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ABSTRACT 

We generalize the gauge-invariant theory of the free bosonic open string to 

treat closed strings and superstrings. All of these theories can be written as 

theories of string differential forms defined on suitable spaces. All of the bosonic 

theories have exactly the same structure; the Ramond theory takes an analogous 

first-order form. We show explicitly, using simple and general manipulations, 

how to gauge-fix each action to the light-cone gauge and to the Feynman-Siegel 

gauge. 



1. Introduction 

After remaining for a long time incomplete and ill-understood, the covari- 

ant formulation of string theory is finally being completed to a gauge-invariant 

string field theory. The recent developments began with Siegel’s formulation of a 

covariantly gauge-fixed bosonic string, Ill based on the BRST first-quantization 

of the string. WI Out of this work grew a gauge-invariant formulation of free 

bosonic strings, to which many authors have contributed. 14-15] The geometrical 

foundations of this theory has been investigated in refs. 16, 17. In addition, 

progress has been made on the pressing issue of identifying the gauge invariant 

interaction terms for open bosonic string fields. [m-22] Some of this progress 

has been reflected in the theory of supersymmetric strings. The Neveu-Schwarz- 

Ramond formulation of the superstring theory has been written as a covariantly 

gauge-fixed string field theory [23-251 and as a gauge-invariant theory. [4,6,7J’W] 

However, as yet none of the gauge-invariant formulations of the theory contain 

the full set of Stueckelberg fields needed to make these theories equivalent to 

the covariant or light-cone gauge-fixed formulations. In addition, the technology 

involved in many of these papers is complex, in a way that obscures the relatively 

simple structure of these theories. 

In this paper, we address these last two difficulties by presenting a unified 

formulation of the gauge invariant free string field theories associated with all 

known string models. We will construct Lagrangians for these theories which 

have a common structure and which are simply given in terms of appropriate 

differential operators. A weakness of our formalism is that it does not properly 

treat the gauge invariances associated with the zero modes of closed strings; in 

particular, our formulation of the Ramond/Ramond sector of closed superstrings 

requires an externally-imposed dynamical constraint. Nevertheless, all of our 

string field actions are quantum-mechanically complete: We will show how to fix 

these Lagrangians to the covariant Feynman-Siegel gauge and to the light-cone 

gauge by techniques applicable to all of the string theories, and we will prove 
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that these manipulations lead to the known physical spectra. The differential 

operators which we require arise naturally from the structure of BRST transfor- 

mations for each string, though, unfortunately, we have not been able in all cases 

to connect our gauge transformations precisely with BRST’ transformations.* 

In the Neveu-Schwarz-Ramond theory, we find intriguing relations, also noted 

by LeClair, 1231 between world-sheet and space-time statistics and BRST invari- 

ance. Many of the results we present have been obtained independently by other 

groups. 12g’301 

The paper is organized as follows: In Section 2, we introduce the calculus 

of forms and exterior derivatives on which our formalism rests. We will identify 

appropriate operators for each string as components of the BRST charge Q and 

use the relation Q2 = 0 to derive identities among these operators. This operator 

calculus generalizes that of ref. 7. In Section 3, we present the complete theory of 

free open bosonic strings [7,8,9] in a simplified formulation recently discovered by 

Witten,“” Ramond,[14] and Neveu, Nicolai, and West. PI We display the action 

of this theory and discuss the gauge-fixing in a manner conducive to general- 

ization. In Sections 4 and 5, we generalize this construction to all other known 

string theories, treating first theories of bosons and then theories of fermions. 

2. The String Exterior Derivative and the BRST Charge 

In this section, we will set up our conventions for discussing string forms and 

differential operators. Essentially, this formalism works by considering the ghosts 

of the first-quantized string theory as differentials, a point of view advocated in a 

more general setting by Baulieu and Thierry-Mieg. 1321 Our notation will generally 

follow the notation for the ghosts of string theories presented in ref. 31. Note 

that our conventions here differ somewhat from those of ref. 7 and, in fact, serve 

to simplify some of the identities given there. 

* Ooguri has claimed to have found this connection for the open Ramond string. 1281 
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The general string fields which we will use in this paper will be functions of 

the string coordinates SC”(O) and the reparametrizations ghosts b(a), c(o). In the 

covariant superstring theories, we need also the supersymmetric partners of these 

objects, the fermionic coordinates q!+(o) and the superconformal ghosts ,8(o), 

q(a). In general, we will work with the normal mode creation and annihilation 

operators associated with these fields. It is useful to group these operators into 

supersymmetry multiplets. Letting c& represent the normal mode operators for 

the field xp, we may group together: 

BN = (h&i) (24 

CN = (P/y”) . 

We will refer to the first member of each pair as bosonic and the second as 

fermionic. The index N runs over the appropriate set of normal modes-e.g., 

integers for the bosonic open string variables, or left- and right-moving integers 

for bosonic closed string variables. The notation it is intended to remind the 

reader that the bosonic and fermionic variables may run over different sets, as 

happens in the Pt’eveu-Schwarz string. We will need the notation: 

MN - (-1) - 
-1 if M and N are fermionic 

. 
+l otherwise 

P-2) 

We assign the commutation relations of the operators (2.1) as follows: 

ALAh - (-I)~~A~AL = r,V(M+N), (2.3) 

BMC~ + (-l)MNCNB~ = b(M+N). (2.4 

These relations are preserved by the Hermitian conjugation (M # 0) 

(AL)+ = AEM, (BM)~ = B-M, (CM)+ = (-I)~C-~. P-5) 

In these conventions, the AL are real- or Grassmann-valued operators, the cre- 
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. .on parts (the M < 0 components) of BM and CM are real- or Grassmann- 

valued differentials, and the annihilation parts (M > 0) of BM and CM are 

operators which remove these differentials. The fermionic components of A& 

then commute with the bosonic components of BM and C&. It is possible, by 

a Klein transformation, to redefine b, c, p, and 7 so that b and c behave as 

Grassmann-valued operators and /3 and 7 as real-valued operators; that is the 

formulation of the theory chosen in ref. 31. 

