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ABSTRACT 
We study the creation of particles by inhomogeneous perturbations of spa- 

tially flat Friedmann-Robertson-Walker cosmologies. For massive scalar fields, 
the pair creation probability can be expressed in terms of geometric quantities 
(curvature invariants). The results suggest that inhomogeneities on scales up to 
the particle horizon will be damped out near the Planck time. Perturbations 
on scales larger than the horizon are explicitly shown to yield no created pairs. 
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1. Introduction 

In recent years, the study of quantum fields in curved spacetime has had a 

profound impact on our understanding of cosmology. It is now recognized that 

both the effects of curvature on quantum fields and the influence of quantum field 

dynamics on the metric are likely to be important in determining the evolution 

of the early universe. Most recent work on the subject has concentrated on the 

dynamics of interacting gauge theories in curved space, with particular attention 

to such issues as asymptotic freedom, symmetry restoration, and the possibility 

of inflation. 2 

Yet, one of the most remarkable results in the subject remains Parker’s dis- 

covery almost twenty years ago that the expansion of the universe can create 

pairs of particles. Parker’s work3 focused on particle production in the homo- 

geneous, isotropic Friedmann-Robertson-Walker (FRW) models. In addition to 

establishing the possibility of pair creation, he showed that fields obeying confor- 

mally invariant wave equations (e.g., two-component neutrinos, massless Dirac 

particles, and photons in four dimensions) will not be produced, because the 

FRW models are conformally flat. Subsequently Zel’dovich and Starobinsky4 

considered particle creation in a broader class of homogeneous cosmologies and 

found that conformally invariant particles will be produced when the conformal 

symmetry of the FRW models is broken by anisotropy. 

. 

In this paper, we extend this work by considering the production of scalar par- 

ticles due to inhomogeneous perturbations of conformally flat spacetimes. This 

calculation is of cosmological interest because, if inhomogeneity is present in the 

universe near the Planck time, it can act as an efficient source of relativistic 

particles; in particular, it may contribute significantly to the observed entropy 
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of the microwave background and thus help explain the origin of the hot matter 

in the early universe. The possibility of particle creation is readily understood 

in field theoretic terms: whenever a quantum field couples to a classical time- 

dependent source, the breaking of time-translation invariance implies that the 

field energy need not be conserved; as a consequence, particles can be created. 

Thus, fields in a tim&dependent inhomogeneous background should be excited. 

(Time-independent sources can create particle as well; however, see the discus- 

sion on this point in Section 4.) For weak inhomogeneities in a flat Minkowski 

background, the particle creation rate is negligible because the energy in the 

gravitational field is small. In the cosmological case, energy is provided by the 

expansion of the universe, while the inhomogeneity serves to break conformal 

symmetry. 

Throughout, we shall work entirely in the external field approximation, that 

is, we take the classical perturbed metric to be given and study the production of 

matter fields in this fixed background. This is analogous to the usual treatment of 

Coulomb scattering in quantum electrodynamics (in which the vector potential 

is fixed) and is believed to be a consistent truncation of the theory when the 

backreaction of the quantum fields on the geometry is small. Whether it is a 

good approximation in considering particle creation in the very early universe is 

more doubtful. The work of many authors 495 on particle creation and vacuum 

polarization in homogeneous cosmological models shows that the backreaction 

can dramatically alter the evolution of the universe. In particular, any initial 

anisotropy in the expansion is rapidly damped out on the order of the Planck time. 

Parker has used these results to postulate a ‘quantum gravitational Lenz’s law’ 

which states that “the reaction of the particle creation back on the gravitational 
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field will modify the expansion in such a way as to reduce the creation rate”.6 

This behavior is intuitively plausible in the quantum electrodynamics analogy: 

when external electric fields are strong, pairs are spontaneously produced which 

neutralize the charges which produce the external fields. It is thus precisely when 

particle creation becomes important that the external field approximation fails. 

