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ABSTRACT 

We investigate non-perturbative contributions to ultra violet divergences in 

several field theories. Although we concentrate on finite theories with extended 

supersymmetry, we also present some results for asymptotically free theories. 

The N=2 supersymmetric o models that we study at the end of the paper are 

important in the theory of superstrings. Unfortunately, while we are able to rule 

out instanton contributions to the p functions of these theories, we do not have 

a complete non-perturbative proof that they are conformally invariant. Sigma 

models with N=4 supersymmetry are shown to be both perturbatively and non- 

perturbatively finite. 



Ultraviolet properties of renormalizable field theories are usually studied in 

perturbation theory. The modern theory of the renormalization group”’ justifies 

this treatment for asymptotically free theories and invalidates it for field theo- 

ries defined by non-Gaussian fixed points. There remains an interesting class of 

theories for which the question of non-perturbative contributions to ultraviolet 

quantities remains unresolved. These are the so called finite theories in which 

coupling constant renormalization is absent to all orders in perturbation theory. 

In this note we will present some non-perturbative results about the ultraviolet 

behavior of such finite theories. We will show that similar questions arise (and 

can be resolved) in asymptotically free theories when we discuss the ultraviolet 

behavior of quantities which vanish to all orders in perturbation theory. We note 

that Wallace”’ has discussed non-perturbative infinities in the context of models 

in statistical mechanics. 

Historically, the first example of a non-perturbative divergence is the diver- 

gence of the 8 dependent part of the vacuum energy of the O(3) non-linear o 

model in two dimensions.“’ This is the paradigm for the effects we will discuss. 

The quantity in question vanishes to all orders in perturbation theory, and thus 

its leading non-perturbative contribution (for small coupling) is well defined and 

does not depend on how we choose to sum the perturbation series.14’ Further- 

more, since the theory is asymptotically free we may hope to compute this di- 

vergent quantity exactly in the dilute instanton gas approximation.Monte Carlo 

calculations [‘I show that this hope is justified and the deviation from the dilute 

gas behavior is ultra violet finite. 

While the 8 dependent vacuum energy is not a terribly interesting quantity, 

one may speculate161 that similar non-perturbative divergences create an anomaly 

in the higher conservation laws which make the model completely integrable. 

This would explain why there is no Zamolodchikov S-matrixI” for the o model 

at non-zero 8. 

A more interesting example of a calculable non-perturbative ultraviolet di- 
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vergence can be constructed in four dimensions. Consider Quantum Chromody- 

namics coupled to a single massless fermion and a set of massive scalars. The 

fermion mass is zero to all orders in perturbation theory, but instantons give a 

non-zero contribution to it of the form* 

PC 

ma 
/ 

dp boln(pp) 
pz” 

0 

where 

bo=$S 

S is proportional to the number of scalar SU(3) multiplets, weighted by their 

Dynkin index. Clearly we can choose the scalars so that the integral diverges at 

p = 0 even though the theory is asymptotically free. Thus a non-perturbative 

renormalization of the fermion mass is necessary in this model. If a non-zero 

bare mass is present, it diverges logarithmically in perturbation theory while the 

non-perturbative divergence is stronger - power like. It is clear that this example 

is typical of a large class of similar phenomena. We mention in passing that this 

sort of mechanism may invalidate the axion solution of the strong CP problem if 

QCD is insufficiently asymptotically free at high energies. 181 

We now turn to the main subject of this note, a discussion of non-perturbative 

divergences in two dimensional Q models with extended supersymmetry (SUSY). 