We now define a string differential form as an object containing a product of 

string differentials. To be more specific, define a vacuum state 10) such that 

ALlO) = 0 , BM{O) = 0 , C”IO) = 0 , (2.6) 

for M > 0, and such that 10) h as no dependence on the zero modes of the 

coordinate or ghost operators.* (We will later discuss a more complete vacuum 

i”i) which includes this dependence.) Then, keeping the restriction that integers 

M, N take only positive values, we can represent a string differential form as a 

state in the Fock space built on IO): 

14) = CmNb ***C-N’B~, --*BM~ 4[A]“‘...MaN~...Nb10) . (2.7) 

4[Al”l.**~, . . . may be expanded in a sum of local fields times products of A“ 

creation operators. We will refer to a state with a B’s and b C’s as an (:)-form. 

It will be useful to focus on the difference between b and a, the difference, that is, 

between the number of ghosts and antighosts. We will label a string form with 

(b - a) = g as a g-form and refer to g as the ghost number. 

Since we have identified differentials with ghost operators, the BRST charge 

Q takes the form of an exterior differential operator. Then the central identity 

* The state labeled 0 
I> 

in ref. 31 differs from this one by including dependence on the zero 
mode, and shifts are necessary to make the state SL(2, R) -invariant. It is shown there that 
these shifts account for the shift e of Lo given below eq. (2.8). 
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Q2 = 0 can be recast as an identity, or as set of identities, defining the cohomology 

of string exterior derivatives. Let us now work out these identities explicitly for 

the various string theories. 

For any string theory, the BRST charge can be written in the following form: 

Let the LN be the generators of the appropriate reparametrization algebra-the 

Virasoro, Neveu-Schwarz, or Ramond algebra 1331 -and write this algebra as 

[LM,LN]f = FMN~LK + $(M + N)Ru , (24 

where IM is the central charge. Let LN = LN - 6N,Ot, where .f! = (1, i, 0) for 

bosonic, Neveu-Schwarz, and Ramond strings, respectively. Then 

Q = CwNi~ + FIJI : CvJC-‘B~ : , ( 2.9) 

satisfies Q2 = 0 in the critical dimensionality. The form (2.9) is precisely that 

given by Kato and Ogawa PI for the bosonic string. The BRST charge for the 

fermionic string, found by Friedan, Martinet, and Shenker 1351 and discussed 

more recently by a number of authors, [23,25,27,34] can be readily cast into this 

form. The critical dimensionality is required in order that terms in the square of 

the second term of (2.9) with two contractions can cancel terms in the square of 

the first term arising from the central charge. All other terms in Q2 = 0 vanish 

by virtue of the Jacobi identities of the reparametrization algebra. 

. 

Let us now decompose Q into terms with distinct action on forms. In ad- 

dition, we should extract terms in Q which depend explicitly on the ghost zero 

modes, which we have ignored up to now. For the bosonic open string, and for 

the Neveu-Schwarz string, the only ghost zero mode operators are bo and co. 

When Q acts on a form Id), every term in Q raises the ghost number g by 1 unit. 

However, the terms with explicit zero mode operators do not affect the total 

number of B-N and CmN operators in 14)) while the other terms may create an 
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additional CN or destroy a B-N. Let us, then, break Q into pieces as follows: 

Q = c°K + d + 6 - 2Ubo, , (2.10) 

where d = CmNL~ + . . l contains all terms which create a net C, 6 = CNL-~ + 

. . . contains all terms which destroy a net B, and all zero modes operators are 

indicated explicitly. The action of d and 6 on forms reproduces the definition 

of the string exterior derivatives given in ref. 7, up to some overall minus signs 

(which are simply a matter of convention). The operators K and 4 may be 

evaluated from (2.9). K is given by 

K = Lo-.!+& (2.11) 

where J/ = M(CWMB~ + B-~(--l)~c~) is the sum of the indices of the 

differentials in 14). Th is is precisely the kinetic energy operator of ref. 7. Jl is 

given by 

u = ~MNc-“(-l)NcN, (2.12) 

where 

~MN = &M,N 
A4 M bosonic 

1 A4 fermionic ’ 
(2.13) 

This differs from the definition of & in ref. 7 by signs and a normalization factor. 

Using (2.5), one can see that dt = 6, and that K and 4 are self-adjoint. 

Now we have defined the basic operators of the bosonic and Neveu-Schwarz 

string theories. Since these operators appear as components of Q, they will obey 

identities which follow from the relation Q2 = 0. To find these relations, square 

(2.10), separate the result into terms which create a fixed number of C’s and 

destroy a fixed number of B’s, and set each of these terms equal to zero. From 
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the terms which create two C’s and those which destroy two B’s, we find: 

d2 = d2 = 0. (2.14) 

The term which preserves the number of the various differentials and contains 

no zero mode operators gives 

(d6 + 6d) = 2K l,l . (2.15) 

Equations (2.14) and (2.15) are the fundamental relations for string differential 

operators applied in ref. 7. The remaining pieces of the identity Q2 = 0 imply 

that U and K commute with d and 6, and with one another. 