Applied to the present case, Parker’s hypothesis strongly suggests that par- 

ticle creation in an inhomogeneous cosmology will similarly tend to damp out 

the initial inhomogeneity. Cosmological particle creation may thus help account 

for the observed homogeneity and isotropy of the universe. If particle horizons 

are present, however, causality limits the damping of inhomogeneous perturba- 

tions to scales smaller than the horizon. As an indication of this, we will find 

that perturbations obeying Einstein’s equations do not give rise to pair creation 

when their wavelengths are larger than the particle horizon. Unfortunately, in 

the standard FRW cosmology, during the epoch when particle creation can be 

significant, the comoving size of the present visible universe is much larger than 

the horizon, and particle creation alone cannot account for the observed homo- 

geneity. However, it has been shown that vacuum polarization5 can give rise to 

horizon-free models in the FRW case, and we expect the same to hold true for 

weakly perturbed models.’ 

Although the external field approximation is inadequate for the problem at 

hand, nevertheless it is the starting point for a systematic perturbation expan- 

sion in the case of weak fields. Our expression for the pair creation probability in 

terms of spacetime integrals of geometric invariants will be formally correct; the 

backreaction will determine quantitatively how these invariants evolve. Thus, in 

the homogeneous anisotropic case, this approach gives results for pair creation in 
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agreement with those of the effective action approach,* which explicitly incorpo- 

rates backreaction effects. A similar agreement will hold in the inhomogeneous 

case. It would be of interest to study the backreaction problem for inhomo- 

geneous cosmology as well.’ The first half of this problem has been solved by 

Horowitz and Wald, lo who used an axiomatic approach to find the expectation 

value of the stress-energy tensor (the source in the semiclassical Einstein equa- 

tions) of a conformally invariant scalar field for arbitrary perturbations around 

a conformally flat spacetime. However, a backreaction calculation requires one 

to postulate a dynamical theory of gravity near the Planck time. To date, such 

calculations have generally assumed semiclassical Einstein gravity, that is, clas- 

sical general relativity modified only by the one loop quantum effects of matter 

fields. In leaving open the backreaction question, we may contemplate a broader 

range of possibilities. 

A final, more speculative motivation for the study of cosmological particle cre- 

ation is the light it may shed on the thermodynamic aspects of gravity. Although 

the entropy of the gravitational field has so far been defined only for spacetimes 

with event horizons, Penrose 11 and Hu12 have discussed the possible meaning of 

gravitational entropy in a general cosmological context. l3 Penrose suggested the 

Weyl tensor Cabcd (which measures the deviation from conformal flatness) as a 

measure of the gravitational entropy and argued that the present ‘low entropy’ 

state of the universe (as compared to a universe full of black holes), and thus the 

arrow of time, could be explained by postulating C&d = 0 at the initial singular- 

ity (a condition presumably brought about by as yet unknown time asymmetric 

physical laws acting near the singularity). This definition is made plausible by 

the fact that, in general relativity with classical matter sources obeying an energy 
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condition l4 (and zero cosmological constant), the universe becomes clumpier and 

more anisotropic as it evolves, so C&d grows with time. l5 Hu proposed that the 

matter entropy generated in cosmological particle production l6 be used as a mea- 

sure of the change in the gravitational entropy. In this view, particle creation and 

backreaction damping of anisotropy act as a ‘transducer’ of gravitational entropy 

to matter entropy, leading from a wide class of initial conditions to a universe 

that nearly satisfied the Penrose hypothesis (Cabed = 0) near the Planck time. 

In support of this picture, the total probability of producing a pair of massless 

conformally coupled scalar particles in a homogeneous anisotropic cosmology 495 

(and thus th e o a matter entropy produced) is proportional to the spacetime t t 1 

integral of the square of the Weyl tensor Cab&C abed. Soon after the Planck time, 

particle creation effects are negligible, and Cabed again grows classically. The de- 

crease of the gravitational entropy in quantum processes and its growth during 

‘classical’ epochs is similar to the behavior of black hole entropy. In this paper, 

we find a similar form for the particle creation probability, which suggests that 

the above heuristic picture, if correct, can be extended to inhomogeneous space- 

times as well. This is not surprising, because the Weyl tensor gives a measure of 

inhomogeneity as well as anisotropy. 

