
SLAC - PUB - 3844
December 1985
(1)

AN INTRODUCTION TO THE FASTBUS’

DAVID B . GUSTAVSON

Stanford Linear Accelerator Center
Stanford University, Stanjord, California, 94305

ABSTRACT

The Fastbus is a modular data bus system for data acquisition and data pro-
cessing. It is a multiprocessor system with multiple bus segments which operate
independently but link together for passing data. It operates asynchronously to
accommodate very high and very low speed devices over long or short paths,
using handshake protocols for reliability. It can also operate synchronously with
pipelined handshakes for transfer of data blocks at maximum speed. The goals,
history and motivation for the Fastbus are summarized briefly. The structure of
the Fastbus system is described in general and some details of its operation are
introduced.

HISTORY AND GOALS OF THE
FASTBUS DESIGN

In 1975 several physicists active in high energy elemen-
tary particle physics asked the US NIM (Nuclear Instru-
mentation Modules) committee to consider development
of a standard data acquisition system which would meet
the needs of future physics experiments and which would
also be of general utility. The NIM committee established
a study group to examine the needs and determine objec-
tives to be met by such a system. In 1977, a committee
was formed to begin the design of a system which would
meet these goals. The design and prototyping efforts were
supported by the U. S. Department of Energy.

The design committee essentially completed its work in
1983, publishing the Fastbus specification as Department
of Energy report DOE/ER-0189. Fastbus became ANSI/
IEEE Standard 960 in 1984. As of this writing, Fastbus
has reached routine commercial production; catalogs of
off-the-shelf Fastbus equipment are available from sev-
eral vendors. Committee work continues, now mainly
focussed on standards for software supporting Fastbus.

The goals of the Fastbus design were:

Highest possible speed, in order to handle the high
data rates encountered in complex particle detec-
tors, and to reduce the temptation to design custom
systems for each application.

Lowest possible cost, because huge volumes of elec-
tronics are required in modern experimental physics
and any unnecessary cost is multiplied by a large
factor.

Modular construction, so that useful standard build-
ing blocks can be developed which can then be con-
nected in various ways to meet the needs of various
projects.

General utility, so that commercial use outside the
physics community will raise vendor volume and
lower user costs. No special physics features which
interfere with general-purpose use in other markets.

Complete system design, including: power distri-
bution and heat removal adequate for large high-
speed systems; diagnostic facilities to speed discov-
ery, location and correction of faults; operating and
maintenance aids such as rear access for cabling,
machine-readable module identifiers, standardized
control and status registers.

Multiple-processor organization, so that many low-
cost computing elements can be brought to bear on
parts of the data acquisition and analysis problem.

Segmented organization, so that the multiple pro-
cessors will not be overly limited by the bus band-
width. Segments of the bus should operate indepen-
dently, joining together automatically as needed for
passing data.

* Work supported by the Department of Energy, contract DE-AC03-76SF00515.

Invited paper presented at the BUSCON, San Jose, California, January 14-16, 1986.

Asynchronous operation, so that slow and fast mod-
ules can be mixed in the system, and BO that the sys-
tem speed can increase easily as technology
advances.

Synchronous operation, so that data transfer can
occur at the full bandwidth capability of the trans-
fer medium when ultimate performance is needed.

Uniform protocols, so that no protocol translation
is needed as data flows from segment to segment.
The Fastbus uses cable segments to join segment in-
terconnect modules residing on backplane segments.
CAMAC (IEEE 583, Fastbus’s predecessor), used a
branch-highway cable connecting crate controllers.
The branch cable used a different protocol than the
crate backplane.

Uniform addressing, so that each device can have
as much address space as it needs, and with no
dedicated positions on backplanes. Devices have
an address which is unique in a connected system
and which is independent of device position within
a segment. All positions are equal in capability.
Position-dependent addressing is also needed, at
least during system initialization, for addressing a
module to tell it its assigned position-independent
address.

Sparse-data scanning capability, because the rele-
vant data is usually a tiny fraction of the data avail-
able (most elements of a large detector are not hit
by any particles at all in a typical event).

These goals, though partially conflicting, have been met
to a remarkable degree by the Fastbus design.

HARDWARE AND ORGANIZATION OF
THE FASTBUS SYSTEM

The essential part of the Fastbus design is the bus proto
co]. Various electrical and mechanical implementations
are possible which use this protocol and hence are easy
to interface to one another, but only one electrical imple-
mentation and one module design have been chosen for
standardization. However, module dimensions are speci-
fied so that the same module can be used in an air-cooled
or in a conduction-cooled (water-cooled) crate.