We first discuss the N=4 models and argue that they have no non-perturbative 

divergences. We then proceed to N=2 models where our results are much less 

complete. We show that instantons do not produce infinities in the dilute gas 

approximation, but we are unable to make any sort of argument about other 

non-perturbative effects. This is a pity, for it is the conformally invariant N=2 

0 models which provide candidate vacua for superstrings. PI 

* We have inserted an arbitrary infrared cutoff in this expression, which does not affect its 
ultraviolet behavior. A physical infrared cutoff automatically appears if we study the system 
at high temperature. 
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We do not pretend to be able to make a true non-perturbative construction 

of models with N=4 SUSY. Thus our “proof” of the absence of non-perturbative 

infinities in these theories will rely on certain plausible assumptions about prop- 

erties of their exact solutions. Firstly we assume that N=4 SUSY is a true sym- 

metry of the model. In particular, if we consider two of the supercharges (say 

&Et”) then the energy momentum tensor 8,” is in an N=2, QE-supermultiplet with 

an axial vector current Ji. Tracelessness of 8,, is equivalent to conservation of 

J;. 

In addition, we assume that the SU(2) y s mmetry which rotates the four 

supercharges into each other is a symmetry of the exact theory. This symmetry 

is vectorlike and unlikely to suffer from anomalies. There exist non-perturbative 

regulators which preserve it (the same cannot be said for SUSY). 

In the classical limit, the current Ji is part of a non-abelian extension of the 

supercharge automorphism group. The larger group is SU(2)XSU(2) and it is 

chiral. The vectorlike group is the diagonal subgroup of SU(2)XSU(2). JE is 

thus part of a vector multiplet of SU(2). Th e crux of our argument is the claim 

that the non-abelian symmetry guarantees that Ji is anomaly free. Sohnius and 

West [“I have given a similar argument for N=4 gauge theories in four dimensions. 

The Lagrangian of the theory is 

4” are coordinates on the manifold, which is assumed to be Hyper-Kahler, and 

have 4n real dimensions. Thus, the tangent space indices have a natural splitting 

of the form (a, A) where A is 2n dimensional and a is an SU(2) doublet index. 

In this basis the curvature tensor has the form c&,cCdnABCD We will use fermion 

fields adapted to this basis. GaA is for each A and a a one component left moving 

Weyl spinor. xaA is the corresponding right moving spinor. The SU(2)XSU(2) 
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group consists of separate SU(2) rotations on $J and x. The scalar fields are 

singlets. In terms of $J and x the four fermion interaction is 

This is invariant under SU(2)XSU(2), and it is easily verified that the fermion 

kinetic term is as well; 

We have assumed that N=4 SUSY and the vectorlike SU(2) symmetry are 

properties of the exact theory. This implies that finiteness of the theory is equiv- 

alent to conservation of the axial current Ji Furthermore this current is part of 

an SU(2) vector multiplet. We will now argue that the divergence of this current 

is zero. First we claim that the divergence must be an operator of dimension 

two. To prove this we will have to make one more assumption, namely that if the 

theory is not finite, it is at least asymptotically free. Any operator of dimension 

other than two in the current divergence must be multiplied by an appropriate 

power of the renormalization group invariant mass scale M. A negative power 

of M (corresponding to an operator of dimension greater than two) would imply 

that the divergence did not vanish as the coupling went to zero, which is incon- 

sistent. A positive power of M would imply that the divergence (and thus the p 

function) vanished like exp - (s &). Th is consistency condition for the p func- 

tion at small coupling is satisfied only if it is linear in the coupling, a possibility 

which is ruled out by explicit perturbative calculations. 

We can now classify all dimension two operators that could appear in the di- 

vergence of the axial current. There are operators with no fermions, two deriva- 

tives and any number of bose fields, operators with two fermions, one derivative, 

and any number of bose fields, and operators with four fermions, no derivatives 

and any number of bose fields. Note that Lorentz invariance requires that the 

two fermion terms contain only left movers, or only right movers, while the four 

fermion terms must contain two left movers and two right movers. It is therefore 

convenient to classify bilinears in purely left moving or right moving fields. The 
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product of two left moving fermions is a linear combination of the operators 

and 

sAB = +aA$bBEab 

The corresponding operators for right movers will be called kV84B and TAB. 