We now give a brief outline of our method of calculation. The excitation 

of free fields (i.e., fields with no nongravitational interaction) by a curved back- 

ground is usually studied by means of a Bogoliubov transformation of the Heisen- 

berg equations of motion, which gives an exact solution of the problem.’ For 

spatially homogeneous metrics, this method is convenient because mode solu- 

tion of the curved space field equation can be separated, and the time evolution 

of individual modes can be given exactly in favorable cases. For inhomogeneous 
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spacetimes we resort to a perturbative treatment: we assume the geometry can be 

written as a flat Minkowski background plus a small perturbation, gab = vab + hab, 

and expand the scalar field Lagrangian in powers of hab. In Section 2 we carry out 

the expansion to lowest order and calculate the pair creation probability via the 

S-matrix. In Section 3, we generalize the result to perturbations around confor- 

mally flat metrics, gab-= a2(v)qab -I- Hab, which are of cosmological interest (a is 

the Robertson-Walker scale factor, 77 is conformal time). Our conclusions follow 

in Section 4, and we relegate most of the technical details to the Appendices. 

Here, we briefly mention the relation of this paper to previous work. Birrell 

and Davies’ studied particle creation in homogeneous anisotropic spacetimes 

using a perturbative treatment of the Heisenberg equations of motion. The results 

of this paper include their work as a special case. The calculation of (Tab) by 

Horowitz and Waldl’ includes vacuum polarization and particle creation effects 

to lowest order in hat,, but the energy density of created particles considered here 

arises only in second order in hab and is not included in their computation. 

2. Perturbations in Minkowski Space 

To study particle creation by inhomogeneous perturbations of flat space, we 

consider the following idealized picture: ” the metric is taken to be everywhere 

that of flat space with the exception of a compact region where the curvature 

is non-zero. This formulation has the advantage that in the Minkowskian ‘in’ 

(t -+ +oo) and ‘out’ (t + -00) regions, particle states, and in particular the 

vacuum state, are physically well-defined: all inertial observers in the asymptotic 

regions will agree on the presence or absence of particles, because the ‘in’ and ‘out’ 

vacua are Poincard-invariant. (We could replace the assumption of a compact 
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perturbation with one in which the curvature falls off sufficiently rapidly, by 

defining adiabatic particle states.’ ) This situation is clearly analogous to the 

usual asymptotic treatment of scattering interactions in flat space field theory. 

We will develop this analogy further by evaluating the S-matrix in the interaction 

picture. 

In a general curved space, the Lagrangian for a real scalar field is taken to 

have the form (see Appendix A for conventions and notation) 

L = f e (gabda@b$ - (m2 + tR)42) (1) 

where R is the Ricci scalar and 6 is a dimensionless constant. (For c = 0, the 

field is said to be minimally coupled to the metric; for t = l/6, the curved space 

Klein Gordon equation is conformally invariant in the massless limit.) To write 

this in the form L = LO + LI, where 

Lo = i (?labaa@bC$ - m2d2) (2) 

is the Lagrangian in flat space and LI describes the interaction with the external 

gravitational field, we expand the scalar field action in a functional Taylor series 

about flat space. The first order term is well known to be 6s = $ s d4zTayhgab; 

the interaction Lagrangian is then LI = -i Tayhab, where we have used the fact 

that, to first order in the perturbation, gab = qab - ha”. The Minkowski stress 

tensor of the scalar field is 

Tay = aa@b4 - i qab(‘Tjcddc4dd4 - m2d2) - ((aaab - 7)abdcac)d2 - (3) 

In the interaction picture, the field operators satisfy the flat space Klein- 

Gordon equation derived from the ‘free’ Lagrangian (2), with the usual plane 
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wave solutions 4i,(z). Although LI has the form of a derivative interaction, it 

is straightforward to show that the canonical interaction Hamiltonian HI($in) = 

-Ll(@i,), independent of representation. From Eq. (3), we can write the Feyn- 

man rule for the pair creation vertex shown in Fig. 1. (Parentheses on indices 

denote symmetrization.) Note that we are treating hab as a classical c-number 

source, so we only need evaluate matrix elements of the stress tensor. Also, the 

scattering vertex is obtained by letting k + -k. For the total pair creation 

probability (in this case also the expectation value of the number operator in the 

‘out’ region), we find,” using Appendix B and the definitions of Appendix A, 

P= 
/ 

d4q d3p d3k 
2wk2wp 64(q - P - k) IWq9 k, P) I2 

TT3 =- 
60 

d4qe(q2 - 4m2) 1 - ( !!py2 

x IR(q)l2 60 I‘ - 1 [ { ( 6)2-40$(c-;+$)} (4) 

As required, this expression is manifestly gauge and Lorentz-invariant. The total 

emitted energy in the ‘out’ region is just Eq. (4) with a factor 2q”B(qo) inserted 

in the integrand. 