The most common implementation consists of a crate
which fits in a standard 14inch rack, with a multilayer
backplane at the rear and card guides at the top and
bottom as shown in Figs. 1 and 2. Cooling air flows ver-
tically from bottom to top through the crate, driven by
separate fan units which may serve several stacked crates.
Water cooled rechillers can be mounted between crates as
necessary. The design capacity of 2000 watts per crate

SEGMENT
INTERCONNECTION
TO/FROM
OTHER SEGMENTS
PROCESSOR
INTERFACE, ETC

TO SEGMENT
INTERCONNECT
MODULE

CONNECTORS

Fig. 1. Basic FASTBUS elements.

Fig. 2. FASTBUS crate and modules.

seems easily accommodated, and with care 3000 watts is
possible.

A crate holds 26 modules (Figs. 3 and 4), which consist
of circuit boards of approximately 366.7 mm (14.437 in.)
high by 400.0 mm (15.748 in.) long, with optional front
panels about 16 mm (0.63 in.) wide. The rear edge of
the boards contains two box connectors which mate with

.square pins that protrude from the backplane. The main
bus connector has two rows of 65 positions on 2.54 mm
(0.1 in.) centers. An optional auxiliary connector has up
to three rows of 65 positions, and connects to long non-
bussed pins which pass through the backplane so that
user cabling can be attached to the backplane rather than
to the module. Small card guides are optionally provided
on the rear of the crate to aid connector alignment and
cable retention.

The main connector supplies power and ground as well
as signals, with one ground to every four signals. Power

Fig. 3. The SLAC snoop module.

is distributed by heavy layers of copper in the backplane,
providing for 300 amperes at +5 and -5.2 volts, 200 am-
peres at -2 volts, 50 amperes at +I5 and -15 volts, and
100 amperes at +28 volts. A quiet analog ground line is
also provided. Power supplies are separate from crates,
connected by remote-sensing cables. Typically they will
be mounted in the rear of the rack. The f15 and +28-
volt supplies are optional.

Bus terminators and a small amount of logic associated
with bus arbitration, broadcast timing and geographi-
cal addressing reside on small boards mated to extended
main-connector pins on the back of the backplane in the
end positions. All bus signals are emitter-coupled-logic
(ECL 10K) levels.

SEGMENTATION OF THE FASTBUS

The backplane bus in a single crate is a single segment,
_ i.e., corresponding pins in all backplane connectors are

directly connected by printed circuit traces, which means
that the bus can be driven by only one device at a time.
Thus, although multiple processors may be plugged into
the crate and share the single backplane bus, they must

Fig. 4. SLAC Mark II/SLC drift chamber postamplifier
module.

take turns using it. The mechanism that determines
whose turn it is is called arbitration. Contention for the
use of the bus may reduce the throughput of the system
by causing processors to wait.

Distributing the processors among several crates reduces
the contention problem if the data they need for oper-
ation is similarly distributed, but occasionally they will
need access to one another’s data. In a Fastbus system,
there may be many segments that operate independently
most of the time, but are temporarily linked together by
segment interconnect modules when necessary for inter-
segment data transfers.

The cables which interconnect backplane segments are
segments themselves, and may contain devices other than
segment interconnect modules. Devices on cable seg-
ments obey the Fastbus protocols, but must provide their
own power because power is not included in the cables.
The term “device” will often be used instead of “module”,
to emphasize the logical similarity of devices whether
they fit in crates and attach to backplanes, or have arbi-
trary shapes and locations and attach to cable segments.

To transfer data, a device must first gain the right to use
its bus segment via the arbitration mechanism, then as-
sert onto the bus lines the address of the device it wants to
communicate with. After communication is established,
the address is removed and the bus lines are used for
transferring data either to (reading) or from (writing)
the originating device.

Segment interconnect modules monitor the activity on
the two segments they connect, awaiting the appearance
of any address in a set of addresses which they have
been programmed to recognize. They respond to such
an address by requesting use of their other segment and
asserting the given address on that segment when they
gain control. The two segments remain locked together
until the operation is complete. An arbitrary number
of segments can be successively linked as needed for a
given operation. The address contains all the information
needed to direct the appropriate segment interconnects to
respond and form the correct connection.

In order to use the address to provide the routing infor-
mation in a practical way, the total address space avail-
able to the system is divided among the segments in such
a way that the most significant bits of the address are
sufficient to specify which segment is addressed. Every
device on a given segment then has the same value for
the high-order part of its address, and that value can be
thought of as the segment number. The less significant
bits serve to specify which device on the given segment is
addressed, while the least significant bits specify the part
or function within the device which is addressed.

The segment interconnect modules can thus be imple-
mented in a simple way by using the high-order address
bits to address an internal memory which contains a “1”
in the locations corresponding to addresses which are to
be recognized and passed, and a “0” in the other loca-
tions. When the system is initialized, these memories
are loaded with the patterns needed to route all opera-
tions correctly. These internal memories are called “route
tables”, though actual connection routes are only deter-
mined by the combination of all the route table memories
in the system.