We note parenthetically that the index-raising operator of ref. 7, written in 

this new notation, takes the form 

cr-= 11 MNB-~B~, (2.16) 

where qMN = (~MN)-‘. fi can be used to invert U by virtue of the relation 

[VA] = CwMB~ - B-M(-I)~C~ = 9. (2.17) 

In the Ramond theory, the fermionic ghosts ,0 and 7 are also integer-moded, 

so the BRST charge contains two new zero mode operators PO and 7’. Let us 

write the decomposition of Q in this case as follows: 

Q = c°K + r°F + d + 6 - 2 u b. - 2 1 p. + (70)q,o . (2.18) 

The separation between d and 6 is defined just as before, and K and 4 are again 

given by (2.11) and (2.12). (2.18) 1 a so contains the Grassmann operators 

F = Fe +f”G[CmaB~ - B-~(-l)~c~] , (2.19) 

where the bar on an index changes it from bosonic to fermionic or vice versa, 
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and where 

fMm = 2 M bosonic 

M/2 M fermionic ’ 
(2.20) 

and 
, 

(2.21) 

F is the generalization of the Dirac-Ramond operator to the space of string forms; 

one may easily check that 

F2 = K. (2.22) 

Writing out the square of (2.18) and equating it to zero term by term yields 

a myriad of relations among the various operators we have introduced. One of 

these relations identifies 1: 

u= [FJJI; (2.23) 

others imply that K, F and 4 commute with d and 6, and that K = F2 commutes 

with 4. Finally, one finds as before 

d2 = b2 = 0 , (2.24) 

and, making use of (2.23) and (2.22), 

(d6 +6d) = F(F 4 + JLF) . (2.25) 

Note that the two factors on the right-hand side of (2.25) commute with one 

another. 
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3. The Open Bosonic String 

The operators defined in the previous section provide the basic components 

needed to build gauge-invariant free string actions, as has been shown already in 

ref. 7. Recently, however, a form of the open bosonic string string theory consid- 

erably simpler than the original formulation of refs. 7-9 has been discovered by 

Witten,[181 Ramond,l’-41 and Neveu, Nicolai, and West. 1151 It is most convenient 

to take this formulation as our starting point for a construction of the other free 

string theories. In this section, then, we will review this formulation and derive 

some of its properties. 

In its simplified form, the gauge-invariant open-string action can be written 

as an expectation value of the corresponding BRST charge Q. To describe this 

construction, we must first adjoin to 10) a wavefunction for the ghost zero mode. 

Define, then, 

I-9 = lo> @  I4 ’ (3-l) 

where Iw) is the zero mode wavefunction obeying be 1~) = 0. In) has the prop- 

erties of the open string ground state, the tachyon. It is useful to recall that, i2 

the covariant quantization of ref. 31, this state has the properties: 

(n 1 f-q = 0, (n 1 co 1 n) = 1. (3.2) 

In this paper, we will simply assume (3.2) as our starting point. 

Now let I@) b e an arbitrary O-form on this extended space: 

I@> = (14 +c014) 14 3 (3.3) 

where C#J is a O-form and q is a (-l)-form of the structure (2.7). The free open 

11 



bosonic string action can then be written as 

This action has the obvious gauge invariance: 

where E is an arbitrary (-l)-form. To understand the structure of this transfor- 

mation a bit better, let us write 

P> = (14 + cop)) lw) - (3.6) 

Then the gauge transformation is 

6&J = (d + 6)C - 2 u fl 

(3.7) 
SE7 = KE - (d + 6)e 

The E transformation of 4 displayed here is the gauge symmetry identified in refs. 

7-9. 

The action presented in refs. 7-9 may be obtained from (3.4) by gauge-fixing 

some of the auxiliary fields which this action contains. Let us first expand (3.4) 

in the component forms 4, Q. This yields: 

s = -f (4 I K 1 4) + (7 IUI a) 

To go further, we should recall from ref. 7 the concept of a mazimally sym- 

metrized form. Consider the coefficient q%“l***Ma~I...~b as a tensor with upper and 
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lower indices, separately antisymmetrized. Imagine lowering the upper indices 

using the metric (2.13) and then projecting the full set of indices onto combina- 

tions of definite symmetry. Because of the separate antisymmetrization, one may 

find only representations of the permutation symmetry corresponding to Young 

tableaux with two columns. The maximally symmetrized combination is defined 

to be the combination in which the second column is as long as possible, that is, 

in which as many lower indices as possible are symmetrized with upper indices, 

and vice versa. In a O-form such as 4, with equal numbers of upper and lower 

indices, the maximally symmetrized component is that in which every upper in- 

dex is symmetrized with a lower index in the process of Young symmetrization. 

In general, maximally symmetrized forms with g > 0 are annihilated by 4. 

