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ABSTRACT 

The Fastbus is a modular data bus system for data acquisition and data pro- 
cessing. It is a multiprocessor system with multiple bus segments which operate 
independently but link together for passing data. It operates asynchronously to 
accommodate very high and very low speed devices over long or short paths, 
using handshake protocols for reliability. It can also operate synchronously with 
pipelined handshakes for transfer of data blocks at maximum speed. The goals, 
history and motivation for the Fastbus are summarized briefly. The structure of 
the Fastbus system is described in general and some details of its operation are 
introduced. 

HISTORY AND GOALS OF THE 
FASTBUS DESIGN 

In 1975 several physicists active in high energy elemen- 
tary particle physics asked the US NIM (Nuclear Instru- 
mentation Modules) committee to consider development 
of a standard data acquisition system which would meet 
the needs of future physics experiments and which would 
also be of general utility. The NIM committee established 
a study group to examine the needs and determine objec- 
tives to be met by such a system. In 1977, a committee 
was formed to begin the design of a system which would 
meet these goals. The design and prototyping efforts were 
supported by the U. S. Department of Energy. 

The design committee essentially completed its work in 
1983, publishing the Fastbus specification as Department 
of Energy report DOE/ER-0189. Fastbus became ANSI/ 
IEEE Standard 960 in 1984. As of this writing, Fastbus 
has reached routine commercial production; catalogs of 
off-the-shelf Fastbus equipment are available from sev- 
eral vendors. Committee work continues, now mainly 
focussed on standards for software supporting Fastbus. 

The goals of the Fastbus design were: 

Highest possible speed, in order to handle the high 
data rates encountered in complex particle detec- 
tors, and to reduce the temptation to design custom 
systems for each application. 

Lowest possible cost, because huge volumes of elec- 
tronics are required in modern experimental physics 
and any unnecessary cost is multiplied by a large 
factor. 

Modular construction, so that useful standard build- 
ing blocks can be developed which can then be con- 
nected in various ways to meet the needs of various 
projects. 

General utility, so that commercial use outside the 
physics community will raise vendor volume and 
lower user costs. No special physics features which 
interfere with general-purpose use in other markets. 

Complete system design, including: power distri- 
bution and heat removal adequate for large high- 
speed systems; diagnostic facilities to speed discov- 
ery, location and correction of faults; operating and 
maintenance aids such as rear access for cabling, 
machine-readable module identifiers, standardized 
control and status registers. 

Multiple-processor organization, so that many low- 
cost computing elements can be brought to bear on 
parts of the data acquisition and analysis problem. 

Segmented organization, so that the multiple pro- 
cessors will not be overly limited by the bus band- 
width. Segments of the bus should operate indepen- 
dently, joining together automatically as needed for 
passing data. 
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Asynchronous operation, so that slow and fast mod- 
ules can be mixed in the system, and BO that the sys- 
tem speed can increase easily as technology 
advances. 

Synchronous operation, so that data transfer can 
occur at the full bandwidth capability of the trans- 
fer medium when ultimate performance is needed. 

Uniform protocols, so that no protocol translation 
is needed as data flows from segment to segment. 
The Fastbus uses cable segments to join segment in- 
terconnect modules residing on backplane segments. 
CAMAC (IEEE 583, Fastbus’s predecessor), used a 
branch-highway cable connecting crate controllers. 
The branch cable used a different protocol than the 
crate backplane. 

Uniform addressing, so that each device can have 
as much address space as it needs, and with no 
dedicated positions on backplanes. Devices have 
an address which is unique in a connected system 
and which is independent of device position within 
a segment. All positions are equal in capability. 
Position-dependent addressing is also needed, at 
least during system initialization, for addressing a 
module to tell it its assigned position-independent 
address. 

Sparse-data scanning capability, because the rele- 
vant data is usually a tiny fraction of the data avail- 
able (most elements of a large detector are not hit 
by any particles at all in a typical event). 

These goals, though partially conflicting, have been met 
to a remarkable degree by the Fastbus design. 

HARDWARE AND ORGANIZATION OF 
THE FASTBUS SYSTEM 

The essential part of the Fastbus design is the bus proto 
co]. Various electrical and mechanical implementations 
are possible which use this protocol and hence are easy 
to interface to one another, but only one electrical imple- 
mentation and one module design have been chosen for 
standardization. However, module dimensions are speci- 
fied so that the same module can be used in an air-cooled 
or in a conduction-cooled (water-cooled) crate. 

