. 

6. RECENT DEVELOPMENTS IN THE THEORY OF EXCLUSIVE PRO- 
CESSES 

In this section I will outline some areas of recent progress in applying QCD 
perturbation theory to high momentum transfer exclusive process. 
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(1) The complete calculation of the tree graph structure of both 77 --) Mi@13 
and 77 + BB25 amplitudes has now been completed. The CZ proton distri- 
bution amplitudes give predictions for 77 --+ pfi in rough agreement with the 
experimental normalization, although the production energy is too low for a 
clear test. The 7*7* ---) Ml\;i amplitudes for off-shell photons have now been 
calculated by Gunion et al. .26 The results show important sensitivity to the 
form of the meson distribution amplitudes. The consequences of [gg) mixing 
in singlet mesons in 77 processes is discussed in ref. 27. 

(2) Mass corrections to QCD hard scattering amplitudes for a number of heavy 
quark production amplitudes have been computed. Exclusive pair production 

of heavy hadrons IQ&d, IQlQzQd consisting of higher generation quarks 
(Q; = t, 6, c and possibly s) can be reliably predicted28 within the framework 
of perturbative QCD, since the required wavefunction input is essentially de- 
termined from nonrelativistic considerations. The results can be applied to 
e+e- annihilation, 77 annihilation, and W and 2 decay into higher gener- 
ation pairs. The normalization, angular dependence, and helicity structure 
can be predicted away from threshold, allowing a detailed study of the ba- 
sic elements of heavy quark hadronization. A particularly striking feature of 
the QCD predictions is the existence of a zero in the form factor and e+e- 
annihilation cross section for zero-helicity hadron pair production close to a 
specific timelike value q2/4M$ = mh/2mt where .mh and me are the heavier 
and lighter quark masses, respectively. (See Fig. 6) 

I 2 3 4 

8~85 q2/4M$ 5207A24 

Figure 6: Perturbative QCD prediction28 for RF* = Q e+c---tp+p!. 
U(e+e-+FF 

, 
This zero reflects the destructive interference between the spin-dependent and 
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spin-independent (Coulomb exchange) couplings of the gluon in QCD. In fact, 
all pseudoscalar meson form factors are predicted in QCD to reverse sign from 
spacelike to timelike asymptotic momentum transfer because of their essentially 
monopole form. For mh > 2rnt the form factor zero occurs in the physical region. 

(3) The formal properties of distribution amplitudes, their relation to the Bethe- 
Salpeter amplitudes, operator product expansion, and the use of conformal 
symmetry is discussed in refs. 5 and 29. The complete analysis of meson 
form factors thoughnext to leading order is discussed in ref. 30. It has been 
conjectured 31 that the eigensolutions of the evolution equations for distribution 
amplitudes can be specified from conformal symmetry and the values of the 
anomalous dimensions for QCD if p = 0 ( w lc can be effected by modifying h’ h 
the number of fermions). This has been verified to two-loop order in ref. 
31 for f$fej theory using dimensional regularization. However, the conformal 

predictions are not consistent with the explicit calculations of the order ai 
kernel in QCD. The reason for this breakdown is apparently related to the 
infrared sensitivity of the ladder contribution to the evolution equation kernel. 

(4) The methods developed in ref. 1 can be used to calculate other types of 
exclusive amplitudes such as weak and electromagnetic hadron decays. In ad- 
dition, higher twist contributions, such as the leading 0(1/Q2) longitudinal 
contribution to the pion structure function at x + 1, have been confirmed 
experimentally in ?rN + ~r+lr-X experiments.33 In the case of inclusive jet 
experiments one calculate the contribution of “direct” higher twist amplitudes 
such as ?rg -+ qq which lead to dijet events in IAN collisions with no beam 
fragments.34 A beautiful confirmation of these QCD predictions has been re- 
ported in ref. 35. 

6. APPLICATIONS TO NUCLEAR PHYSICS 

There are a number of interesting consequences of quark and gluon degrees 
of freedom in nuclei which are outside the usual domain of traditional nuclear 
physics. 

(1) The nuclear force at very short distances can be calculated by perturbative 
methods.36 A treatment of this type from the standpoint of evolution equations 
of the six-quark system and a derivation of the short-distance repulsion of the 
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nucleon-nucleon configuration is discussed in ref. 37. 

(2) The observed light-cone 6quark wavefunction has five-independent color sin- 
glet components38 and can be systematically evaluated at short distances.37B3g 
This leads to exact analytic results for the deuteron form factor at large mo- 
mentum transfer and an understanding of the role of hidden color. This is 
discussed in detail in Ji’s talk at this workshop. QCD predicts extra, hidden 
color degrees-of freedom in all nuclei. Such exotic states should be excitable 
in Compton scattering, yd --f -yd, etc. 

(3) The QCD prediction for fd(Q2) E Fd(Q2)/$‘$(Q2/4) for the leading (helicity- 
zero to helicity-zero) deuteron form factor is remarkably consistent with exper- 
iment for Q2 > 1 GeV2 when expressed in terms of reduced nuclear amplitudes, 
a formalism which covariantly removes the fall-off due to nucleon substructure. 
(See Fig. 7) Scaling 1 aws for other high momentum transfer nuclear exclusive 
processes such as -yd + pn are discussed in ref. 40. The possibility of zeros in 
the non-leading helicity nuclear form factors analogous to the zeros that occur 
in heavy quark hadron form factors should be investigated. 

(4) The fact that the nucleon is a composite system whether considered as Skyrmion 
soliton or as quark-gluon bound state, implies that it does not obey a Zoccrl 
Dirac equation in an external potential. 

(5) There are a number of novel QCD effects which arise because of coherent effects 
in nuclear targets. These include effects which occur during the propagation42 
of quarks and gluons through nuclear matter such as the Landau-Pomeranchuk 
formation zone,43 the breakdown of factorization at incident parton energies 
below a scale set by the nuclear size, 42 shadowing phenomena, color trans- 
parency in high momentum transfer quasi-exclusive reactions,44 etc. 
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Figure 7: (a) Comparison of the asymptotic QCD prediction4’ for fd(Q2) 
with experiment using FN(Q~) = [l + (Q2/0.71GeV2)lm2. The nor- 
malization is fit at Q2 = 4 GeV2. (b) Comparison of the prediction 
[l + (Q2/mf$]fd(Q2) o( (.tnQ2)-‘-(2/5)(c~IB) with data. The value rng = 
0.28 GeV2 is used. 
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