Let us, then, partially gauge-fix (3.8) by imposing Jl 14) = 0. The resulting 

Fadeev-Popov determinant is nondynamical. Since 4 commutes with d and 6, 

we can see that (d + 6) 14) is a maximally symmetrized l-form; thus, only the 

maximally symmetrized component of 1~) couples to the remaining components 

of 1~~5). Since (q) is in any event nondynamical, we can freely drop (or integrate 

out) the other components, leaving only the maximally symmetrized one. This 

component is annihilated by 0; thus (2.17) implies fiv (r]) = 111). Using this 

relation to integrate out this last piece of Ir)), we find at last 

s = -+I+) + t($I(d+~)f(d+~)l& (3.9) 

which is the action of ref. 7, written in our new conventions. Our gauge-fixing 

left the residual gauge invariance: 

6Eid) = (d + 6) 1~) 9 (3.10) 

where Ie) is restricted to be maximally symmetrized; this is precisely the gauge 

invariance of refs. 7-9. 
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In principle, one could now complete the gauge-fixing of this action along the 

line given in ref. 7, for the covariant Feynman-Siegel gauge, or ref. 12, for the 

light-cone gauge. However, it is much simpler to begin again from (3.4). 

To reach the Feynman-Siegel gauge, we use the gauge&&g condition 

b(+) = IQ) = 0 . (3.11) 

The associated Fadde’ev-Popov ghost action is 

SE =(i!?I6&1@) = -(EI&)QIE). (3.12) 

In this expression, the ghost E is a general (-1)-form, and the antighost is a 

general 2 form. In a manner familiar.from the analysis of refs. 7-9, this ghost 

action has in turn its own gauge invariances which require the introduction of 

higher-order ghosts. In particular, (3.12) is clearly invariant to the motion 

~GIE) = QIG) , bGIE> = 0, (3.13) 

reflecting the fact that a gauge parameter of the form IE) = QIG) leaves 17) 

invariant. Note that only the co component of the antighost survives in (3.12), 

and that this component has no corresponding gauge transformation. In addi- 

tion, since every component of Ir]) t ransforms under some gauge motion, fixing 

the functional integral with a 6( 1~)) p ro uces no hidden ghosts. These two state- d 

ments have analogues at all higher levels. The fully gauge-fixed action is, then, 

s = -~(@IQ~@) - (E(~,Q~E) - (C~~Q(G) - (E’Ibo/P) - . ..) 

(3.14) 

where Ia), IE), . . . . are constrained to be annihilated by bo. If we decompose 
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each field into components, according to (3.3), (3.6), 

IG) = clr) +cOlc)) I4 7 

etc., (3.14) takes the form 

(3.15) 

s= -; (qb 1 K 1 4) - (3 1 K 1 e) - (c 1 K 1 7) - (e’ 1 K 1 8) - . . . . (3.16) 

In this expression, 14) is a general O-form, le> is a general l-form, I c) is a general 

(-1)-form, etc. The action (3.16) is thus exactly the covariant-gauge open string 

action (Feynman-Siegel gauge) derived by Siegel in ref. 1. 

So that the reader can compare this analysis to the more intricate gauge- 

fixing procedure of ref. 7, let us give a second gauge-fixing prescription closer to 

the spirit of that analysis. As we noted above, the non-maximally symmetrized 

components of 177) in eq. (3.8) are nondynamical and do not couple to 14); 

thus they may be discarded. This allows us to use the alternative gauge-fixing 

condition of setting to zero U 14) and the maximally symmetrized component of 

Ir]). The reader may verify that this leads to a Fadde’ev-Popov action for 1~)) 

lo), Iz), and (e> which reproduces the form of (3.8), and to the appearance of 

hidden ghosts. Continuing this procedure, following the logic of ref. 7, one also 

eventually arrives at the action (3.16). 

Let us now discuss the gauge-fixing of (3.4) to the light-cone gauge. The 

action of the open string in the light-cone gauge is given by 

S = -; (4~ 1 K 14~) 9 (3.17) 

where 4’~ contains Only tranSVerSe StateS. To characterize these states, let us 

denote the light-cone components of A: by 

KN = A&, MN = AN, (3.18) 

With this notation, the transverse states are those which include no K, M, B, 

or C creation operators acting on IO). W e must, then, show that all states other 
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than the transverse states may be removed from (3.4) by a choice of gauge. To 

do this, we will use a counting argument similar in form to the one developed in 

ref. 12 to discuss the gauge fixing of the action of refs. 7-9. (The reader who 

finds this argument a bit sketchy should consult ref. 12 for a more discursive 

presentation.) 

Represent the classes of states we must gauge away as: 

KPCqM’B’10) , (3.19) 

where p, q, I, s denote the number of creation operators of the given type which 

act on IO), p+ q+ r + s = J/ > 0. Since at any given mass level, U has a maximum 

value, we can confine our attention to states with a fixed value of U, beginning 

at the maximum, and sequentially remove all of these states from (3.4). We can 

remove these fields without generating Fadde’ev-Popov determinants if we shift 

by terms in (3.7) which involve no factors of p-. We will, in fact, use only terms 

in (3.7) involving (d + 6). W e will only need to consider the term in d of the form 

d = CmN.p+M~ +... (3.20) 

and the term in 6 of the form 

6 = CN.p’M-~ +... ; (3.21) 

we may imagine, then, that d simply converts a K to a C and 6 simply converts 

a B to an M. 

As a simple illustration of the use of these rules, let us discuss the counting of 

gauge parameters for states with Al = 1 and 2. For states with U = 1, the only 

gauge parameters are of the form BlO) . Th ese suffice to gauge away all states in 

14) of the form MAO). Th e remaining states in 14) which we need to eliminate 

are those of the form K(O). Th ese states appear together with the states M(O) 
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in the first term of (3.8), but this term has been removed by our choice of gauge. 