The most common implementation consists of a crate 
which fits in a standard 14inch rack, with a multilayer 
backplane at the rear and card guides at the top and 
bottom as shown in Figs. 1 and 2. Cooling air flows ver- 
tically from bottom to top through the crate, driven by 
separate fan units which may serve several stacked crates. 
Water cooled rechillers can be mounted between crates as 
necessary. The design capacity of 2000 watts per crate 
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Fig. 1. Basic FASTBUS elements. 

Fig. 2. FASTBUS crate and modules. 

seems easily accommodated, and with care 3000 watts is 
possible. 

A crate holds 26 modules (Figs. 3 and 4), which consist 
of circuit boards of approximately 366.7 mm (14.437 in.) 
high by 400.0 mm (15.748 in.) long, with optional front 
panels about 16 mm (0.63 in.) wide. The rear edge of 
the boards contains two box connectors which mate with 

.square pins that protrude from the backplane. The main 
bus connector has two rows of 65 positions on 2.54 mm 
(0.1 in.) centers. An optional auxiliary connector has up 
to three rows of 65 positions, and connects to long non- 
bussed pins which pass through the backplane so that 
user cabling can be attached to the backplane rather than 
to the module. Small card guides are optionally provided 
on the rear of the crate to aid connector alignment and 
cable retention. 

The main connector supplies power and ground as well 
as signals, with one ground to every four signals. Power 



Fig. 3. The SLAC snoop module. 

is distributed by heavy layers of copper in the backplane, 
providing for 300 amperes at +5 and -5.2 volts, 200 am- 
peres at -2 volts, 50 amperes at +I5 and -15 volts, and 
100 amperes at +28 volts. A quiet analog ground line is 
also provided. Power supplies are separate from crates, 
connected by remote-sensing cables. Typically they will 
be mounted in the rear of the rack. The f15 and +28- 
volt supplies are optional. 

Bus terminators and a small amount of logic associated 
with bus arbitration, broadcast timing and geographi- 
cal addressing reside on small boards mated to extended 
main-connector pins on the back of the backplane in the 
end positions. All bus signals are emitter-coupled-logic 
(ECL 10K) levels. 

SEGMENTATION OF THE FASTBUS 

The backplane bus in a single crate is a single segment, 
_ i.e., corresponding pins in all backplane connectors are 

directly connected by printed circuit traces, which means 
that the bus can be driven by only one device at a time. 
Thus, although multiple processors may be plugged into 
the crate and share the single backplane bus, they must 

Fig. 4. SLAC Mark II/SLC drift chamber postamplifier 
module. 

take turns using it. The mechanism that determines 
whose turn it is is called arbitration. Contention for the 
use of the bus may reduce the throughput of the system 
by causing processors to wait. 

Distributing the processors among several crates reduces 
the contention problem if the data they need for oper- 
ation is similarly distributed, but occasionally they will 
need access to one another’s data. In a Fastbus system, 
there may be many segments that operate independently 
most of the time, but are temporarily linked together by 
segment interconnect modules when necessary for inter- 
segment data transfers. 

The cables which interconnect backplane segments are 
segments themselves, and may contain devices other than 
segment interconnect modules. Devices on cable seg- 
ments obey the Fastbus protocols, but must provide their 
own power because power is not included in the cables. 
The term “device” will often be used instead of “module”, 
to emphasize the logical similarity of devices whether 
they fit in crates and attach to backplanes, or have arbi- 
trary shapes and locations and attach to cable segments. 



To transfer data, a device must first gain the right to use 
its bus segment via the arbitration mechanism, then as- 
sert onto the bus lines the address of the device it wants to 
communicate with. After communication is established, 
the address is removed and the bus lines are used for 
transferring data either to (reading) or from (writing) 
the originating device. 

Segment interconnect modules monitor the activity on 
the two segments they connect, awaiting the appearance 
of any address in a set of addresses which they have 
been programmed to recognize. They respond to such 
an address by requesting use of their other segment and 
asserting the given address on that segment when they 
gain control. The two segments remain locked together 
until the operation is complete. An arbitrary number 
of segments can be successively linked as needed for a 
given operation. The address contains all the information 
needed to direct the appropriate segment interconnects to 
respond and form the correct connection. 

In order to use the address to provide the routing infor- 
mation in a practical way, the total address space avail- 
able to the system is divided among the segments in such 
a way that the most significant bits of the address are 
sufficient to specify which segment is addressed. Every 
device on a given segment then has the same value for 
the high-order part of its address, and that value can be 
thought of as the segment number. The less significant 
bits serve to specify which device on the given segment is 
addressed, while the least significant bits specify the part 
or function within the device which is addressed. 

