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ABSTRACT 

We calculate the emission rate and spectrum for radiation of neutral elec- 

troweak bosons (Z”) f rom an electron in a weak external homogeneous elec- 

tromagnetic field satisfying 1 f Fcly Fp”/1/2 < Fc 3 mzc3/eti. The calculational 

method is based on the source theory formulation of quantum field theory intro- 

duced by Schwinger. In particular for ultra-relativistic electrons, we find that the 

2’ emission rate is exponentially suppressed relative to photon emission for values 

of the radiation parameter T = III, Fp” II’ Fx,11/2/mecFc << (Mz/m,)2 - lOlo, 

where II, is the electron mechanical momentum. This implies that the decay 

rate for e- + W- + ve is also exponentially small under similar conditions. An 

application of these results to accelerator physics is discussed. 
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The quantum mechanical problem of calculating the synchrotron radiation of 

photons from relativistic electrons in a homogeneous external magnetic field has 

been addressed by various authors. ‘-’ Sokolov et al.’ utilized the Dirac wave 

functions of an electron in a constant magnetic field to calculate synchrotron ra- 

diation. The transition amplitude for e- -+ e- +r was computed by perturbation 

theory (i.e. to first order in the fine structure constant cr.) and the power spectrum 

obtained by squaring the amplitude and summing over final states. Recently Tsai 

and Yildiz’ have presented a more efficient method for calculating radiation in 

external fields based on Schwinger’s source theory formulation of quantum field 

theory.4 This latter approach, which we use in this paper, eliminates the need 

for using wave functions by replacing the sum over final states by expectation 

values obtained directly from the Dirac equation. 

The previous results for radiation in external magnetic fields are of course 

applicable in all Lorentz frames where H2 - E2 = i F,, Fp” > 0 and E . B = 

$ FPy FpV = 0.’ The corresponding problem of radiation in a homogeneous elec- 

tric field has received far less attention, possibly because of the well-known diffi- 

culty of the “Klein catastrophe,” that is, spontaneous pair creation by an electric 

field.6 In the weak field limit If F,, Fp”j1j2 < Fc = mz/e (sz 4.4 x 1013 G 

= 1.3 x 101’j V/cm) that we consider, pair creation effects are negligible,’ and we 

may treat fields with both positive and negative values of H2 - E2 and ,!?s B = 0 

in the same manner. 

In the standard unified electroweak theory,’ the electron couples to the mas- 

sive neutral weak boson, Z”, as well as the photon. In this paper, the concept 

of synchrotron radiation is generalized to include the decay e- + e- + 2’ in 

an external electromagnetic field using the source theory method of Tsai and 
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Yildiz. 3 The novel aspects of the calculation are the distinct left and right 

handed couplings characteristic of the weak interactions and the finite mass of 

the Z”. 

We apply the method to first calculate the total Z” emission rate from an 

electron in an external homogeneous field, FPV. The starting point is the action 

contribution associated with the exchange of a virtual Z”, -f J(dz) (dz’) Q(z) 

M(? 4 Q (4 3 where the electron field is Q = $ (l+rs)SP+$ (l-rs)!P E \k~+$‘\k~. 

If we represent M(z,z’) = (zIM[z’), and use the standard electron-weak boson 

coupling9 we have (in the Feynman gauge) 

1 
k2 +lMi m + y(ll - k) 

; (1 - 75) Y 
1 

+ gR gL k2 :Mi m + y(ll - k) 

+; (1+ 75) rp 
1 1 

1 (1 + 75) k2 + Mi m + r(n - k) ” 2 1 
1 

k2:Mi m+~(IT--k) r/.4 f (1 - 75) 

+ c.t. (1) 

where gR = etanew, gL = 3 e(tan 8w - cot Bw), Bw is the electroweak mixing 

angle, and II, = --id, - eqA,, q = fl. The contact terms (c.t.) are determined 

by requiring that when FPV = 0, M and its first derivative with respect to rII 

must vanish at 7Il = -m. 