The only remaining place that the states KIO) appear is in the cross terms of 

(3.8); since d converts a K to a C, this state can overlap with states BIO) in Is>. 

This matrix element uses only the term (3.20) in d, which contains no p-. Thus, 

the states KIO) act as Lagrange multipliers to eliminate the states B(O) in 1~). 

Thus, we have exactly the gauge freedom we require to eliminate all states with 

N = 1. 

The analogous argument for N = 2 illustrates some complications found at 

higher levels. The states in 14) and (77) w ic must be eliminated have the form h h 

K2(0), KM(O), M210), KB(O), MBIO), BCIO) . (3.22) 

The gauge parameters in 1~) and 10) have the form 

KBIO), MB)O), B2)0) . (3.23) 

In addition, we must consider the gauge parameters of the gauge parameters, 

which characterize the redundancies in (3.23). These are states in IG), of the 

form 

B’IO) . (3.24) 

It is useful to think of these multiplets of states as components of tensors whose 

indices run over all positive integers. The commutation relations of these opera- 

tors place restrictions on these tensors: B2 IO) is antisymmetric in its indices, and 

M2(0) is symmetric. Thus, we can use (3.24) to gauge away the antisymmetric 

part of MBIO) in (3.23); the remaining symmetric part of this multiplet can 

gauge away the states M2/0) in (3.22). KBIO) in (3.23) can gauge away KMIO), 

and B2(0) in (3.23) can gauge away the antisymmetric part of MB/O) in (3.22). 

The remaining states in (3.22) are either Lagrange multipliers or are eliminated 

by Lagrange multipliers: K2/0) eliminates the symmetric part of MBIo), and 

KBIO) eliminates BCIO). 
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Let us now generalize this counting argument to all levels. As a first step, we 

must reduce the full set of gauge parameters in IE) to those parameters which 

cannot be gauged away by higher-level gauge transformations. Consider, for 

example, the components of IE) of the form , 

KPCQM’-l B8+l 10) . (3.25) 

Some of these components can be removed by acting with 6 on components of 1 G) 

of the form KpCqMf-2B8+2 0 I ) . These components have their own redundancies, 

corresponding to the states KpCqMrM3 B s+3 0 I ) , and so forth. The nonredundant 

components of IE) can be identified as follows: Operators M’ form an r-index 

symmetric tensor with indices in the set of values of N (N > 0). Similarly, oper- 

ators B8 form an s-index antisymmetric tensor. It is convenient to project states 

with both M’s and B’s onto states of definite (mixed) permutation symmetry, 

labeled by Young tableaux. For example, M4 B3 10) belongs to 

1 I I I I X 
B 

= + (3.26) 

Since we will be seeing many products of this form, let us refer to a Young tableau 

of r symmetrized boxes as {r}, a tableau of s antisymmetrized boxes as [s], and 

a tableau with a row of r boxes above a column of s boxes as (t/s). In this 

language, (3.26) reads 

(41 x PI = W) + W) * (3.27) 

One can then see that states (3.25) in IE) contain M’s and B’s in the representa- 

tion (r/s)+(r-l/s+l). Their redundancies belong to (r-l/s+l)+(r-22/s+2). 

The redundancies of the redundancies belong to (t. - 2/s + 2) + (r - 3/s + 3). 

Continuing until one runs out of M’s, and then resolving the net effect of these 

parameters, one finds that the nonredundant component of the gauge parameters 

in (3.25) have M’s and B’s combined to the symmetry (r/s). 
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We will act on lip) with these symmetry motions in a different way depending 

on whether or not t 2 p. If r > p, act 6 on the nonredundant components of 

(3.25) to remove states of the form (3.19). The piece of (3.19) which remains 

has M’s and B’s symmetrized according to (I + l/s - l), so that the full set of 

operators displayed has the character 

{d x [q] x (r + l/s - 1) . (3.28) 

If r < p, decompose {p} x [q] + (p + l/q - 1) + (p/q). Act 6 on the (p + l/q - 1) 

component to remove states of the form KPC’JMrB810). Act d on the (p/q) 

component, to remove states of the form Kp-1C’J+1Mr-1B8+1 IO). The effect of 

this transformation is to reduce each group of states KPCQMrB8 IO) with r < p 

to the structure: 

(p/q) x (I + l/s - 1) + (P/w x (+) = (p/q) x w x Is] * (3.29) 

Now let us examine the form of (3.4) that we have obtained. We have gauged 

away all states with q = s = 0, r 1 p. Thus, the states with q = s = 0, 

r < p cannot appear in the first, diagonal term of (3.8). They can only appear 

in the off-diagonal terms involving (d + 6), using a d to convert it to the struc- 

ture KP-‘CIMr]O), which h as a nonzero matrix element with states of the form 

K’MP-1 B1 IO). A s in our simple examples above, the terms with q = s = 0 

act as Lagrange multipliers which eliminate terms with s = 1. After the gauge 

transformations described in the previous paragraph, both sets of states have 

been reduced to the multiplet (p/O) x {r}, so all of the remaining states of the 

form (3.19) with q = 0, s = 1, and r >_ p are eliminated. Now the states with 

q = 0, s = 1, r < p appear only as Lagrange multipliers for the states with 

q = 1, s = 1, r 2 p. Comparing the representations into which these have been 

projected, we see that all of these states are eliminated. The pattern continues 

until all components of 1~) h ave either been removed or have acted as Lagrange 

multipliers to remove others. 
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In comparing this argument to that of ref. 12, the reader should note that 

here we find no nondynamical component fields in addition to the transverse 

fields. All unwanted components of IO) disappear. It is never necessary to use 

the fact that the 1~) components are purely auxiliary. This last feature is essential 

for generalizing this argument to the theories we will consider in Section 5. 