There are several features to note about expression (4). First, in this approx- 

imation time-independent sources do not create particles, because the amplitude 

Sfi - 
s 

d4z hab(Z) ei(k+p)‘z - 2?r6(k” + p”) . 

Second, there is no particle creation for Ricci-flat perturbations, i.e., for solutions 
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satisfying the vacuum linearized Einstein equations, e.g., gravitational waves. 

(To this order in perturbation theory we expect the graviton to be stable anyway 

because there is no phase space for it to decay.) Third, the threshold for massive 

particles roughly implies that creation occurs only if the curvature varies over 

scales less than the particle Compton wavelength, in agreement with dimensional 

arguments.- Needless -to say, perturbations due to macroscopic sources today, 

e.g., stellar pulsations, have negligible power in sub-Compton wavelengths. For 

example, the collapse of a protostar of solar mass releases - 104* ergs in the form 

of heat but only 5 1O-35 ergs in direct particle creation. By power counting, 

the pair creation probability is ultraviolet-finite for sources which fall off faster 

than hab N qm4 at large momentum. For massless particles, there is no infrared 

catastrophe if hab 2 qw4 at small momentum. As in the electromagnetic case, 

however, there are sources for which P diverges but for which the emitted energy 

is finite. In the massless case, for sources which satisfy IRab(q)12 = pab(q)j20(q2), 

we can use Parseval’s theorem to rewrite Eq. (4) as 

Pm=0 = -&--d4z [60(~-;)2R2+Ca&abcd] . (5) 

For conformally invariant scalars ([ = l/6, m = 0), this expression is conformally 

invariant, so we expect it to hold in a conformally flat background as well. 
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3. Cosmological Perturbations 

We next consider the more physically interesting case of inhomogeneity in an 

expanding background. We assume that the unperturbed metric has the form of 

a spatially flat FRW modellg 

g$)dsa dib = dt2 - a2(t)(dz2 + dy2 + dz2) = a2(q)(dq2 - dz2 - dy2 - dz2) (6) 

where the conformal time r] = j’” dt ‘/a(t’), and a(t) is the FRW scale factor. 

When a(q) is time-dependent, in general there is no privileged definition of the 

vacuum state as there is in Minkowski space, and the notion of particles is inher- 

ently ambiguous. (This is partially a reflection of the fact that the expansion can 

create particles.) To obtain meaningful results, we must restrict the form of the 

expansion such that the vacuum state can be defined in the asymptotic regions 

(see discussion following Eq. (10)). 

If we write the perturbed metric as gab = g$,) + H,b = a2 (q)(?‘jab f h,b) and 

define L(O) as the scalar Lagrangian devaluated at g$‘, then a similar argument 

to that of Section 2 gives LI = -i ,/5 H ab (0) Tab , where g(o) is the determinant 

of g(i) and Tif) a is the scalar field energy-momentum in the FRW background, 

Ta(;) I IL (0) 
aa4ab4 - 2 gab ($$%@d’$ - m242) 

> 

(7) 

- ( v,& - g~)vcvc + R$) _ f R(“)g$) 42 . 

Here V, is the covariant derivative with respect to g$’ and the d’blembertian 

VcVc = (-g(o))1/2da 
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In the interaction picture, the field operator satisfies the Klein-Gordon equa- 

tion in the background spacetime (derived from L(O)) 

(VaVa + m2 + /R(“))~ = 0 

which has the solutions’ 

where 

XL’+ lZ12 +m2a2 + t 
[ 

( 2) !$I xk=O 

(8) 

(10) 