With this scheme, there are no restrictions on the kinds of
interconnections which may be made between segments.
Segments may be connected in a tree structure with a
big computer at the trunk and data acquisition devices
at the leaves, for example. If high traffic between two
widely separated segments causes excessive interference
with the intermediate segments, a cable segment can be
added which bypasses the intermediate segments. No de-
vice address changes are required because of this change,
and once the route tables in the segment interconnects are
reinitialized to make use of the new route, the interfer-
ing traffic will disappear from the formerly intermediate

segments. Tree, star and ring structures can all be ac-
commodated. Figure 5 shows an example of a simple tree
connection.

PROCESSOR INTERFACE

d---F&Y-
&$gj &) ------ (+J

--
SLAVES

H-e1 Y .t’J.A?O

Fig. 5. Example of FASTBUS system topology.

However, some rules must be obeyed when setting up the
route table information for the segment interconnects.
For example, only one interconnect module may respond
to any given address on a segment, since there must be
only one path used for a given operation. A procedure
has been developed for creating the routing information
automatically, which makes it easy to reconfigure the sys-
tem as needs change. Dedicated systems which do not
change may avoid the need for route table initialization
by storing the necessary route information in permanent
read-only memories.

THE FASTBUS PROTOCOL

The Fastbus uses the same 32-bit parallel bus (AD) for
Addressing and for Data transfer, at different times. This
technique is called time multiplexing. It may seem strange
to multiplex address and data in a system which strives
for ultimate speed, but it turns out that the speed penalty
is not nearly as great as is usually supposed, because the
data cannot be used until address recognition is complete.
The reduction in the number of bus lines, connections and
transceivers results in significant economic and reliability
advantages for multiplexing. In order to achieve maxi-
mum speed for data transfer, block transfer modes have
been developed in which a single address word is followed

4

by many data words, making the time penalty for mul-
tiplexing address and data insignificant. In fact, even if
we were willing to implement 64 lines and transceivers we
would probably choose to multiplex anyway, in order to
get the greatest system throughput.

To initiate a transfer, a master device asserts the slave’s
address on the 32 AD lines followed by the address strobe,
AS, as shown in Fig. 6. (A master is a device which ini-
tiates an operation by arbitrating to acquire control of
the bus and then asserting an address. A slave is a de-
vice which responds to the address on the bus. A device
may be able to act either as a master or as a slave at
different times.) The address assertion sets up the path
between master and slave, through segment interconnect
modules if necessary. When the slave recognizes its own
address, it responds with the address acknowledge sig-
nal AK. AS and AK remain asserted until the comple-
tion of the transfer, and serve to lock other users off the
bus and cause them to ignore all bus activity. In fact,
once the connection is established and the AS-AK lock
is complete, the two devices could do almost anything
with most other lines on the bus and no other devices
would be disturbed. In order to facilitate the construc-
tion of compatible devices, however, standard protocols
for most useful transfers have been specified.

ADDRESS DATA SIGNAL

Fig. 6. Basic handshake read operation (as seen by
master).

When the master sees the AK response, it knows that the
address information is no longer needed, and removes it
from the bus. It now asserts data and the data strobe DS,
in case of a write operation, waiting for the acknowledging
DK from the slave before removing the data. For a read
operation, DS is asserted along with the read line RD, as
shown in Fig. 6. The slave responds with data and DK.
The transfer ends when the master sees DK and records
the data on the AD lines, removes its signals including
DS and AS, and the slave, seeing AS removed, removes
its signals including AK. The connection between master
and slave always has full handshaking at the beginning
and end of a transfer.

The transfer of single data words requires two strobe
edges, the assertion of DS and then its removal. In effect,

the first edge controls the assertion of data and the sec-
ond edge controls its removal. This restores the bus to
an un-driven condition after each cycle, so that the direc-
tion of data flow can be reversed between two cycles, as
shown in Fig. 8. Block transfers sacrifice the possibility
of quick reversal and double the transfer rate by using
both strobe edges to transfer data as shown in Fig. 7,
without restoring the bus to its undriven condition until
the very end of the block. Note that this is still a full
handshake, BO that the transfer cannot proceed without
the agreement of both parties.

Fig. 7. Write block transfer (as seen by master).

However, it is also possible to perform a block trans-
fer with pipelined handshake, between devices which can
handle the same data rates. In the case of a write, the
master simply asserts data words and DS transitions at
whatever rate is appropriate, without waiting for the DK
responses. In effect, DS becomes a clock which the slave
uses to find the data words in a synchronous transmis-
sion. For a read, the master sends DS and the slave replies
with data and DK; the master uses each DK transition
to find the data words in the received stream of signals.
Handshake-protected transfers require each data word to
be on the bus for at least two bus-propagation delays,
while the data flows to its destination and the acknowl-
edge flows back to the source. On long cable segments,
this delay can be significant, limiting system throughput.
When pipelined handshake is used, however, several data
words could possibly be flowing through the bus trans-
mission lines at once. With pipelined handshake, data
can be transmitted at the full bandwidth capacity of the
medium.