4. More Bosonic Strings 

Now that we have discussed the simple example of the open bosonic string 

in a very thorough fashion, we are ready to construct the free field actions cor- 

responding to the other known string theories. We will see that all of these 

actions can be written as expressions of the same structure as the open string 

action (3.4). In general, the operator Q will be replaced by another operator Q 

which is not the BRST charge but which does satisfy Q2 = 0 by virtue of the 

operator identities of Section 2. The correspondence among these actions will be 

sufficiently strong that the proofs that each action leads to the correct covariant 

and light-cone gauge-fixed theory will be essentially identical to those given in 

Section 3 for the open bosonic string. 

We begin with the closed bosonic string. In this case, the Hilbert space of 

first-quantized string states factors into a product of two spaces, one containing 

left-moving and one containing right-moving string modes, each isomorphic to 

the open-string Hilbert space (excluding zero modes) and each possessing its own 

Virasoro algebra. We will denote operators acting on these spaces as unbarred 

and barred, respectively. The BRST charge on the full space is given by (Q +&), 

where Q has the structure of an open-string BRST charge (eq. (2.10)). 

We will write the action for the closed string in terms of string forms satisfying 

the condition: 

(K-K)I$) = o. (44 

Correspondingly, we will reduce the space of ghost zero modes from that spanned 
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by the operators bo, co, 6, @ to that spanned by two formal operators satisfying 

(fro)” = (zy = 0 , {i&P} = 1 . (4.2) 

In principle, a gauge-invariant action might enforce the condition (4.1). In the 

gauge-fixed action of ref. 1, the coefficients of the extra ghost zero modes are 

Lagrange multiplier fields which impose (4.1). In this paper, however, we content 

ourselves with imposing (4.1) f rom outside and use only the operators (4.2). 

To construct an action, begin by defining 1~) to be a state such that 

i;l$q =O,(+yG) = 1, (4.3) 

following the properties of the ghost zero mode subspace of the open string, 

described at the beginning of Section 3. Define 

&=~K+d+6+;i+6-2i0(Jl+~). (4.4 

This equation is symmetric between left- and right-movers and satisfies G2 = 0 

on states satisfying (4.1). Finally, let 

I@> = (I4 + qs>> 16) , (4.5) 
with 4 a O-form and q a (-1)-f orm. The closed-string action then can be written 

aS: 

s = -;(qcl”). (4.6) 

This action has the gauge invariance 6~ 1~) = QIE), which, in particular, 

includes the transformations 6~ 14) = (d + 6) E which correspond to the gauge 

symmetries of the closed string actions discussed in refs. 7 and 8. The gauge- 

fixing can clearly be done exactly as for the open string, after enlarging the index 

space of N to run over all unbarred and barred integers. 
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The Neveu-Schwarz open string action can be constructed in a similar fash- 

ion. Here we may use precisely the ghost zero mode operators co and b; the 

appropriate ghost vacuum again obeys (3.2). The index N runs over bosonic 

integer and fermionic half-integer values. However, we have already made clear 

in Section 2 that our fundamental operator relations (2.14) and (2.15) are left 

unchanged by this modification. Thus, we may take over the formalism of the 

bosonic open string directly. Defining 1~) as in (3.3), the free Neveu-Schwarz 

string action is 

where Q is now the BRST charge of the Neveu-Schwarz model. The gauge-fixing 

can again be done just as for the open string, the only change being that we must 

utilize, in the descent to the light-cone gauge, graded Young symmetrization of 

tensors. 

It is important to note that the Neveu-Schwarz string forms, as we have 

described them so far, contain as expansion coefficients tensor fields of different 

statistics. For example, the general form 14) has the expansion 

14) = {x(z) - iSL”+A&) - X,+) - +Y-“c(z) 
(44 

The field A,(z) is th e vector gauge field of the Neveu-Schwarz theory; we would 

like to make this a Bose field. Then 14) must be a Grassmann-valued form. This 

makes c(z) and E(Z) Grassmann fields, as is correct for the ghost and antighost 

of A,. But the integer-spin physical fields x(z), VP(z), TPV(z) are also assigned 

Grassmann values. In general, the fields with the wrong statistics are those 

whose coefficients contain an even number of the fermionic creation operators 

t/f,, P-?i, +P. These fields may be removed by projecting all string forms onto 
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their components with 

G = (-I)~“‘+’ = 1, (4-g) 

where .NF is the total number of fermion creation operators included in that 

state. This G is of course just the projection operator of Gliozzi, Scherk, and 

Olive [361 needed to define the supersymmetric string theory! The remarkable 

correlation between two-dimensional and space-time statistics first appeared in 

Siegel’s papers PI on the gauge-fixed bosonic string theory. The observation that 

the GSO projection must be made in order to preserve the correct statistics of 

fields in the Neveu-Schwarz-Ramond theory has also been made by LeClair.[231 

The Neveu-Schwarz-Ramond theory contains three types of closed strings, 

those with Neveu-Schwarz boundary conditions for both left- and right-movers, 

those with Ramond boundary conditions for one set of modes, and those with 

Ramond boundary conditions for both left- and right-moving modes. The sectors 

of the first and third type lead to bosonic string states; however, it is convenient 

to treat the third type together with the fermionic strings. We are ready, though, 

to write the action for the first sector. In fact, this action is exactly (4.6), with the 

bosonic string operators d, 6, K, U replaced by their Neveu-Schwarz counterparts 

and with a GSO projection applied independently to the left- and right-moving 

components of each form. This projection does not affect the proof of gauge 

invariance or the process of gauge-fixing, both of which proceed exactly as above. 