According to the optical theorem, the total decay rate, I’(e- + e- + Z’), is 
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related to the imaginary part of the matrix element M by 

I=- z ImM . 
( ) 

(2) 

Since we are considering real Z” emission, 7 - 2’ interference does not affect 

Im M. The simplification of M in Eq. (1) using the proper-time technique and 

the replacement of the momentum integration with an algebraic procedure” 

proceeds exactly as in Ref. 3 for the case of photon emission, with the result 

M = - (42 -7$2du (det F)1’2e-‘S’.{i [(gi+gE)-(gi-gz)y5] 

0 0 

x (-4 - tr A + 2iaA)y 2(1 -i)eqFs n. + W(1 + AT) 
2(1 - u)eqFs 

D 
IT 1 

+ gR gL (-4 - tr A + 2iaA) m + c.t. (3) 

where A = exp(2ueqFs)-1, D = A+2(1-u)eqFs, @ = u(lT2+m2-eqaF)+(l- 

u)Mi + II[-1/(2eqFs) ln(-D/DT)]II and aA E 4 a,,,A”“. The contact terms 

have the form c.t. = -m, - <,(m + rII>, where 

mc = (4$ J fi du e -is(m"u2+(1-u)i@) 
s [($ +$)b - ') +4$-&] ' (4) 

The explicit form of se is not needed since M will subsequently be approximated 

(to an accuracy of order g2) by its expectation value between fields obeying the 

Dirac equation (m + yII)\l;, = 0. 

We now specialize to the two cases of radiation in a pure magnetic field and 

a pure electric field. For a magnetic field in the z direction, Fr2 = -F2r = H, 
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Eq. (3) can be simplified by taking its expectation value between fields obeying 

(m+rII)Q=O( assuming II3 = 0 without loss of generality). The expectation 

values of the various operators not involving 75 may be found in the Appendix 

of Ref. 3. The expectation values of all operators containing 75 vanish. The 

resulting matrix element is 

0 0 

x Ab1i2 exp{-$3 - (1 - u)z](&~ - m2)/eH} [(gz + g:) (eSi@+“)(u - 1) 

+(1-u) (E2--r2) (9 cos(p-r)+; G cosp-cos(/?+x))) 

+2g, gL (esiC(PTz) + e-iS(P+s) )I [( - 
!?; + g;)(” - ‘> + 4gR gL] 9 (5) 

where A = det[D/(2eqFs)] = (1 - u)~ + ~(1 - u)sin2z/z + u2(sinz/z)2, < = 

qa3, x= eHus, tanp = (l-u)sinx/[(l-u)cosx+usinx/x], E2 = m2+(2n+ 

1- f)eH is the energy eigenvalue of the Dirac equation, c’ = fl is the eigenvalue 

of 7O<, and n = 0, 1,2,. . . . 

In the case of a pure electric field in the z direction, Fsc = -Fc3 = E, 

Eq. (3) is again simplified by taking its expectation value between fields obeying 

(m + 7lI)\E = 0, assuming that E < FC so that spontaneous pair creation is 

negligible. l1 Using the fact that the eigenvalues of the matrix FP, are f0, fE 

for an electric field instead of f0, fiH for a magnetic field, the corresponding 

matrix element in an electric field is obtained from Eq. (5) with the following 

straightforward substitutions: H + iE, x -+ ix = ieEus, ,b + ip, 5 + is = 

iqao3 and E2 - m2 + -(py + m2), where pl is the eigenvalue of II2. Because of 
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the similarity of this matrix element to Eq. (5), it is unnecessary to write down 

the explicit form. 

Returning to Eq. (5) for Z” emission in a magnetic field, we will evaluate the 

imaginary part of M in the high-energy (E/m >> 1) and weak field (eH/m2 < 1) 

limit. Because of the overall exponential factor under the integrand, M will be 

vanishingly small unless the x integration is dominated by small x. Examination 

of the exponential structure exp{ -i( m2ux+M~(1-u)x/u+[p-(1-u)x]&2)/eH} 

for small x shows that the important range of x occurs when x - (Mz/&) 

(1-u+u2m2/M~)1/2/(u(l-u)). I n order that x < 1, we must have &/Mz >> 1 

since 0 5 u 5 1. The u integration can now be divided into three regions: (i) 

0 5 u < ug, with 1 >> ug > Mz/&, (“) 11 ug < u < 1-e and (iii) 1-c < u 5 1. Here 

e >> (Mz/&)~ if &/m < (MZ/m)“, and E >> ml& if &/m >> (MZ/m)2. With 

ug and E so specified, the contribution from regions (i) and (iii) are negligible 

compared to that from region (ii) where small x dominates the integration. 