In most cases, transfers will use full handshake protec-
tion. The handshake permits either party to pause for
a moment if necessary (perhaps for refreshing dynamic
memory chips), and allows either party to terminate an
operation early (in case a buffer overflows, for example)
with both parties having full knowledge of how many
words were successfully transmitted. Transfers with
pipelined handshake require the master to know the ca-
pabilities of the slave and the bandwidth of the entire
path in order to choose a workable DS clock rate. If the
transfer does not push this rate near its limit, one could

just as well have used full handshake protection and not
had the worry.

The information that controls whether handshake or
pipelined handshake is to be used and whether a block
transfer (using both strobe edges) is to occur is encoded
on two additional lines, the mode select (MS) lines. The
MS code is also used with the address, to specify broad-
cast or normal addressing and to select normal data space
or control register space access. Status information is
supplied by the slave for each cycle, encoded on three SS
lines, to inform the master of errors or unusual condi-
tions. The MS lines act like extra AD lines which always
carry address or data modifier information from master
to slave, t imed like address or write data. The SS lines
always carry information from slave to master, t imed like
read data. Thus every cycle has timing compatible with
both write and read, the only difference being which di-
rection the information on the AD lines is flowing.

ADDRESS-LOCKED AND
ARBITRATION-LOCKED OPERATIONS

‘The transfers described above can be generalized to al-
low data flow to reverse direction without breaking the
connection. For example, a read-modify-write operation
as shown in Fig. 8 asserts address, reads data, turns the
AD lines around again by removing the RD signal, and
writes the modified data back to the slave. Such a trans-
fer is uninterruptable by any other processor, since it is
locked the whole time by the AS-AK lock and no other
device can use the bus. It thus forms the kind of indivis-
ible operation needed in multiple-processor systems for
coordinating use of shared resources.

Fig. 8. Address locked operation: read-modify-write
(ss seen by master).

This idea can be extended to even more complex opera-
tions, so long as master and slave agree on the meaning
of each bus cycle. For example, the address which con-
nects master and slave could be followed by a data word
which the slave interprets as an internal address or special
command, followed by another data word which the slave
interprets as data. One of the MS codes is assigned the
meaning “internal address” to aid in this interpretation.
Such a cycle is called a Secondary Address cycle, and is
used frequently in the standard protocols, especially for
accessing control and status registers.

Operations of this sort are referred to as address-locked
operations. Note that the individual data words usually
will not be sent as a block transfer, since the possibil-
ity of turning the bus around between words is being
maintained, and the time needed for that is provided by
the alternate edges of the data strobes. However, block
transfers may also be included within address-locked op-
erations.

A still more general kind of transfer on the bus is called
an arbitration-locked operation sequence. It consists of
a series of (possibly complicated) address-locked opera-
tions, between which the master does not release the bus
for arbitration, 80 no other master can get control. This
can be very useful for synchronizing a set of slave devices
which are shared by several processors, BO that a coherent
set of operations can be performed without interference
from other processors. This mechanism even works if the
slave devices are on various different segments, because
the segment interconnect is designed to maintain any con-
nection until the originating master gives up its bus, even
if the current operation is not passing through that seg-
ment interconnect. This behavior obviously reduces sys-
tem throughput, but is essential for solving the multi-
processor multi-segment resource management problem
efficiently. This behavior can be avoided when it is not
needed, by merely allowing the master to release the bus
after each access.

GEOGRAPHICAL ADDRESSING

In systems of any significant size, the effort involved in
correctly setting all module addresses by manual switches
is too great. Furthermore, some means of automatically
determining the locations of modules is needed, if only
for use as a record or a check. When a system without
switches is first turned on, the control registers which will
contain the module address information are initialized
randomly. Some other mechanism is needed to address
the modules in order to load the device address register
with the proper contents.

An addressing mechanism has been included in the Fast-
bus which allows accessing a module by its location in the
system, or by its “geographical address” rather than by
its normal or “logical address”. The geographical address
of a location on a segment is the position or slot num-
ber of the location. The geographical address of a seg-
ment is given by the high-order bits assigned to addresses
on that segment (as determined by segment interconnect
route table entries). Thus the geographical address of
a particular module in the system is given by the ap-
propriate high-order bits specifying the segment, many
intermediate zero bits, and five low-order bits specifying
the position or slot number on the segment. For eco-
nomic reasons, addresses of this type are recognized by

6

a Geographic Address Controller packaged with the ter-
minators at one end of the bus, which generates an EG
(Enable Geograph) g 1 ic si na on the segment. Individual
modules seeing EG compare the low-order address bits
with the slot number ss coded on five pins provided by
the backplane and connector. It is permissible for mod-
ules to implement only this form of addressing, which
makes them quite simple. Actually, the eight low-order
address bits are used for Geographic Addressing, allow-
ing for the combination of several physical crates into one
logical crate, but only five bits are encoded in each back-
plane. On cable segments, no EG signal is provided and
devices must decode the entire geographic address them-
selves. The cable “geographic” address must be set by
switches in the device.