The segment interconnect modules can thus be imple- 
mented in a simple way by using the high-order address 
bits to address an internal memory which contains a “1” 
in the locations corresponding to addresses which are to 
be recognized and passed, and a “0” in the other loca- 
tions. When the system is initialized, these memories 
are loaded with the patterns needed to route all opera- 
tions correctly. These internal memories are called “route 
tables”, though actual connection routes are only deter- 
mined by the combination of all the route table memories 
in the system. 

With this scheme, there are no restrictions on the kinds of 
interconnections which may be made between segments. 
Segments may be connected in a tree structure with a 
big computer at the trunk and data acquisition devices 
at the leaves, for example. If high traffic between two 
widely separated segments causes excessive interference 
with the intermediate segments, a cable segment can be 
added which bypasses the intermediate segments. No de- 
vice address changes are required because of this change, 
and once the route tables in the segment interconnects are 
reinitialized to make use of the new route, the interfer- 
ing traffic will disappear from the formerly intermediate 

segments. Tree, star and ring structures can all be ac- 
commodated. Figure 5 shows an example of a simple tree 
connection. 

PROCESSOR INTERFACE 

d---F&Y- 
&$gj &) ------ (+J 

-- 
SLAVES 

H-e1 Y .t’J.A?O 

Fig. 5. Example of FASTBUS system topology. 

However, some rules must be obeyed when setting up the 
route table information for the segment interconnects. 
For example, only one interconnect module may respond 
to any given address on a segment, since there must be 
only one path used for a given operation. A procedure 
has been developed for creating the routing information 
automatically, which makes it easy to reconfigure the sys- 
tem as needs change. Dedicated systems which do not 
change may avoid the need for route table initialization 
by storing the necessary route information in permanent 
read-only memories. 

THE FASTBUS PROTOCOL 

The Fastbus uses the same 32-bit parallel bus (AD) for 
Addressing and for Data transfer, at different times. This 
technique is called time multiplexing. It may seem strange 
to multiplex address and data in a system which strives 
for ultimate speed, but it turns out that the speed penalty 
is not nearly as great as is usually supposed, because the 
data cannot be used until address recognition is complete. 
The reduction in the number of bus lines, connections and 
transceivers results in significant economic and reliability 
advantages for multiplexing. In order to achieve maxi- 
mum speed for data transfer, block transfer modes have 
been developed in which a single address word is followed 
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by many data words, making the time penalty for mul- 
tiplexing address and data insignificant. In fact, even if 
we were willing to implement 64 lines and transceivers we 
would probably choose to multiplex anyway, in order to 
get the greatest system throughput. 

To initiate a transfer, a master device asserts the slave’s 
address on the 32 AD lines followed by the address strobe, 
AS, as shown in Fig. 6. (A master is a device which ini- 
tiates an operation by arbitrating to acquire control of 
the bus and then asserting an address. A slave is a de- 
vice which responds to the address on the bus. A device 
may be able to act either as a master or as a slave at 
different times.) The address assertion sets up the path 
between master and slave, through segment interconnect 
modules if necessary. When the slave recognizes its own 
address, it responds with the address acknowledge sig- 
nal AK. AS and AK remain asserted until the comple- 
tion of the transfer, and serve to lock other users off the 
bus and cause them to ignore all bus activity. In fact, 
once the connection is established and the AS-AK lock 
is complete, the two devices could do almost anything 
with most other lines on the bus and no other devices 
would be disturbed. In order to facilitate the construc- 
tion of compatible devices, however, standard protocols 
for most useful transfers have been specified. 

ADDRESS DATA SIGNAL 

Fig. 6. Basic handshake read operation (as seen by 
master). 

When the master sees the AK response, it knows that the 
address information is no longer needed, and removes it 
from the bus. It now asserts data and the data strobe DS, 
in case of a write operation, waiting for the acknowledging 
DK from the slave before removing the data. For a read 
operation, DS is asserted along with the read line RD, as 
shown in Fig. 6. The slave responds with data and DK. 
The transfer ends when the master sees DK and records 
the data on the AD lines, removes its signals including 
DS and AS, and the slave, seeing AS removed, removes 
its signals including AK. The connection between master 
and slave always has full handshaking at the beginning 
and end of a transfer. 

The transfer of single data words requires two strobe 
edges, the assertion of DS and then its removal. In effect, 

the first edge controls the assertion of data and the sec- 
ond edge controls its removal. This restores the bus to 
an un-driven condition after each cycle, so that the direc- 
tion of data flow can be reversed between two cycles, as 
shown in Fig. 8. Block transfers sacrifice the possibility 
of quick reversal and double the transfer rate by using 
both strobe edges to transfer data as shown in Fig. 7, 
without restoring the bus to its undriven condition until 
the very end of the block. Note that this is still a full 
handshake, BO that the transfer cannot proceed without 
the agreement of both parties. 