(A prime denotes d/dv). From Eq. (lo), in order to obtain well-defined asymp- 

totic vacua, we must restrict the expansion rate as follows:1’3 for [ # l/6, we 

require all/a + 0 as Q + foe; for m # 0, the expansion must be asymptotically 

static, i.e., ,!Tm 44 = al, ,li~~ a(q) = ~2. (As before, we are assuming 

the inhomogeneous perturbation vanishes as 77 + foe.) For the general massive 

case, fk(z) is assumed to be a pure positive frequency flat space mode in the 

distant past: 

where win = (lg12+m2uf)1/2. H owever, the interaction picture field does not have 

the form (11) f or all times, because the homogeneous expansion mixes positive 

and negative frequency modes. If the form of u(q) is known, and the mode 
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solutions of Eq. (10) can be found, then the pair creation by the background can 

be described by a Bogliubov transformation in the usual way.l 

For a general expansion factor u(q), the particle contribution from the in- 

homogeneous perturbation will depend on integrals over time of products of the 

unknown mode functions xi (7)$(t)) and their derivatives. Instead of consider- 

ing specific functional forms for u(v) f or which the Xk(q) are known, we shall 

study the dependence on the scalar field parameters. 

First, for conformally invariant scalars (m = 0, 6 = l/6), the wave equation 

(10) reduces to 

xi’ + 1cj2xk = 0 (12) 

which is just the mode equation in flat space. The normalized positive-frequency 

solutions for all r] are 

e--ikr) 

Xk= d% 
(13) 

where k - Irc’l. It remains to evaluate the vacuum-to-two particle matrix el- 

ements of Eq. (7), using the modes of Eq. (13). The task is simplified by 

exploiting conformal invariance. Under a conformal transformation gz + g,, - (0) - 

a2(q, Z) gg, for conformally invariant fields, the stress-energy tensor transforms 
17 as TaY + Ti$) = u--~ M Tab provided its trace vanishes, T E T,” = 0. In 

curved space, the vacuum expectation value of T is not zero, due to the trace 

anomaly. ’ However, it is clear from the form of Eq. (7) that the 0 + 2 ma- 

trix element of Ta(f) is finite (unlike its vacuum expectation value), while the 

trace anomaly arises from the fact that conformal invariance is broken when the 

theory is regularized (e.g., in dimensional regularization, the effective action is 
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not conformally invariant in d # 4). The anomaly thus does not contribute 

to this matrix element, and (2lT~~)lO) is conformally related to the Minkowski 

value. It follows that the first-order S-matrix element is conformally invariant, 

Sri = -(i/2) s d4xJ-go Hab (2lTi,0)10) = -(i/2) s d4x hab (21TayIO), and from 

Eq. (5) (with the same condition on I&b12) we find 

p=L 
96Or / d4x CaycdC$d 

where czCd is the Weyl tensor calculated with the metric hab = Uw2Hab* From 

the conformal invariance of cf&, this can also be written in terms of the Weyl 

tensor of the cosmological perturbed metric gab, 

P= & / ds d4XC&dCabcd for m = 0 , f = i (15) 

which agrees with the form found in the homogeneous anisotropic mode11’4’5 and 

includes it as a special case. 20 

As an important example, we consider cosmological density perturbations 

obeying Einstein’s equations as a possible source of particles. The FRW solution 

for the scale factor is U(Q) - q2/(1+3V), where ZJ = p/p describes the equation of 

state (V = 0 for a matter-dominated universe; v = l/3 for radiation). Expanding 

the perturbation in plane waves, at sufficiently early times the wavelength of the 

perturbation is larger than the instantaneous Hubble radius (ti/u)-l = a2/u’. On 

scales outside the Hubble radius, a calculation in synchronous gauge 21 (ho0 = 

hoi = 0) shows that the density perturbation grows as (6p/p) - q2, and that the 

metric perturbation 

h&d - (av- (S))’ (T) hl con&., 
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independent of the equation of state. Substituting Eq. (16) into Eq. (14), we 

find P = 0 for these perturbations. This is just a reflection of the fact, noted 

earlier, that static sources do not create particles. Although this result was 

derived in the synchronous gauge, the statement that P = 0 is gauge-invariant 

(see Eq. (14)). A s confirmation of this, there exists a gauge invariant measure 

of the perturbation which is time independent for this mode outside the Hubble 

radius. 22 Thus, growing mode perturbations outside the Hubble radius satisfying 

the classical Einstein equations do not create conformally invariant particles. 