The geographical addressing mechanism can be used to
access the control and information registers in uninitial-
ized devices so that an automatic procedure can be used
to initialize them.

CONTROL AND STATUS REGISTER
ADDRESSING

Certain registers and functions in devices need to be sep-
arated from the normal data registers in a way which pro-
vides some protection from accidental access and which
does not interfere with the allocation of addresses to the
normal data portions of the devices. For example, two
memory devices should be able to have their addresses
set so that the memories are adjacent in address space,
allowing them to be used as one larger memory. How-
ever, they may contain control registers and status regis-
ters associated with logical address assignment, memory
protection, or error detection and correction, and these
registers must also be accessible in some way. Further-
more, it is desirable that devices have basic status and
information registers in standard locations 60 that stan-
dard shared programs like the system initializer can find
them easily.

The method chosen to accomplish this is a special case
of the address-locked transfer. The device is selected by
its address, with additional information on the MS lines
to specify that this is really a control/status access. The
first data word, called a “secondary address” cycle and
labelled by a special MS code, is the number of the in-
ternal control/status register, and the second is the data
to be read or written. This three-cycle transfer provides
a full X&bit address for use within a device, which is

_ enough address space BO that it can easily be allocated
in standard ways without fear of a shortage. At least the
more complex devices should include a read-only memory
containing information about the device and its proper-
ties, which can be used by programs and people to make
managing large systems easier. A large block of addresses

within the device has been reserved for this purpose, and
a file and directory structure has been defined. Standard
locations have also been specified for all the usual control
and status bits. One register is mandatory in all devices,
containing a device identification code and several other
useful bits.

With this scheme, the Control and Status Registers (CSRB)
of any device in the system are easy to find. Either the
device’s geographical address or any logical address that
it responds to may be used to establish contact, where-
upon the desired register can be accessed via a secondary
address cycle.

BROADCAST OPERATIONS

A broadcast operation is one in which a single master
sends information to multiple slaves. Broadcasts can be
used to synchronize devices or clear a bank of counters.
Since more than one slave may be involved, no handshake
between slave and master is possible. However, a system
handshake has been devised which informs the master
that his command has propagated to every segment to
which it was addressed. The master asserts an address
with a code on the MS lines indicating that a broadcast
is to occur. The address may refer to a specific segment
or may refer to all connected segments in a pattern con-
trolled by the route tables in the segment interconnects,
or it may specify all segments beyond a given segment in
that predefined pattern.

The general address used for broadcasting has zeroes in
its most significant bit positions, so that the route ta-
ble entries corresponding to the zero address are used for
routing broadcasts. For this entry, more than one seg-
ment interconnect may recognize the address and pass
it onward, since no handshakes are to be returned. The
pattern formed by the pathways propagating from the
broadcast master must form a simple tree with no cross
connections, another rule to be applied by the initializa-
tion program.

When the broadcast address has propagated successfully
throughout the system, the system handshake occurs and
the master asserts the control register number to which
it wishes to broadcast, following the protocol of the con-
trol/status register addressing discussed above. When
the system handshake is returned, the control data is
asserted. Thus, any kind of standard control operation
may be performed at once on a large set of devices by
a broadcast. Broadcasts may also be made to ordinary
data space, using a secondary-address data cycle to se-

lect the appropriate internal data location in the selected
devices (the address used for broadcast has no room for
this information, and each device is at a different address
anyway). Data space broadcasts are rarely useful unless
one of the selective broadcast modes is used, or the scope

of the broadcast is limited to a part of the system contain-
ing many identical devices. Broadcast read (broadcall) is
also permitted, but is only useful under special conditions
because it results in the logical OR of the data provided
by every selected device.

Broadcasts may take some time to start, since they must
wait for completion of all conflicting use of the segments
involved. Applications requiring very fast response to
signals from a central controller may have to resort to
direct cables, since there is no way to achieve fast re-
sponse in a reliable way in a multiple-segment system.
Once the system connection is complete, however, speed
of execution of the data cycles is limited only by signal
propagation delays, so a reasonably synchronous execu-
tion of the command is achieved. At least, one can be
certain that all devices will gee the command before any
other bus operations will occur.

SPARSE DATA SCANS AND THE “T” PIN

The Fastbus design includes a pin called the “T” pin,
which connects inside the backplane to the AD bus line
corresponding to the module position number. Thus, a
module in position 12 finds its T pin connected to AD12,
etc. The T pin thus can be used for positional informa-
tion.