Fig. 7. Write block transfer (as seen by master). 

However, it is also possible to perform a block trans- 
fer with pipelined handshake, between devices which can 
handle the same data rates. In the case of a write, the 
master simply asserts data words and DS transitions at 
whatever rate is appropriate, without waiting for the DK 
responses. In effect, DS becomes a clock which the slave 
uses to find the data words in a synchronous transmis- 
sion. For a read, the master sends DS and the slave replies 
with data and DK; the master uses each DK transition 
to find the data words in the received stream of signals. 
Handshake-protected transfers require each data word to 
be on the bus for at least two bus-propagation delays, 
while the data flows to its destination and the acknowl- 
edge flows back to the source. On long cable segments, 
this delay can be significant, limiting system throughput. 
When pipelined handshake is used, however, several data 
words could possibly be flowing through the bus trans- 
mission lines at once. With pipelined handshake, data 
can be transmitted at the full bandwidth capacity of the 
medium. 

In most cases, transfers will use full handshake protec- 
tion. The handshake permits either party to pause for 
a moment if necessary (perhaps for refreshing dynamic 
memory chips), and allows either party to terminate an 
operation early (in case a buffer overflows, for example) 
with both parties having full knowledge of how many 
words were successfully transmitted. Transfers with 
pipelined handshake require the master to know the ca- 
pabilities of the slave and the bandwidth of the entire 
path in order to choose a workable DS clock rate. If the 
transfer does not push this rate near its limit, one could 



just as well have used full handshake protection and not 
had the worry. 

The information that controls whether handshake or 
pipelined handshake is to be used and whether a block 
transfer (using both strobe edges) is to occur is encoded 
on two additional lines, the mode select (MS) lines. The 
MS code is also used with the address, to specify broad- 
cast or normal addressing and to select normal data space 
or control register space access. Status information is 
supplied by the slave for each cycle, encoded on three SS 
lines, to inform the master of errors or unusual condi- 
tions. The MS lines act like extra AD lines which always 
carry address or data modifier information from master 
to slave, t imed like address or write data. The SS lines 
always carry information from slave to master, t imed like 
read data. Thus every cycle has timing compatible with 
both write and read, the only difference being which di- 
rection the information on the AD lines is flowing. 

ADDRESS-LOCKED AND 
ARBITRATION-LOCKED OPERATIONS 

‘The transfers described above can be generalized to al- 
low data flow to reverse direction without breaking the 
connection. For example, a read-modify-write operation 
as shown in Fig. 8 asserts address, reads data, turns the 
AD lines around again by removing the RD signal, and 
writes the modified data back to the slave. Such a trans- 
fer is uninterruptable by any other processor, since it is 
locked the whole time by the AS-AK lock and no other 
device can use the bus. It thus forms the kind of indivis- 
ible operation needed in multiple-processor systems for 
coordinating use of shared resources. 

Fig. 8. Address locked operation: read-modify-write 
(ss seen by master). 

This idea can be extended to even more complex opera- 
tions, so long as master and slave agree on the meaning 
of each bus cycle. For example, the address which con- 
nects master and slave could be followed by a data word 
which the slave interprets as an internal address or special 
command, followed by another data word which the slave 
interprets as data. One of the MS codes is assigned the 
meaning “internal address” to aid in this interpretation. 
Such a cycle is called a Secondary Address cycle, and is 
used frequently in the standard protocols, especially for 
accessing control and status registers. 

Operations of this sort are referred to as address-locked 
operations. Note that the individual data words usually 
will not be sent as a block transfer, since the possibil- 
ity of turning the bus around between words is being 
maintained, and the time needed for that is provided by 
the alternate edges of the data strobes. However, block 
transfers may also be included within address-locked op- 
erations. 

A still more general kind of transfer on the bus is called 
an arbitration-locked operation sequence. It consists of 
a series of (possibly complicated) address-locked opera- 
tions, between which the master does not release the bus 
for arbitration, 80 no other master can get control. This 
can be very useful for synchronizing a set of slave devices 
which are shared by several processors, BO that a coherent 
set of operations can be performed without interference 
from other processors. This mechanism even works if the 
slave devices are on various different segments, because 
the segment interconnect is designed to maintain any con- 
nection until the originating master gives up its bus, even 
if the current operation is not passing through that seg- 
ment interconnect. This behavior obviously reduces sys- 
tem throughput, but is essential for solving the multi- 
processor multi-segment resource management problem 
efficiently. This behavior can be avoided when it is not 
needed, by merely allowing the master to release the bus 
after each access. 