The calculation of the total decay rate I’(e- + e- + 2”) can now be per- 

formed in analogy with Ref. 3 for photon emission. If we expand the integrand 

of M for small x and define two new variables by x = [(m/E) (1 + (Mz/m)2 

(1 - u)/u2)1/2/(1 - )] u z and [ = 2u(l + (MZ/m)2(1 - u)/u~)~/~/(~T(~ - u)), 

where ‘Y’= (&/m)(eH/m2), we obtain a result for the decay rate quite similar in 

form to that of photon emission, 

l?(e- + e- + 2") = [(Cl: + S;)(U - 1) + 4gR gL] /mK,,,(n) drl 

t 

4 + 2u2 - 16~13 l-U + 2 - 4~13 M; 
u2 2) - 8gR gL] %,3(E) 
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+c’ [(g; + g;)(” - 2, + 4gR &I ’ + (6) 

where KV(v) is the mod ified Bessel function of the second kind. 

W e  note that by setting M ,y = 0  and gR = gL = e  in Eq. (6), the correct 

decay rate for photon-emission in a  weak magnetic field is recovered, where Y = 

w-4 kH/m2) h  
3 c aracterizes the quantum mechanical nature of the radiation. 

Because of the similarity of the matrix elements in a  magnetic field and an electric 

field, the decay rate formulas for both photon and Z” emission by a  relativistic 

electron in a  magnetic field are identical to those in an electric field E with 

the replacement T  = (pl/m)(eE/m2) if pi/m > 1.12 For an electron with its 

acceleration and momentum nearly parallel (Le. pi/m << l), the radiation is 

always negligible in weak electric fields. 

Although Eq. (6) is mathematically valid for all T, the behavior of I+- + 

e- + Z”) for T  < (Mz/m) 2  is particularly interesting. For ‘Y < (MZ/m)2, we 

have [ >> 1, and the Bessel functions may be approximated by their asymptotic 

forms (- (7r/2[)1/2e-E ). The u  integration can then be done in the steepest 

descent approximation with t(u) h  aving a  m inimum value fi(Mi/m2)/T when 

u  N 1  - 2m2/M$. The decay rate is found to be exponentially small, 

r (e- 4 e- + Z”) = m4  
4&&M; 

(gf + sz) r expb&M~/m2)/~) (7) 

where higher order terms in m2/Mi have been neglected. This expression is valid 

for &/m >> (MZ/m)2 since the steepest descent point is then in region (ii) of the 

u  integration. If &/m < (MZ/m)2, th is p  oint is in region (iii) where the small x 

expansion is invalid and the decay rate will be  negligible compared to Eq. (7). 



The Z” power spectrum, P(w), where w is the 2’ energy (Mz 5 w 2 E), 

can be obtained by a simple modification of the method used to calculate the 

decay rate. By inserting a unit factor 1 = 7 dw S(w - k”) = 7 dw 7 (dT/2n) 
-CO -CO -CO 

exp ;(w - k”)T into the matrix element M of Eq. (l), the spectrum P(w) is 

identified from the w-integrand before performing the momentum integration. 

The procedure is essentially identical to that given in Ref. 3 for photon emission 

in a homogeneous magnetic field with the result13 

du exp{-is[m2u2 + Mi(l - u)]} 

x A-1/2exp{-i[P - (1 - u)x](E2 - m2)/eH} 

X [(Y:+$) (e+(p+z)(u-l)+(l-u) (12iF2) 

X 
( 

ycos(p-x)+; y cosp-cos(P+x) 
> 

(8) 

,-is(P+z) d 0 
du7) +2gRgL (e 

-W-z) + ,-is(P+z) 
)] 

- [b:+g:) (u-1+2;nO &‘) +4!&gL]} 

X s O3 5 ei(w-dI”)7 e-i(T2/48) 
27r 

1 
, 

-03 

where all variables have been previously defined. 

In the high-energy and weak-field limit, the r-dependent term is 7 (dT/2r) 
-CO 

exp{i(w - uIIO)r - ir2/4s} N S(w - u&) since the Gaussian function is close to 
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unity. The u-integration is then trivial, and the z-integration yields 

[(gi +g:) ($$ - l) +49,gL] J&j,&) dQ 
6’ 

+ (g2 +g2) 4+ ff [ R L ( (e)2(1-;)-1+2(;)-2(1-;) s)-8gRgL] 

x &/a( t’) + <’ [ (9; + !$) (; - 2, + 4gRgL] 

x [1+ (;)-” (1- ;> y”2KI,3(t?)} , (9) 

where E’ = 2(w/&)[l+ (MZ/m)2(w/&)-2(1 - (~/&))]~/~/[3’X’(l- (w/E))]. Again 

by setting Mz = 0 and gR = gL = e in Eq. (9), the correct power spectrum for 

photon emission in a weak magnetic field is recovered. The same formula applies 

in a weak electric field, E, with the replacement ‘Y = (pl/m)(eE/m2). 