The T pin was originally included in the Fastbus to pro-
vide a means for rapidly scanning sparse data in detec-
tor front-end modules. A controller on the backplane
broadcasts a command to the front-end modules which
causes them to assert their T pins if they contain data.
The resulting pattern on the AD lines shows the con-
troller immediately which modules need to be read out,
thus avoiding the overhead of polling them one at a time.
Other useful broadcast operations using the T pin have
been defined, for discovering which crate positions are oc-
cupied or which devices are asserting the service request
line. The T-pin is simulated on cable segments.

INTERRUPTS ON THE FASTBUS

An interrupt is a request from some device to some pro
cessor for service or attention. Since interrupts may have
to cross segment boundaries, and since they must carry
information, they are handled by normal Fastbus oper-
ations. The interrupting device addresses an interrupt-
sensing control register in some processor, and writes its
own address and possibly other information into the reg-

- ister. The processor then has all the information it needs
to find the interrupting device and service it at some later
time.

ln some systems, large numbers of simple devices may
need to signal a request for service without having the
capability of gaining bus mastership and performing an

interrupt write. Within a single segment, such devices
may assert a service request (SR) line, which can be mon-
itored by a special interrupt service device which does
have the circuitry to gain mastership and find the re-
quester, whether by means of the T pin or by polling or
some other means. The interrupt service device may then
perform the necessary service itself, or it may send a nor-
mal interrupt message on behalf of the simple requester
to some other processor. The SR lines may be passed
through selected segment interconnect modules as well,
allowing multiple-crate extensions of the simple SR sys-
tem where appropriate.

ARBITRATION FOR FASTBUS MASTERSHIP

Since multiple devices on a segment may wish to become
master of the segment, some means is needed to prevent
more than one of them from using the bus at a time.
Ten lines on the bus are dedicated to the solution of this
problem. Six of the lines are used to hold a “priority”
code that determines which competing device wins mss-
tership, while the other four are used to synchronize the
requests. The arbitration mechanism operates in parallel
with use of the bus, BO that little time need be wasted in
switching from one master to another.

At a given time, each requester tries to assert its priority
on the AL (arbitration level) lines. The lines perform a
“wire-OR” function, 80 that any asserting requester over-
rides nonasserting requesters at each bit position. Each
requester compares his level with the level on the AL lines
bit by bit, from most to least significant. If it sees an AL
line asserted which it did not assert, it removes its as-
sertions of all less significant bits, because it knows that
a higher priority requester is competing. After four bus
propagation delays, only the highest arbitration level re-
mains asserted and each requester knows whether it has
won or lost.

Of the 64 possible levels, zero is not used because it is ess-
ily confused with an idle bus, 1 through 31 are available
for use within the segment, and 32 through 63 are used
as “super” priorities which must be assigned uniquely
throughout an entire connected system. The normal lev-
els 1-31 must be assigned uniquely to devices within a
given segment, but exist on every segment to be used over
and over again. When a segment interconnect connects
a master to another segment, the arbitration level used
on the second segment will normally be the local level of
the segment interconnect module rather than that of the
originating master. However, if one of the super prior-
ities was used by the master, the segment interconnect
will propagate that level onto the second segment, which
it is free to do since the super priorities are unique within
the system. The super priorities can be useful in prevent-
ing undue delay for important broadcasts, and can help

expedite important messages, which otherwise may suf-
fer from fluctuating levels as they form paths through the
system.

The current master determines when it will be finished
with the bus, and releases the arbitration circuitry so that
the next master can be selected before it finishes. It thus
maintains ownership of the bus as long as it likes, which is
the mechanism used to implement the arbitration-locked
operations discussed above.

An ‘Assured-Access” protocol is also available, which
provides a kind of round-robin access to the bus, avoid-
ing bus-hogging by high-priority devices. -Assured Access
works by preventing a master from reapplying for master-
ship once he has had it, until no other applicants remain.
Most devices should use Assured Access in normal op-
eration of a system, but the choice is up to the system
configurer. Priority access can be mixed with Assured
Access as appropriate-the priority devices simply apply
for mastership and join the arbitration process whenever
they wish.

The term “priority” is somewhat misleading, because
there is no mechanism to allow a high-priority device to
preempt or force a lesser one off the bus. In a lightly
loaded system, first-come first-served is the dominant
mode of behavior. The arbitration level only serves to
break ties when simultaneous requests for use of the bus
occur, or when requests become synchronized as a result
of waiting for passing traffic. Thus arbitration priority
should not be confused with the kind of priority which
may apply to multitasking executive programs or com-
puter interrupt systems which allow nesting.