GEOGRAPHICAL ADDRESSING 

In systems of any significant size, the effort involved in 
correctly setting all module addresses by manual switches 
is too great. Furthermore, some means of automatically 
determining the locations of modules is needed, if only 
for use as a record or a check. When a system without 
switches is first turned on, the control registers which will 
contain the module address information are initialized 
randomly. Some other mechanism is needed to address 
the modules in order to load the device address register 
with the proper contents. 

An addressing mechanism has been included in the Fast- 
bus which allows accessing a module by its location in the 
system, or by its “geographical address” rather than by 
its normal or “logical address”. The geographical address 
of a location on a segment is the position or slot num- 
ber of the location. The geographical address of a seg- 
ment is given by the high-order bits assigned to addresses 
on that segment (as determined by segment interconnect 
route table entries). Thus the geographical address of 
a particular module in the system is given by the ap- 
propriate high-order bits specifying the segment, many 
intermediate zero bits, and five low-order bits specifying 
the position or slot number on the segment. For eco- 
nomic reasons, addresses of this type are recognized by 
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a Geographic Address Controller packaged with the ter- 
minators at one end of the bus, which generates an EG 
(Enable Geograph ) g 1 ic si na on the segment. Individual 
modules seeing EG compare the low-order address bits 
with the slot number ss coded on five pins provided by 
the backplane and connector. It is permissible for mod- 
ules to implement only this form of addressing, which 
makes them quite simple. Actually, the eight low-order 
address bits are used for Geographic Addressing, allow- 
ing for the combination of several physical crates into one 
logical crate, but only five bits are encoded in each back- 
plane. On cable segments, no EG signal is provided and 
devices must decode the entire geographic address them- 
selves. The cable “geographic” address must be set by 
switches in the device. 

The geographical addressing mechanism can be used to 
access the control and information registers in uninitial- 
ized devices so that an automatic procedure can be used 
to initialize them. 

CONTROL AND STATUS REGISTER 
ADDRESSING 

Certain registers and functions in devices need to be sep- 
arated from the normal data registers in a way which pro- 
vides some protection from accidental access and which 
does not interfere with the allocation of addresses to the 
normal data portions of the devices. For example, two 
memory devices should be able to have their addresses 
set so that the memories are adjacent in address space, 
allowing them to be used as one larger memory. How- 
ever, they may contain control registers and status regis- 
ters associated with logical address assignment, memory 
protection, or error detection and correction, and these 
registers must also be accessible in some way. Further- 
more, it is desirable that devices have basic status and 
information registers in standard locations 60 that stan- 
dard shared programs like the system initializer can find 
them easily. 

The method chosen to accomplish this is a special case 
of the address-locked transfer. The device is selected by 
its address, with additional information on the MS lines 
to specify that this is really a control/status access. The 
first data word, called a “secondary address” cycle and 
labelled by a special MS code, is the number of the in- 
ternal control/status register, and the second is the data 
to be read or written. This three-cycle transfer provides 
a full X&bit address for use within a device, which is 

_ enough address space BO that it can easily be allocated 
in standard ways without fear of a shortage. At least the 
more complex devices should include a read-only memory 
containing information about the device and its proper- 
ties, which can be used by programs and people to make 
managing large systems easier. A large block of addresses 

within the device has been reserved for this purpose, and 
a file and directory structure has been defined. Standard 
locations have also been specified for all the usual control 
and status bits. One register is mandatory in all devices, 
containing a device identification code and several other 
useful bits. 

With this scheme, the Control and Status Registers (CSRB) 
of any device in the system are easy to find. Either the 
device’s geographical address or any logical address that 
it responds to may be used to establish contact, where- 
upon the desired register can be accessed via a secondary 
address cycle. 

BROADCAST OPERATIONS 

A broadcast operation is one in which a single master 
sends information to multiple slaves. Broadcasts can be 
used to synchronize devices or clear a bank of counters. 
Since more than one slave may be involved, no handshake 
between slave and master is possible. However, a system 
handshake has been devised which informs the master 
that his command has propagated to every segment to 
which it was addressed. The master asserts an address 
with a code on the MS lines indicating that a broadcast 
is to occur. The address may refer to a specific segment 
or may refer to all connected segments in a pattern con- 
trolled by the route tables in the segment interconnects, 
or it may specify all segments beyond a given segment in 
that predefined pattern. 

The general address used for broadcasting has zeroes in 
its most significant bit positions, so that the route ta- 
ble entries corresponding to the zero address are used for 
routing broadcasts. For this entry, more than one seg- 
ment interconnect may recognize the address and pass 
it onward, since no handshakes are to be returned. The 
pattern formed by the pathways propagating from the 
broadcast master must form a simple tree with no cross 
connections, another rule to be applied by the initializa- 
tion program. 