The basic tool that we will use to restrict the possible combinations that can 

occur in the divergence of Jc is the Wess-Zumino consistency condition “‘I These 

conditions can be stated in the following operator form. If Tm are the generators 

of an internal symmetry group, and Dm are the divergences of the corresponding 

currents, then: 

[TV, P] - [P, Dm] = fmnk~k 

where jmnk are the structure constants of the group. These relations follow 

from the usual postulates of current algebra and are valid in any local quantum 

field theory. In the case at hand the group is SU(2)XSU(2) and the diagonal 

currents have zero divergence. The relations then say that the divergence of the 

axial current is an SU(2) vector, and that the commutator of the divergence of 

the axial current with the axial charge is symmetric in its SU(2) vector indices. 

It is now easy to see that terms in the divergence of JF which have no 

fermi fields in them must be absent because they cannot transform like vectors. 

Furthermore, the two fermion terms, which must be proportional to V and/or 

W are also absent, since the commutator of the axial charge with V or W is 

antisymmetric in SU(2) d in ices. There are three types of possible four fermion 

terms, schematically: VW,SW, and VT. The SW and VT terms transform like 

V and W under axial transformations and so these terms must be absent. The 
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only remaining term is: 

. . 
D’ = E” k vJbBwkcDFABCD 

where FABCD is an arbitrary function of bose fields. The commutator of this 

with the axial charge 7” is indeed symmetric in i and j. We will need another 

argument to eliminate this term. Note that if the axial charge was a conserved 

operator then this term could not appear in the axial current divergence. The 

divergence of the axial current should be (3,1)+(1,3) under SU(2)XSU(2) while 

the VW term transforms as (3,3). This argument would be sufficient to rule 

out a divergence for the axial current in perturbation theory, where we would 

expect the anomaly to be a total divergence, and not to violate conservation of 

the axial charge. In order to prove that there is a conserved axial charge without 

recourse to perturbation theory we will have to be a bit more specific about how 

we propose to define the theory 

The Lagrangian that we have written contains four fermi interactions. We can 

introduce auxiliary fields to make the Lagrangian quadratic in fermi fields. This 

can be done in various ways, all of which share the property that the auxiliary 

fields are SU(2)XSU(2) singlets. N ow define the theory by some regularization 

of the functional integral of the Lagrangian with auxiliary fields. Assume that 

the regulator preserves the vectorlike diagonal SU(2) subgroup, and consider 

the divergence of the axial current. For fixed values of the external fields the 

divergence of the current depends only on the external fields. But all of the Bose 

fields are singlets under the vectorlike SU(2) while the divergence is an SU(2) 

vector. Thus the divergence vanishes. Note that it vanishes for finite values of 

the cutoff, not just in the limit as the cutoff goes to infinity. It therefore vanishes 

even after integration over the Bose fields. 

We thus see that there are many regularizations of the functional integral 

which preserve the axial symmetry. We must assume that the theory with N=4 

SUSY can be defined as the limit of a regularized theory of this sort. The 
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regulator will probably not preserve SUSY, but we can recover a supersymmetric 

limit by adding appropriate counterterms to the action. We assume that this 

can be done without violating the vectorlike SU(2). Furthermore we assume 

that the necessary counterterms do not explicitly violate SU(2)XSU(2). That is, 

possible violations of this axial symmetry are assumed to arise, as usual, only 

from regularization of the fermion determinant. SU(2) invariance then shows 

that such violations do not occur. It is thus very plausible that the theory with 

N=4 SUSY has a conserved multiplet of axial currents. 

Of course, since the above method of constructing the theory makes SUSY 

very obscure, we have no way of knowing whether the conserved current we have 

constructed is in a multiplet with the energy momentum tensor. However, it 

gives us a conserved chiral charge with which to classify operators which can 

appear in the divergence of the axial current which is in the supermultiplet of 

the energy momentum tensor. This chiral charge generates the SU(2)XSU(2) 

rotations on 11, and x, and it is sufficient (as we have seen above) to show that 

the divergence of the superpartner of the energy momentum tensor is zero. This 

implies that the theory is finite. Note that previous proofs of finiteness of this 
theory [I21 [I31 eliminated perturbative infinities only and assumed that the hyper- 

Kahler manifold is compact. 