DEADLOCK PREVENTION
IN MULTI-PROCESSOR SYSTEMS

Deadlock is a fundamental problem which must be solved
in multi-processor systems, caused by conflicting exclusive-
access requirements of processors for multiple resources.
Fastbus provides some tools which help to solve this prob-
lem. For example, address-locked operations allow reli-
ably testing and setting semaphores without interference
by other processors. A “User Address Register” allows
administration of resource ownership in a distributed, co-
operative system without requiring a central software re-
source manager. Especially important in large systems,
Segment Interconnects hold any paths which they estab-
lish, until the master which originated the connection

_ gives up the bus to another master. This allows one mas-
ter to block access by any other to critical resources lo-
cated on several other segments, to gather all the needed
resources and protect them before it begins taking any
irreversible actions-if it cannot get access to all the re-
quired resources, it releases the bus and tries again later.

9

Ultimately, when avoidance fails, Fastbus relies on a time-
out to resolve deadlocks: never wait forever for anything;
give up, wait a random time and try again.

DIAGNOSTIC NETWORK

Diagnosing problems in a complex system with multiple
bus segments requires powerful tools to set up tests and
gather information from multiple sources, then bring it
together for analysis and display. Because the Fastbus
interconnect system might be the point of failure, and
because it is desirable to be able to collect information
about the system without disturbing the system, a ~ec-

ondary information path is needed.

Fastbus has allocated two lines in the backplane for use
by a diagnostic serial network. The protocols have not
yet been standardized, but the principles are clear. The
network must be robust, easy to connect, available every-
where in the system, inexpensive, versatile. Two modules
on the same backplane should be able to communicate
just as we11 as modules that are widely separated. This
can be achieved by using an Ethernet-like scheme, with
every module transmitting on the TX serial line while lis-
tening to the RX serial line. The TX line is a normal wire-
OR backplane signal line, which is received by a network
interface attached to the back of the backplane. (Eventu-
ally this should be part of the terminator/ancillary logic
board.) The interface drives a network coaxial cable via
isolating transformers, and also receives cable signals and
drives the RX line with them. Thus the TX signal from
any module on any backplane is visible at every module
position in the system, on the RX line. The network cable
must visit cable-segment devices individually as needed.

To make the cabling convenient, to reduce restrictions
on cable flexibility, length, and quality, and to reduce
board-space requirements in devices that wish to use the
network, the data rate must be rather modest.

SLAC is presently working on an implementation of the
AppleTalk (TM) network, used primarily by the Apple
Macintosh and LaserWriter, as a prototype diagnostic
network. It operates at 230400 bits/second, and needs
only half of a Zilog SCC 8530 communications chip in
each device. AppleTalk has about the right combination
of attributes for this application.

The prototype implementation is being done in the SLAC
Fastbus Snoop Module,2 which is a sort of specialized fast
logic analyzer which understands F&bus protocols, can
store a history of bus activity, set traps and triggers, and
act as a master to exercise remote parts of the system for
test purposes.

CABLE SEGMENTS

The Fastbus cable segment contains all the protocol and
data lines needed for full Fastbus operation. It does
not carry power, daisy-chains, T pin, geographical ad-
dress encoding pins, serial network lines or free-use lines.
The geographical address encoding must be provided by
switches and the T-pin connection must be simulated in
the devices which attach to the cable segment. Other-
wise, devices connected to cable segments act just like
devices (modules) connected to backplane segments.

The wire-OR behavior of certain Fastbus lines (especially
the arbitration lines) is fundamental to the protocol.
Wire-OR in the usual style (ss used on the backplane
segments) has certain unavoidable limitations3 caused by
the use of voltage-driver technology. On the backplane,
circuit delays are used to overcome these problems, but
on long cable segments this solution would cause unac-
ceptable delays.

Therefore, a new transceiver technology was developed
for use on Fastbus cable segments, which uses current
drivers and voltage receivers to completely eliminate wire-
.OR problems. The signals from multiple drivers sim-
ply add, the laws of linear superposition apply, and the
receivers are comparators which only need to discrimi-
nate between the ‘0” and “l-or-more” logic levels. In
addition, long cables are especially vulnerable to electri-
cal noise, ground potential differences etc., so the cable
segment uses differential signalling to cancel out these
effects. The resulting system behaves in a nearly ideal
way. Present implementations use hybrid technology for
the transceivers, but monolithic technology is already
capable of the required performance so fully integrated
transceivers should eventually be available.

CONCLUSION

The Fastbus design evolved over a seven-year period into
a simple, clean and cost-effective system which can solve
a broad spectrum of problems. Its ability to cope with
extremely fast as well as slow devices, its easy expand-
ability, its parallelism, modularity, and multiprocessor
support commend it for a wide range of applications.

Recent experience at CERN involving bids on large sys-
tems (private communication from Henk Verweij) reveals
that Fastbus has already begun to show its expected eco-
nomic advantage. The cost of usable module area, after
subtracting system interface overheads etc., for a com-
plete system including power and cooling, was found to
be: SFr 0.33/cm2 for Fastbus, SFr 0.55/cm2 for CAMAC,
and SFr 0.75/cm2 for VME. Most people consider VME
to be very inexpensive, so this result is quite impressive.
It should get even better when Fastbus designs begin
using the LSI gate-array interface chips which have just
become available.