When the broadcast address has propagated successfully 
throughout the system, the system handshake occurs and 
the master asserts the control register number to which 
it wishes to broadcast, following the protocol of the con- 
trol/status register addressing discussed above. When 
the system handshake is returned, the control data is 
asserted. Thus, any kind of standard control operation 
may be performed at once on a large set of devices by 
a broadcast. Broadcasts may also be made to ordinary 
data space, using a secondary-address data cycle to se- 

lect the appropriate internal data location in the selected 
devices (the address used for broadcast has no room for 
this information, and each device is at a different address 
anyway). Data space broadcasts are rarely useful unless 
one of the selective broadcast modes is used, or the scope 



of the broadcast is limited to a part of the system contain- 
ing many identical devices. Broadcast read (broadcall) is 
also permitted, but is only useful under special conditions 
because it results in the logical OR of the data provided 
by every selected device. 

Broadcasts may take some time to start, since they must 
wait for completion of all conflicting use of the segments 
involved. Applications requiring very fast response to 
signals from a central controller may have to resort to 
direct cables, since there is no way to achieve fast re- 
sponse in a reliable way in a multiple-segment system. 
Once the system connection is complete, however, speed 
of execution of the data cycles is limited only by signal 
propagation delays, so a reasonably synchronous execu- 
tion of the command is achieved. At least, one can be 
certain that all devices will gee the command before any 
other bus operations will occur. 

SPARSE DATA SCANS AND THE “T” PIN 

The Fastbus design includes a pin called the “T” pin, 
which connects inside the backplane to the AD bus line 
corresponding to the module position number. Thus, a 
module in position 12 finds its T pin connected to AD12, 
etc. The T pin thus can be used for positional informa- 
tion. 

The T pin was originally included in the Fastbus to pro- 
vide a means for rapidly scanning sparse data in detec- 
tor front-end modules. A controller on the backplane 
broadcasts a command to the front-end modules which 
causes them to assert their T pins if they contain data. 
The resulting pattern on the AD lines shows the con- 
troller immediately which modules need to be read out, 
thus avoiding the overhead of polling them one at a time. 
Other useful broadcast operations using the T pin have 
been defined, for discovering which crate positions are oc- 
cupied or which devices are asserting the service request 
line. The T-pin is simulated on cable segments. 

INTERRUPTS ON THE FASTBUS 

An interrupt is a request from some device to some pro 
cessor for service or attention. Since interrupts may have 
to cross segment boundaries, and since they must carry 
information, they are handled by normal Fastbus oper- 
ations. The interrupting device addresses an interrupt- 
sensing control register in some processor, and writes its 
own address and possibly other information into the reg- 

- ister. The processor then has all the information it needs 
to find the interrupting device and service it at some later 
time. 

ln some systems, large numbers of simple devices may 
need to signal a request for service without having the 
capability of gaining bus mastership and performing an 

interrupt write. Within a single segment, such devices 
may assert a service request (SR) line, which can be mon- 
itored by a special interrupt service device which does 
have the circuitry to gain mastership and find the re- 
quester, whether by means of the T pin or by polling or 
some other means. The interrupt service device may then 
perform the necessary service itself, or it may send a nor- 
mal interrupt message on behalf of the simple requester 
to some other processor. The SR lines may be passed 
through selected segment interconnect modules as well, 
allowing multiple-crate extensions of the simple SR sys- 
tem where appropriate. 

ARBITRATION FOR FASTBUS MASTERSHIP 

Since multiple devices on a segment may wish to become 
master of the segment, some means is needed to prevent 
more than one of them from using the bus at a time. 
Ten lines on the bus are dedicated to the solution of this 
problem. Six of the lines are used to hold a “priority” 
code that determines which competing device wins mss- 
tership, while the other four are used to synchronize the 
requests. The arbitration mechanism operates in parallel 
with use of the bus, BO that little time need be wasted in 
switching from one master to another. 

At a given time, each requester tries to assert its priority 
on the AL (arbitration level) lines. The lines perform a 
“wire-OR” function, 80 that any asserting requester over- 
rides nonasserting requesters at each bit position. Each 
requester compares his level with the level on the AL lines 
bit by bit, from most to least significant. If it sees an AL 
line asserted which it did not assert, it removes its as- 
sertions of all less significant bits, because it knows that 
a higher priority requester is competing. After four bus 
propagation delays, only the highest arbitration level re- 
mains asserted and each requester knows whether it has 
won or lost. 