For non-conformally coupled particles, we can make progress with a further 

approximation; namely, by also treating the homogeneous expansion of the uni- 

verse as a perturbation around flat space. The simplest way to implement this 

is to impose the condition a2 = al and the requirement that a(q) - al be small. 

From Eq. (lo), we see that this can alternatively be interpreted as a perturba- 

tion around the conformally invariant limit E = l/6, m = 0. The interaction 

picture field now satisfies the flat space Klein-Gordon equation as in Section 

2. First consider the case of expansion without inhomogeneity. The metric is 

gab = a2?‘lab = qab +&b, where hab = (a2 - ar)qab = (1/4)hQ,b. This has the 

form of a perturbation around flat space which is localized in time (but not in 

space), and we can simply transpose the results of Section 2. Since in this case 

xab corresponds to a local conformal transformation, the Weyl tensor vanishes. 

Therefore the particle creation probability due to the expansion is 

7r3 J 
l/2 

P= 6. d4q8(q2-4m2) P(o)(q) I2 

(17) 

x [,,(,-;)‘-4O$(F-;+$)I 
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where Rto) is the Ricci scalar of the expanding metric. As a check, we note that 

in the massless case, we can make a transformation to coordinate space, as in 

Eq. (5)) to obtain 

P = ??I o= (( - i)2 
167r / 

d4x,/sRfol t 

in agreement with the results of Birrel123 and Hartle.24 The coordinate space 

version of Eq. (17) was obtained by Birrell and Davies (Eq. (5.114) of Ref. 1) by 

expanding around the conformally invariant limit. For inhomogeneous perturba- 

tions of the expanding metric, we have, to lowest order in both perturbations, 

gab = qab + xab + hab 3 Tab + hab 

which yields Eq. (4), but with the curvature invariants now evaluated using &b 

(see Appendix A). Only the inhomogeneous part h,b contributes to the Weyl 

term, but the Ricci scalar term will have interfering contributions from both 

the expansion and the inhomogeneity; clearly, this expression is only appreciable 

when the curvature grows large, i.e., near the Planck time. 

4. Conclusions 

In this paper, we have calculated the probability for pair creation by small 

amplitude perturbations of FRW cosmological models. For conformally invariant 

and nearly conformally invariant scalar fields, the pair production probability is 

expressed entirely in terms of gauge-invariant geometrical quantities. This result 

reduces to the homogeneous anisotropic expressions found previously by several 

authors in the limit that h,b is space-independent. By analogy with those results, 
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we believe that sub-horizon perturbations will be strongly damped at early times. 

We should point out that other processes may damp inhomogeneities at early 

times as well; for example, in asymptotically free theories, near the Planck time 

the mean free path is larger than the particle horizon and particles can free- 

stream out of overdense regions. In addition, large-amplitude perturbations may 

develop into black holes which subsequently evaporate by the Hawking process. 

The inflationary scenario is premised on the initial condition of homogeneity 

on horizon scales, a condition which may require such damping mechanisms to 

achieve. 

We mention here some limitations of our calculation. First, we have confined 

our study to free fields; although the effects of interactions (e.g., a Xrj4 term) on 

particle creation are interesting,’ they could be included in a straightforward way 

and constitute an inessential complication to a first study of the problem. (Al- 

though we have focused on scalar fields, the methods and results for higher spin 

fields are similar.) Second, and more important, our perturbative treatment is 

limited to time-dependent sources. This is because in perturbation theory, static 

sources cannot transfer energy to the fields. Particle creation by static sources 

is a nonperturbative tunneling effect which vanishes faster than any power of 

fL. Therefore, to study radiation by static black holes, one must use the Bo- 

goliubov technique; fortunately, the Schwarzschild metric has enough symmetry 

to make this tractable. The advantage gained by the perturbative treatment is 

that, for a Minkowski background, we can exploit the global Lorentz invariance of 

the interaction-picture field equations. The perturbative method is particularly 

useful for calculations of particle creation in higher dimensional theories. 25 
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APPENDIX A. Results from Linearized Gravity 

In this Appendix we set out our notation and conventions and some useful 

results from linearized relativity. l7 We follow Bjorken and Dre1126 in normalizing 

field operators, states, and commutation relations. Four-dimensional Fourier 

transforms are defined with the normalization f(q) = (27r)-4 s d4x ei’J’ZF(x). For 

the metric and curvature, our sign conventions are (- - -) in the terminology 

of Misner, Thorne, and Wheeler, 27 so the metric has signature -2 and on-shell 

squared momenta are positive. We use units in which tL = c = 1. 