FOR MORE INFORMATION

The status of the Fastbus is reported annually at the
IEEE Nuclear Science Symposium. The Symposium pro-
ceedings are published as the IEEE Transactions on Nu-
clear Science each February. For example, see the articles
by H. V. Walz and E. J. Barsotti,’ H. Verweij5 and others.

For current information, contact Louis Costrell, Chair-
man, U. S. NIM Committee, National Bureau of Stan-
dards, Center for Radiation Research, Washington, D.C.
20234, telephone (301) 921-2518.

Several useful articles about buses appear in the August
1984 issue of IEEE Micro. There are detailed discussions
of bus signal propagation,’ arbitration’ and protoco1.s
These describe the IEEE P896 Futurebus in particular,
but that bus has some similarity to Fastbus, and the
physics problems are the same. Note that the Fastbus BO-
lution to the bus driving problem was the use of ECL 10K
transceivers, which behave almost exactly like the new
transceivers described in Ref. 6, except that they operate
at different voltage levels. Fastbus arbitration behaves
just like the system described in Ref. 7 except that the
control mechanism is different. Signal diagrams for other
buses are usually upside-down compared to Fsstbus, be-
cause ECL 10K signals perform the wire-OR going posi-
tive while most other systems wire-OR going negative-
i.e., any transmitter being active pulls the signal low. The
arbitration article also contains a good discussion of the
wire-OR problem. There is also an elementary tutorial
on buses in that issue.’

ACKNOWLEDGMENTS

This is a major revision of an earlier paper.‘O Several
figures were taken from the Fastbus specification,’ which
in turn adopted some text from my earlier paper, which
explains certain similarities that the reader may notice.
The Fastbus specification was very ably edited by Ken
Dawson, now of TRIUMF, and contains a great deal of
helpful tutorial material.

Helmut Walz and Louis Costrell were helpful in providing
figures for use here. I am also grateful to Jerry Friedman
and Ray Larsen for encouragement and support, and to
Johannes Joemann and David Gelphman for their assis-
tance with the AppleTalk project.

REFERENCES

1. ANSI/IEEE std 960-1985, FASTBUS Modular High
Speed Data Acquisition and Control System.

2. David B. Gustavson and Helmut V. Walz, “SLAC
FASTBUS SNOOP MODULE-TEST RESULTS
AND SUPPORT SOFTWARE”, to appear in IEEE
Transactions on Nuclear Science, February 1986.

10

3. D. B. Gustavson and John Theus, “Wire-OR Logic
on Transmission Lines”, IEEE Micro, Vol. 3, No.
3, June 1983, pp. 51-55.

4.

5.

6.

H. V. Walz and E. J. Barsotti, &FASTBUS RE-
VIEW 1985”, to appear in IEEE Trans. Nucl. Sci.,
February 1986.

H. Verweij, “FASTBUS IN EXPERIMENTS IN
EUROPE”, to appear in IEEE Trans. Nucl. Sci.,
February 1986.

R. V. Balakrishnan, “The Proposed IEEE 896
Futurebus-A Solution to the BUB Driving Prob-
lemn, IEEE Micro, Vol. 4, No. 4, August 1984,
pp. 23-27.

7
I . D. M. Taub, “Arbitration and Control Acquisition

in the Proposed IEEE 896 Futurebus”, IEEE Micro,
Vol. 4, No. 4, August 1984, pp. 28-41.

8. Paul Borrill and John Theus, “An Advanced Com-
munication Protocol for the Proposed IEEE 896
Futurebus”, IEEE Micro, Vol. 4, No. 4, August
1984, pp. 42-56.

9.

10.

David B. Gustavson, “Computer Buses-A Tuto-
rial”, IEEE Micro, Vol. 4, No. 4, August 1984,
pp. 7-22.

D. B. Gustavson, ‘An Introduction to the FAST-
BUS”, Nucl. Phys. A335(1980), p. 571-578
(superceded by this paper).

BIOGRAPHICAL SKETCH

David B. Gustavson has been a member of the Compu-
tation Research Group at the Stanford Linear Acceler-
ator Center in Palo Alto, California, since 1977. He is
currently working on a diagnostic system, human inter-
face and local network for the Fastbus. He also serves as
chairman of the Fastbus Software Working Group and is
a member of the hardware design team and of the exec-
utive committee.

A member of the IEEE, IEEE Computer Society, and
ACM, Gustavson received a BS in physics and mathe-
matics from the University of Nebraska in 1962, studied
at the Georg August Universitit in Ghttingen, West Ger-
many, as a Fulbright Fellow in 1962-1963, and received
a PhD in high-energy elementary particle physics from
Stanford University in 1969.

11