For the special case T < (MZ/m)2, the spectrum (9) can be written as 

x 
[ 
3 + 3 + (F)’ (1- ;)-’ + 2 (;)-2 (1- ;> 21 

(10) 
- 4g,g, + s’ [(g: + s2) (; - 2) + 4gRgLl 

x [I + (F)m2 (I- F) !fi]1’2} (-$-)1’2est’ . 

The spectrum is sharply peaked near w/E 21 1 - 2m2/Mi. Since the number 

spectrum N(w) is related to the power spectrum by P(w) = wN(w), one finds in 
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the steepest descent approximation, that the total power is related to the decay 

rate I’ by P N &I’ with I’ given by Eq. (7). 

Because of the large mass of the neutral weak boson, synchrotron radiation 

by 2’ emission is exponentially suppressed relative to photon emission when 

Y < (Mz/m)2 - lOlo. The decay e- -+ IV- + ZJ, in an external field should 

also be exponentially small under similar conditions. We caution that when T is 

large, electroweak synchrotron radiation will be modified by vacuum polarization 

effects. It is known that photon synchrotron radiation changes to a new syner- 

getic synchrotron-Cerenkov radiation for T > lo5 when the vacuum, modified by 

the external electromagnetic fields, acts like a dielectric medium.14 Electroweak 

synchrotron radiation should be similarly affected, but we will not address this 

problem in the present paper. 

Customarily synchrotron radiation is calculated under the simplifying as- 

sumptions that the electromagnetic fields are homogeneous and of infinite ex- 

tent. The applicability of these assumptions to actual fields of finite extent can 

be quantified by two inequalities. Suppose that a field has longitudinal and 

transverse (relative to the electron velocity vector) scale lengths o,, and (~1, re- 

spectively. An electron with a local radius of curvature R in this field radiates 

a quantum over a characteristic longitudinal distance R/7 and is transversely 

deflected a distance R/7 2. Provided that R/7 < o,, or T > xC7/o,,, the field 

can be treated as homogeneous and of infinite extent longitudinally. Similarly if 

R/r2 << (~1 or T >> Xc/al, the field is essentially homogeneous and of inifinite 

extent transversely. 

A particularly interesting application of synchrotron radiation in locally in- 

tense electromagnetic fields is beamstrahlung from colliding electron-positron 
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beams. When an electron beam and a positron beam from an accelerator collide, 

the particles in each beam emit radiation due to their interaction with the fields 

generated by the opposite beam. Each relativistic beam has longitudinal and 

transverse dimensions o,, and CTI, but the approximately transverse and mutu- 

ally perpendicular e and I!! fields of each beam (E N H) are ultimately due to 

the individual electrons and positrons. Provided that the characteristic radia- 

tion length R/7 is much greater than the inverse longitudinal beam density o,, /N, 

the beam field may be approximated as continuous for the purpose of calculating 

radiation. This condition can be expressed by the inequality T < NyX,/o,,. 

The Stanford Linear Collider (SLC) uses 50 GeV (7 = 105) e+e- beams with 

~1 = 1 micron, Q,, = 1 mm and N = 5 x lOlo particles. Typically T - 10e3 at the 

SLC collision point so the synchrotron radiation is classical. Since NyX,/cr,, - 

2 x lo6 > ‘Y, the continuous beam field approximation is well satisfied, and the 

field homogeneity conditions are valid except at the extreme center and edges of 

the beams where little radiation is emitted. 

For a hypothetical 5 TeV + 5 TeV e+e- collider with al = 10e3 microns, 

u,, = 10e3 mm and N = 4 x lo* particles, l5 the radiation parameter would be T - 

lo3 at the collision point. The field continuity and homogeneity conditions for 

radiation are again satisfied, even though the individual particle fields (opening 

angle l/7) within the beam do not overlap enough longitudinally for the resulting 

beam field to be spatially continuous, i.e. al/7 < o,,/N. This discreteness of 

the field can in principle act like a wiggler resulting in a broad second peak in 

the synchrotron spectrum near wd N 72N/a,, >> wc - r3/R. However since 

T >> 1 we have wd > & so the second peak cannot occur kinematically. The 

synchrotron radiation is extremely quantum mechanical in this case but vacuum 
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polarization effects are not yet important. Obviously Z” synchrotron radiation 

and beam decay into charged boson-neutrino pairs will be negligible effects in 

linear colliders for the foreseeable future. 
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