Of the 64 possible levels, zero is not used because it is ess- 
ily confused with an idle bus, 1 through 31 are available 
for use within the segment, and 32 through 63 are used 
as “super” priorities which must be assigned uniquely 
throughout an entire connected system. The normal lev- 
els 1-31 must be assigned uniquely to devices within a 
given segment, but exist on every segment to be used over 
and over again. When a segment interconnect connects 
a master to another segment, the arbitration level used 
on the second segment will normally be the local level of 
the segment interconnect module rather than that of the 
originating master. However, if one of the super prior- 
ities was used by the master, the segment interconnect 
will propagate that level onto the second segment, which 
it is free to do since the super priorities are unique within 
the system. The super priorities can be useful in prevent- 
ing undue delay for important broadcasts, and can help 



expedite important messages, which otherwise may suf- 
fer from fluctuating levels as they form paths through the 
system. 

The current master determines when it will be finished 
with the bus, and releases the arbitration circuitry so that 
the next master can be selected before it finishes. It thus 
maintains ownership of the bus as long as it likes, which is 
the mechanism used to implement the arbitration-locked 
operations discussed above. 

An ‘Assured-Access” protocol is also available, which 
provides a kind of round-robin access to the bus, avoid- 
ing bus-hogging by high-priority devices. -Assured Access 
works by preventing a master from reapplying for master- 
ship once he has had it, until no other applicants remain. 
Most devices should use Assured Access in normal op- 
eration of a system, but the choice is up to the system 
configurer. Priority access can be mixed with Assured 
Access as appropriate-the priority devices simply apply 
for mastership and join the arbitration process whenever 
they wish. 

The term “priority” is somewhat misleading, because 
there is no mechanism to allow a high-priority device to 
preempt or force a lesser one off the bus. In a lightly 
loaded system, first-come first-served is the dominant 
mode of behavior. The arbitration level only serves to 
break ties when simultaneous requests for use of the bus 
occur, or when requests become synchronized as a result 
of waiting for passing traffic. Thus arbitration priority 
should not be confused with the kind of priority which 
may apply to multitasking executive programs or com- 
puter interrupt systems which allow nesting. 

DEADLOCK PREVENTION 
IN MULTI-PROCESSOR SYSTEMS 

Deadlock is a fundamental problem which must be solved 
in multi-processor systems, caused by conflicting exclusive- 
access requirements of processors for multiple resources. 
Fastbus provides some tools which help to solve this prob- 
lem. For example, address-locked operations allow reli- 
ably testing and setting semaphores without interference 
by other processors. A “User Address Register” allows 
administration of resource ownership in a distributed, co- 
operative system without requiring a central software re- 
source manager. Especially important in large systems, 
Segment Interconnects hold any paths which they estab- 
lish, until the master which originated the connection 

_ gives up the bus to another master. This allows one mas- 
ter to block access by any other to critical resources lo- 
cated on several other segments, to gather all the needed 
resources and protect them before it begins taking any 
irreversible actions-if it cannot get access to all the re- 
quired resources, it releases the bus and tries again later. 
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Ultimately, when avoidance fails, Fastbus relies on a time- 
out to resolve deadlocks: never wait forever for anything; 
give up, wait a random time and try again. 

DIAGNOSTIC NETWORK 

Diagnosing problems in a complex system with multiple 
bus segments requires powerful tools to set up tests and 
gather information from multiple sources, then bring it 
together for analysis and display. Because the Fastbus 
interconnect system might be the point of failure, and 
because it is desirable to be able to collect information 
about the system without disturbing the system, a ~ec- 

ondary information path is needed. 

Fastbus has allocated two lines in the backplane for use 
by a diagnostic serial network. The protocols have not 
yet been standardized, but the principles are clear. The 
network must be robust, easy to connect, available every- 
where in the system, inexpensive, versatile. Two modules 
on the same backplane should be able to communicate 
just as we11 as modules that are widely separated. This 
can be achieved by using an Ethernet-like scheme, with 
every module transmitting on the TX serial line while lis- 
tening to the RX serial line. The TX line is a normal wire- 
OR backplane signal line, which is received by a network 
interface attached to the back of the backplane. (Eventu- 
ally this should be part of the terminator/ancillary logic 
board.) The interface drives a network coaxial cable via 
isolating transformers, and also receives cable signals and 
drives the RX line with them. Thus the TX signal from 
any module on any backplane is visible at every module 
position in the system, on the RX line. The network cable 
must visit cable-segment devices individually as needed. 

To make the cabling convenient, to reduce restrictions 
on cable flexibility, length, and quality, and to reduce 
board-space requirements in devices that wish to use the 
network, the data rate must be rather modest. 