By replacing only the left-moving operators by Neveu-Schwarz operators, while 

keeping the right-moving operators those of the bosonic string, we find a free 

field action for the bosonic states of the heterotic string. 1371 
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5. Fermionic Strings 

When we attempt to extend the analysis of the previous section to the Ra- 

mond string, we find two complications. The first is that the string action must be 

converted from a second-order form involving the kinetic operator K - (a2 + M2) 

to a first-order Lagrangian involving F - (i a + M). The second is that the su- 

perconformal ghosts p and 7 now have zero modes which must be taken into 

account. We will see that these two problems can be dealt with in a simple 

way by using the same trick that we applied to the bosonic closed string, that 

of ignoring completely the space of the additional zero modes and defining an 

appropriate auxiliary charge 0, which satisfies 6” = 0 by virtue of the identities 

of Section 2. In the case of the fermionic string, however, it is known that the 

space of superconformal ghost zero modes is very large, including states with all 

possible values of the “Bose sea” charge of ref. 31. It is likely, then, that the 

Ramond theory we present here is simply a projection down from a much richer 

formal structure. 

We can build the 6 of the Ramond string by using abstract operators LO and 

c”O with the properties (4.2), together with a vacuum state 1~) satisfying (4.3). 

Let us define 

0 = a?F + (-QNF(d + 6) - io(F U + UF) , (5.1) 
where NF is the fermion counting operator defined below (4.9). With this factor 

included, d is a Grassmann-valued differential operator. s2 = 0 follows from 

(2.24), (2.25). 

The basic fields of the Ramond theory are string forms IX) carrying lO- 

dimensional fermion indices. The Dirac matrices which act on these indices are 

the zero modes of q!+(o): 

5-p. +,” = fi (5.2) 

Since application of Ip flips chirality, it is appropriate to consider the fermion 
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parity (-1) Up+1 of a lo-dimensional spinor to be given by its chirality I’ll. This 

assignment becomes explicit if the spinor representation of O(9,l) is represented 

by states formed as products of #‘s acting on a vacuum state. We must also 

require the zero mode operators LO, Zc to have odd GSO parity. Thus 

G = [io,p] -I”’ - (-lfF , (5.3) 

where tip refers to nonzero modes only. With this definition, [G, Q] = 0. As 

in the Neveu-Schwarz case, a GSO projection must be made to insure that all 

component fields have the correct statistics. The Ramond string fields will have 

Grassmann character if they satisfy (4.9). 

The properties of our basic operators under Hermitian conjugation are the 

following: l? pt = -rOpp; Ft = -rOFrO; dt = pQjr0; @ = -rOQrO. It is 

useful to define (Xl = (X ITo; the D irac matrix will compensate the Grassmann 

character of & in the Ramond theory action. 

To complete our construction, we introduce 

In> = (IX> +qo) 12) 7 (5.4 
with X a O-form of chirality II’ll = +l and ,$ a G = +l (-l)-form. Then the 

Ramond action can be written: 

s = -$qOlA). (5.5) 

This action has the gauge invariance SE IA) = s]E), where E is now a spinor- 

valued (-1)-f orm. By directly applying the steps leading from (3.11) to (3.14), 

this action can be gauge-fixed to the Feynman-Siegel gauge 

P-6) 

where now IX) is a general G = +l form in the space of nonzero modes. Using 

the arguments given for the descent to the light-cone gauge, (5.6) can also be 
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gauge-fixed to the form 

where I XT) is a transverse state. From this formula, one can then easily reach 

the light-cone gauge action by integrating out the components of IxT) satisfying 

r+lxT) = o. _ 

Written in components (after performing the zero mode algebra), the action 

(5.7) takes the form 

s = -${(XIFlx) + (?IFU+UFIt) 

- (xld+6]6) - (zId++)}. 
(5.8) 

Note that in this expression, unlike the bosonic string actions, the auxiliary field 

It) has become dynamical. This turns out to have no effect on the gauge-fixing 

of the action by the methods of Section 3; our arguments there did not make 

use of the explicit form of the term quadratic in the auxiliary field. However, 

it is interesting to note that this fact does play a role in more conventional, 

component-by-component covariant gauge-fixing. As a concrete example, let 

us consider the first excited mass level. The components of IX) at this level 

are the vector-spinor coefficients of the states ofl/O) and Ic(~lI~); these have 

opposite chirality and thus can form a massive spin-g field. The conventional 

covariant quantization of this field would bring in 3 massive spin-k ghosts, the 

third being the Nielsen-Kallosh ghost. p,q The Feynman-Siegel gauge action 

for the Ramond string contains only two massive ghosts. But (5.8) also contains, 

at this level, two dynamical components of I[), corresponding to the states b-1 IO) 

and p-110); th ese have opposite chirality and combine to form a massive spin-g 

fermion with normal statistics. This fermion precisely compensates the Nielsen- 

Kallosh ghost. 
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The fermionic closed string theories can be constructed along the same basic 

lines. The closed strings with Ramond left-movers and Neveu-Schwarz right- 

movers can be written for string forms satisfying the constraint (4.1). Define 

(j = 2F + (-l)Np(d+6+;i+x) - i&(F&+UF+F$+$F). (5.9) 

Then the appropriate action is given by (5.7), where now [A) is a string form built 

on the product space of left- and right- movers, GSO projected independently in 

each subspace. The fermionic heterotic string action is constructed in the same 

way, using the bosonic string operators to build the right-moving subspace. 