In linearized relativity, the metric is gab = qab + hab, and the inverse metric is 

an expansion in the perturbation, gab = vab - hab - hfhcb + . . .; the determinant 

of the metric is given by fi = 1 + h/2 + . . ., where h f qabhab. Indices are 

raised and lowered with qab. The connection coefficients are 

r& = f qCd [aahbd + dbhad - LJdhab] . 

To lowest order, the Riemann curvature is 

Rabcd = qaf (adrb, f - aCr{d) = i aca[bha]d + f ddaiahbI, 

where brackets denote antisymmetrization. The Ricci curvature is 

Rab = h!&, = -i dcdchab + i Sa(ahb)c - f aa&h 

(A-1) 

(A-2) 

(A.3) 

and the Ricci scalar 

R = gabRab = acach - dcdahac . (A-4) 

We would like to express the pair creation probability in terms of geometric invari- 

ants. Since the S-matrix is - hab(q)0(q2), the probability - hab(q)hcd(-q)O(q4), 
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since hab is real. From the form of Eqs. (A.2)-(A.4) and the requirements 

of local gauge invariance and global Lorentz invariance, the choices are the 

curvature-squared terms R(q) R(-q), Rat,(q) Rab(-q), Rabcd(q) Rabcd (-q). Now, 

from (A.2)-(A.4), ‘t 1 is easy to read off the Fourier transforms, e.g., 

R(q) = qaqchac(q) - q2h(q) (A-5) 

and the invariants of interest are 

IR(q)12 = R(q) R(-q) = Qa!7cQbQdhaC(Q) hbd(-q) + q4h(q) h(-q) 

- Q2!7bQd[hbd(-q) h(q) + hbd(q) h(-q)] (A-6) 

IRab(!?)12 = i QaQcQbQdhaC(Q)hbd(-q) - $ QcQahab(Q) hbc(-q) 

+ a q4hab(q) hab(-Q) 

- a q2qaqc[hac(q) h(-q) + hac(-q) h(q)] (A-7) 

IRabcdl’ = a ‘I4 hab(q) hab(-Q) - 2q2qaqb hbd(Q) had(-q) 

•I- QaQcQbQdhaC(!7) hbd (-q) . (A-8) 

In the linearized theory, hab transforms as a Lorentz tensor under global 

Lorentz transformations, so thee expressions are Lorentz invariant, as required. 

Also, under local gauge transformations (infinitesimal coordinate transforma- 

tions) xa -+ xa+ca, the metric perturbation tranSfOrmS as hab + hab--db&-a,&,, 

and the Riemann tensor (and its contractions) are gauge invariant. 

We note from Eqs. (A.6)-(A.8) that 

IRabcd12 - 41Rab12 + IR12 = 0 (A.9) 

so 1 Rabcd I2 is not an independent invariant. As a check, we could also have guessed 
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this from the Gauss-Bonnet theorem, which states that in four dimensions, the 

quantity 

G[SabI = J 
d4xfi (RabcdRabcd - 4RabRab + R2) 

is a topological invariant, i.e., its variation with respect to the metric vanishes. 

Thus, 

G[??ab + hab] - 
/ 

d4q (IRabcd12 - 41Rab12 + IRI”) = G[Vab] = 0 - 

In four dimensions, the Weyl conformal tensor is defined as 

C abed - - Rabcd + (gb[cRd]a - 6’a[cRd]b) + 3 ’ RSa[dgc]b 

and the absolute value-squared of its Fourier transform is 

(A.lO) 

(A.ll) 

Using (A.9), we can express this as 

c&cd(q) Cabcd(-q) = 2Rab(q) Rab(-q) - i R(q) R(-q) (A.12) 

in the linearized case. The conformal tensor vanishes in conformally flat metrics 

and thus provides a measure of the deviation from isotropy and inhomogeneity. 