Field theories with exact conformal invariance are particularly interesting in 

two dimensions, where they enable one to construct classical solutions of string 

theories.“41 However, models with N=4 SUSY do not lead to particularly promis- 

ing string phenomenology. N=2 models with vanishing Ricci tensor, however, 

appear to be the most likely candidates for string theories of the real world. Un- 

fortunately, the arguments we have presented so far do not apply when N=2. 

The non-abelian symmetry groups which played such a prominent role in our 

argument, are replaced by abelian groups. These theories were recently shown to 

be perturbatively finite.[l” Here we will show that the leading non-perturbative 

effect is ultra violet finite. 
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If we assume that these models make sense as interacting quantum field 

theories, they are either finite or asymptotically free. We can therefore use weak 

coupling techniques to study their short distance behavior. The leading non- 

perturbative effect is then found in the semi-classical approximation. Since II2 is 

non-trivial for Kahler manifolds, these models have instantons. For weak coupling 

they can be treated in the dilute gas approximation. Our examples of non- 

perturbative infinities- teach us that if the perturbative beta function vanishes, 

the integral over the instanton scale size might diverge in the ultra violet. It 

might then lead to a non-zero beta function. We will now show that due to the 

presence of fermionic zero modes, the p integral converges in the ultra violet. No 

infinities are generated to all perturbative orders around the instanton. 

Let us compute the instanton contribution to the coefficient of a term in the 

effective action. The coefficient of a term of dimension 6 has dimension 2 - 6. 

Since the perturbative beta function vanishes, the integral over scale size behaves 

in the ultra violet as 

J dp 
p-3+6 

It converges for 6 > 2 and diverges for 6 5 2. We will show that 6 > 2. 

We should first determine the number of fermionic zero modes.“” In general, 

the axial anomaly 8‘ J5 oc P R mn gives us an index theorem. In our case R,, = 0 

and hence AQ5 = 0 (Q5 is the axial charge) in the background of the instanton 

and one might think that there are no fermionic zero modes at all. A closer 

analysis shows that there are at least eight fermionic zero modes (four left movers 

and four right movers). If the instanton is neither self-dual nor anti-self-dual, 

these eight zero modes are generated by applying the four SUSY charges and the 

four superconformal charges on the classical solution. 

If the instanton is self-dual or anti-self-dual (holomorphic or anti- holomor- 

phic) only four zero modes are generated this way. Two of the SUSY charges and 
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two of the superconformal charges annihilate the classical solution.* These four 

zero modes contribute AQs = 4. Since the index theorem demands AQs = 0, 

at least four more zero modes should exist (there may, of course, be more than 

these eight zero modes). The occurrence of more zero modes than are implied by 

the index theorem is familiar from the example of SUSY QCD.[‘“’ We conclude 

that to leading order instantons contribute to the coefficient of an operator with 

at least eight fermions- and possibly some derivatives. For such an operator 6 2 4 

and the p integral is clearly ultra violet finite. It is interesting to note that unlike 

other cases, this operator is invariant under all the classical symmetries of the 

Lagrangian - U(l)XU(l). Th ere f ore its coefficient is generically non-zero already 

in perturbation theory. 

One might worry that since there is no index theorem here, some of these zero 

modes might be tied together by loops - higher order perturbative corrections 

around the instanton. Then instantons might contribute to the coefficient of 

lower dimension operators and ultra violet divergences might arise. This does 

not happen. Two SUSY collective coordinates can be introduced for the two 

SUSY zero modes. Since the theory is perurbatively finite, two superconformal 

collective coordinates can also be introduced (because before the p integral is 

performed the theory is conformally covariant to all perturbative orders around 

the instanton). The “index” theorem AQs = 0 then guarantees the existence of 

the other zero modes. For instantons which are not self-dual these other zero 

modes are also related to SUSY and collective coordinates can be introduced for 

them as well. We conclude that to all (perturbative) orders around the instanton 

we do not lose the zero modes. Instantons contribute only to terms in the effective 

action with very high dimension and their contribution is finite. 

* A similar phenomenon happens in SUSY gauge theory in four dimensions. For a discussion 
on the two dimensional CT model in a particular case see e.g. IlTl 
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