Finally, we turn to the closed superstring theory corresponding to Ramond 

boundary conditions for both left- and right- movers. In this sector, our simplistic 

treatment of the zero modes breaks down. We have been able to construct a 

quantum-mechanically complete theory, but this theory has two defects. First, it 

requires a constraint which, in a general frame, is dynamical. Second, it requires 

that part of the GSO projection be done after quantization rather than before. 

Despite these defects, we are encouraged to present this formulation because 

it does generalize the formal structure we have set out for the other strings, 

and because it continues our formulation of the other closed superstrings in a 

suggestive pattern. 

The, basic fields in this sector will be string fields carrying two Dirac indices 

and satisfying the condition 

(F - F) I@) = 0 . (5.10) 

Since F2 = K, this condition implies (4.1). However, while (4.l)is a purely 

algebraic condition, this condition contains time derivatives of 1~). Choose 

g=p 
-- - 

+ (d + 6 + ;i + 8) - &I (F(F U + 4 F) + F(F U + Q F)) , (5.11) 

where 60, c”’ satisfy (4.2) and have even GSO parity with respect to both the 

27 



left-moving and the right-moving GSO operators G and c. Define 

14 = (IP) + qP)) I&) , (5.12) 

and 

(El = (B)Iw . (5.13) 

Then the gauge-invari,ant action for this sector may be written 

(5.14) 

I > B should be restricted to have the correct statistics: G .G = 1. However, if we 

apply at this point the separate conditions G = G = 1, the chirality conditions 

do not match and (5.14) vanishes. Note that the closed superstring charges that 

we have defined (eqs. (4.4), (5.9), (5.11)) fall into a simple pattern. 

Despite the fact that the constraint (5.10) is dynamical in a general frame, we 

can quantize this system straightforwardly by observing that, in the light-cone 

frame, (5.10) b ecomes a set of nondynamical relations. To make this point clear, 

we will discuss in a very explicit way the quantization of the massless level of this 

string. This level contains antisymmetric tensor fields, and so one would suspect 

that it should have a gauge invariance. In our formulation, however, there is no 

gauge invariance; the required reduction of degrees of freedom is implemented by 

the dynamical constraint. (The constraint (5.10) looks suggestively like a gauge- 

fixing condition for a Duffin-Kemmer Lagrangian.) The light-cone quantization 

of the remaining levels will then follow by analogous manipulations, after fixing 
. of the light-cone gauge for the oscillators in the manner of Section 3. 

Choose the following representation of the TJ‘ matrices: 

\ r+ = (“, -ifi) ,I-- = ($ ;) ,I-‘= (i; 0.) , (5.15) 

where 7; are a set of real symmetric Dirac matrics of O(8). Express the massless 

level of I/3) as b = PI?‘; b transforms under Lorentz transformations like a Dirac 
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matrix. The action (5.14), restricted to this level, takes the form 

S = atr[lT”bTI’Ob] . 

Decompose b in the basis of eq. (5.15), as follows: 

b= 

(5.16) 

(5.17) 

On the massless level, F = -fi #I, so (5.10) may be written: 

$-b =-bpL (5.18) 

Let fi = ~~7:. Then the full content of (5.18) is expressed by the relations: 

hp+bl = -&p+bt - [&b-l , 
(5.19) 

h+fb+ = tip-b- - {fi,bt} . 

Use these equations to eliminate b, and b+ in (5.16). Then by may be seen to 

be auxiliary and can be integrated out. This reduces (5.16) to the form 

S = itr[brK . zp+b-l (5.20) 

If one now imposes the chirality conditions on b- which follow from G = c = 1, 

we are let with a theory of a doubly chiral O(8) bispinor. This is the correct 

physical content for the massless sector of the Ramond/Ramond closed string. 

To generalize this discussion to higher mass levels of the string, we need two 

observations. First, the light-cone gauge-fixing procedure of Section 3 still allows 

us to remove all states with longitudinal, timelike, and ghost excitations. Then 

the quantization procedure reduces to the treatment of the explicit Dirac indices. 
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On higher levels, (5.10) equates two massive Dirac operators. The mass terms 

always couple two different field components which have opposite chirality but 

the same GSO parity. Thus, each massive Dirac operator may be written as the 

action on a pair of Dirac spinors of the operator 

(i a+Mbf) , (5.21) 

where I’M anticommutes with the I’“. (If these massive equations follow by 

dimensional reduction, in the manner suggested by Siegel and Zweibach,[81 I’M = 

I’ll.) Then the analysis of the previous paragraph can be repeated for every 

massive level by treating the mass term in (5.21) as an extra component of the 

transverse momentum. This demonstration completes our formulation of free 

field theories, which can be explicitly gauge-fixed to the known physical spectra, 

for all of the known strings and superstrings. 
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