Physically, it is often thought of as the part of the curvature which propagates 

tidal forces. 
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APPENDIX B. Evaluation of Pair Production 

In this Appendix, we outline the calculation of the pair production probabil- 

ity, Eq. (4). S ince we are treating the inhomogeneity as the source of an ordinary 

perturbative interaction in Minkowski space, the answer must be Lorentz invari- 

ant, and this property greatly simplifies the calculation. We can evaluate all 

quantities in the center of momentum frame, in which 

P= (%$I 9 k=(&-8, q=p+k= (2&O) = (@,O) . 

This gives the Lorentz-invariant four-momentum products 

2 2 
p-k=%-m2, p.q=k.q=%. (B-1) 

Substituting (B.l) into the momentum space Feynman rule of Fig. 1, the pair 

creation probability of Eq. (4) becomes 

P = 7r2 

+ (I(ab)(cd) + 4E21MQaQbQc!7d)hab(Q) hcd(-q) 

+ q2(1 - 4E) (CqaqbIM - i Icab]) (hab(q) h(-q) + hab(-q) h(q)) 

(B-2) 

- ztqaqbI(cd) (hab(q) hcd(-q) + hab(-q) hcd(q)) 

where we have used the reality of hab to set hab(q)* = hab(-q). The integrals 

appearing in (B.2) are 

IM = J d3k d3p 
2wk2w b4kk-P) (B-3) 

P 
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I(ab)(cd) = 
d3kd3p 4 
2wk2wp 6 (q - k - P) k(aPb) k(cPd) - 

IM is a standard phase space integral for two-body decays. It is most easily 

evaluated by putting it in manifestly covariant form and subsequently evaluating 

in the COM frame. The result is 

(B-6) 

To evaluate the remaining integrals, we use symmetry and Lorentz covariance. 

I(ab) is a symmetric Lorentz-covariant tensor which only depends on m2 and q, so 

it must be of the form I(ab) = Ilqab +IQqaqb where Ii and 12 are Lorentz-invariant. 

Contracting with qab and qaqb gives two simultaneous algebraic equations for 11 

and 12; evaluating the solutions in the COM frame gives the well-known result 

I(ab) = %  [2,aqb (1-t-F) +q2f?ab (l-y)] - (B-7) 

To evaluate I(ab)(cd), we employ the same principles. Using symmetry under 

interchange a t) b, c ++ d and under exchange of the first and second index pairs 

(4 * (cd), we can write 

I(ab)(cd) = Jlvabr]cd + J2(Vac’i’bd + qadvbc) 

+ J3QaQbQcQd + J4(rlabQc!ld + f’lcdqa!?b) 

+ Jki(rlacQbQd + ?bdQaQc + qadqbqc + f?bcqaqd) - 

We again contract this to form Lorentz-invariants which can be evaluated in 

terms of IM and the quantities in (B.l). Solving the resulting five simultaneous 
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equations for Jl, . . . , J5 yields 

IM ICab) = 240 (q2 - 4m2)2(qabr)cd + qacqbd + 6’adqbc) 

-I- %laqbqcqd 1 -I- F -I- F 
> 

i $ (q2 - 4m2)(q2 + m2)(qabqcqd + f?cdqaqb) 

_ (q2 - 4m2)2 

!12 
(qacqbqd + qbdqaqc + qadqbqc + I]bcqaqd) - 

We substitute (B.6)-(B.8) into (B.2) and obtain 

m2 
3-40~+120~2+gZ(16-80~)+~ 1 

x [q4h(a) h(-q) - Q2Qa!?b (haa (q) h(-q) + hab (-q) h(q))] 

+(1-F)? ( q4hab(q) hab(-Q) - 2q2qaqbhac(q) hbc(-q)) 

+41+~+6m4 
[( 

m2 

q2 q4 
-40E+120E2-80$- 1 

X [QaQbQcQdhab(q) hcd(-!l)] 

Pw 

(B-9) 

Now, using Eqs. (B.6) and (A.6)-(A.12), we can finally write this in the form 

given in Eq. (4), S ec ion 2. We note that since the integrand is even in q, we can t’ 

replace 0 (q”) with a factor l/2, with the integral now unrestricted. 
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FIGURE CAPTION 

Pair creation vertex for scalar particles. 
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