SLAC is presently working on an implementation of the 
AppleTalk (TM) network, used primarily by the Apple 
Macintosh and LaserWriter, as a prototype diagnostic 
network. It operates at 230400 bits/second, and needs 
only half of a Zilog SCC 8530 communications chip in 
each device. AppleTalk has about the right combination 
of attributes for this application. 

The prototype implementation is being done in the SLAC 
Fastbus Snoop Module,2 which is a sort of specialized fast 
logic analyzer which understands F&bus protocols, can 
store a history of bus activity, set traps and triggers, and 
act as a master to exercise remote parts of the system for 
test purposes. 



CABLE SEGMENTS 

The Fastbus cable segment contains all the protocol and 
data lines needed for full Fastbus operation. It does 
not carry power, daisy-chains, T pin, geographical ad- 
dress encoding pins, serial network lines or free-use lines. 
The geographical address encoding must be provided by 
switches and the T-pin connection must be simulated in 
the devices which attach to the cable segment. Other- 
wise, devices connected to cable segments act just like 
devices (modules) connected to backplane segments. 

The wire-OR behavior of certain Fastbus lines (especially 
the arbitration lines) is fundamental to the protocol. 
Wire-OR in the usual style (ss used on the backplane 
segments) has certain unavoidable limitations3 caused by 
the use of voltage-driver technology. On the backplane, 
circuit delays are used to overcome these problems, but 
on long cable segments this solution would cause unac- 
ceptable delays. 

Therefore, a new transceiver technology was developed 
for use on Fastbus cable segments, which uses current 
drivers and voltage receivers to completely eliminate wire- 
.OR problems. The signals from multiple drivers sim- 
ply add, the laws of linear superposition apply, and the 
receivers are comparators which only need to discrimi- 
nate between the ‘0” and “l-or-more” logic levels. In 
addition, long cables are especially vulnerable to electri- 
cal noise, ground potential differences etc., so the cable 
segment uses differential signalling to cancel out these 
effects. The resulting system behaves in a nearly ideal 
way. Present implementations use hybrid technology for 
the transceivers, but monolithic technology is already 
capable of the required performance so fully integrated 
transceivers should eventually be available. 

CONCLUSION 

The Fastbus design evolved over a seven-year period into 
a simple, clean and cost-effective system which can solve 
a broad spectrum of problems. Its ability to cope with 
extremely fast as well as slow devices, its easy expand- 
ability, its parallelism, modularity, and multiprocessor 
support commend it for a wide range of applications. 

Recent experience at CERN involving bids on large sys- 
tems (private communication from Henk Verweij) reveals 
that Fastbus has already begun to show its expected eco- 
nomic advantage. The cost of usable module area, after 
subtracting system interface overheads etc., for a com- 
plete system including power and cooling, was found to 
be: SFr 0.33/cm2 for Fastbus, SFr 0.55/cm2 for CAMAC, 
and SFr 0.75/cm2 for VME. Most people consider VME 
to be very inexpensive, so this result is quite impressive. 
It should get even better when Fastbus designs begin 
using the LSI gate-array interface chips which have just 
become available. 

FOR MORE INFORMATION 

The status of the Fastbus is reported annually at the 
IEEE Nuclear Science Symposium. The Symposium pro- 
ceedings are published as the IEEE Transactions on Nu- 
clear Science each February. For example, see the articles 
by H. V. Walz and E. J. Barsotti,’ H. Verweij5 and others. 

For current information, contact Louis Costrell, Chair- 
man, U. S. NIM Committee, National Bureau of Stan- 
dards, Center for Radiation Research, Washington, D.C. 
20234, telephone (301) 921-2518. 

Several useful articles about buses appear in the August 
1984 issue of IEEE Micro. There are detailed discussions 
of bus signal propagation,’ arbitration’ and protoco1.s 
These describe the IEEE P896 Futurebus in particular, 
but that bus has some similarity to Fastbus, and the 
physics problems are the same. Note that the Fastbus BO- 
lution to the bus driving problem was the use of ECL 10K 
transceivers, which behave almost exactly like the new 
transceivers described in Ref. 6, except that they operate 
at different voltage levels. Fastbus arbitration behaves 
just like the system described in Ref. 7 except that the 
control mechanism is different. Signal diagrams for other 
buses are usually upside-down compared to Fsstbus, be- 
cause ECL 10K signals perform the wire-OR going posi- 
tive while most other systems wire-OR going negative- 
i.e., any transmitter being active pulls the signal low. The 
arbitration article also contains a good discussion of the 
wire-OR problem. There is also an elementary tutorial 
on buses in that issue.’ 
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