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ABSTRACT 

We present a gauge invariant action which describes the propagation of the 

superstring in curved superspace in the presence of background super Yang- 

Mills fields. We show that this action possesses the local fermionic world-sheet 

symmetry needed for a consistent coupling of the string to background fields. 

Some other aspects of the superspace non-linear a-model described by this action 

are also discussed. 
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Superstrings seem to offer a consistent approach to the quantum theory of 

gravity that encompasses the unification of the known forces.l’] Mathematical 

consistency requires that superstring theories be formulated in ten-dimensional 

spacetime. To make contact with the real world it is, therefore, neccessary to 

investigate compactified solutions of string theory. The proper framework for dis- 

cussing this issue is the field theory of interacting strings. In the absence of a such 

a framework* other approaches have been used to analyse this problem, such as 

studying the field theory limit of the superstring[31 or studying string propaga- 

tion in background fields corresponding to the massless modes of the string.[4j51 

In the latter case, quantum conformal invariance requires that the background 

fields satisfy the classical equations of motion (modified by string induced terms). 

For the superstring these analyses have been carried out in the Neveu-Schwarz- 

Ramond (NSR)[~] f ormulation with background space-time fermions set to zero. 

To study questions of space-time supersymmetry one needs to include the cou- 

pling to fermions. This is rather nontrivial in the NSR formulation because of 

the complicated form of the fermionic vertex.i7] In flat spacetime there exists an 

alternate description of superstring propagation, due to Green and Schwarz (GS), 

181 that is manifestly space-time supersymmetric. Although in general more com- 

plicated than the NSR formulation, it seems better suited to studying questions 

of space-time supersymmetry. 

Crucial to the GS formulation is the existence of a local fermionic world-sheet 

symmetry, which is needed to gauge away unphysical degrees of freedom. It is nec- 

essary to maintain this symmetry while coupling the superstring to background 

fields. WittenlQ] h as shown how this can be done for the heterotic string when 

the background consists of N=l, 10-D supergravity.* However, phenomenologi- 

tally interesting vacuum configurations must have nonvanishing Yang-Mills fields; 

therefore, it is of interest to extend Witten’s analysis to include background su- 

* See, however, E.Witten ref.[2] for a recent proposal. Some references to literature on gauge- 
invariant free string field theory and light-cone gauge-fixed interacting string field theory 
are also given in ref.[2]. 

$ See ref. [lo] f or coupling of the superstring to N=2 supergravity. 
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per Yang-Mills (SYM) fields. The purpose of this letter is to show how this can 

be done while preserving the world-sheet symmetries of the superstring. 

The basic variables describing the propagation of the heterotic version of the 

GS superstring are the space-time coordinate Xm(,) of the string, and its super- 

partner @cc (a), a 10-D Majorana-Weyl fermion.b The nature of these variables 

makes it convenient to formulate this problem in superspace and to use the eco- 

nomical language of superfields. The action for the heterotic string in curved 

superspace is then given by 1’1 

where 

o = (o’, al) labels points on the world- sheet; gij is the metric on it (i, j = 

0, l), with signature (+,-), and g = det gij. ZM = (Xm,CV) is a coor- 

dinate in superspace;O M = (m,~) is the world index (m = 0, 1, . . .9 and 

p = 1,2,... 16). Tangent space tensors carry the indices A, B, . . . ; A = (a, CY) 

where ‘a’ is the bosonic index (= 0, 1, . . . ,9) and ‘LY’ is the fermionic index 

(= 1,2,... 16). eNA is the supervielbein, 4(Z) is the dilaton superfield and 

BMN(Z) is the antisymmetric potential of supergravity. vab is the 10-D flat 

metric - diag (+1,-l,. . . , -1). 

We shall use two sets of symmetric 16 x 16 10-D r-matrices I’$ and I’tP; the 

fermionic indices cannot be raised or lowered and a lower fermionic index can only 

be contracted with an upper index. The Dirac algebra is I’$I’b P7 + I’$‘~ P7 = 

2qab6z. We shall also use T&c... to represent a totally antisymmetric product of 

r-matrices, normalized to unit weight. 

h For the moment we shall suppress the gauge degrees of freedom. 
o We follow the superspace conventions of ref. [12]. 
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In addition to general coordinate invariance in 2-D, the action (1) possesses 

the following local fermionic world-sheet symmetry 191 (henceforth referred to as 

the rc-symmetry): 

(3) 
(4 
(5) 

where 

and Dp is the fermionic covariant derivative in superspace.l121 nia is a 2-D vector 

and 10-D Majorana-Weyl spinor, satisfying the self-duality condition 

Py Ksja = Kia. (9) 

The proof of the invariance of (1) under (3) - (5) uses the torsion constraints 

of N=l, 10-D supergravity. With the definition’ 

TA = DeA = $ ec eB TB,-J~ , 
. (10) 

the torsion constraints can be written as : 

T a aP = 2rzP Taab = -Taab = 0 

(11) 
Tao’ = -Taa’ = (I’at,b)afl Tap7 = 0 , 

where $@7 and the remaining components Tab’ and Tab7 are unconstrained. 

This set is due to Witten;l’l although not identical to the torsion constraints 

of Nilsson,l131 the two sets can be shown to be equivalent. 

l We follow the formulation of superspace differential geometry given in ref.[12]. 
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One also needs an explicit expression for the field strength constructed from 

the potential BMN. We define the 2-form potential B as follows: 

B s $ dZN dZM BMN. 
. 

The corresponding 3-form field strength is 

H E dB = -$ ec eB eA HABC . 
. 

(12) 

(13) 

By definition, H satisfies the Bianchi identity 

dH=O. (14 

Assuming Hap7 = 0 and using the torsion constraints (11) one can solve (14) for 

the components of H:[~J~I 

H aap = e4+ rasp 

H aba = -2e44(rab)aP Ap 

Habc = -i e4# Tabc. 

(15) 

Equations (11) and (15), which imply the supergravity equations of motion for 

the background fields (through the Bianchis), are sufficient to ensure that the 

action in (1) has the n-symmetry given in (3) - (5). 

To switch on background SYM fields, we first need to restore the gauge de- 

grees of freedom of the string. We use the fermionic representation[“) in which the 

gauge quantum numbers are carried by a 2-D Majorana-Weyl spinor, $J”, where 

s is the gauge index. Denoting the 2-D r-matrices by pi, the Weyl condition on 
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$I” can be written as 

p_ii Pj~" = 0. (16) 

The gauge part of the free string action is: 

To couple background SYM fields to the string one obvious change that one 

must make is to replace the ordinary derivative in (17) by the gauge covariant 

derivative. This gives 

I YM = 
J 

d20figii [$“Pi(ajbst - (Aj)st) $“I 7 (18) 

where (Ai)st E ajZN(AN),t is the projection on the world-sheet of the 10-D 

SYM potential AN(Z). 

The action I + IYM is classically gauge invariant. It also possesses a classical 

/c-symmetry with a modified transformation law for the world sheet metric given 

by 

S(fig’j) = 16g Pi’{ vg - (,hk)apX, } tci + e-44 { 4g $“pj~d &T+!J~ } (19) 

(x6 is the Yang-Mills fermion), provided T+!J” transforms as: 

h+b” = (6ZN&r),t ?f. (20) 

In proving the invariance of the action under (3)) (4), (19) and (2O), one uses 

the SYM constraint F,p = 0 as well as the solution F,, = IaapxP of the SYM 

Bianchis, in addition to (11) and (15). 
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There are two problems with the system described by the action 1+ IyM. 

The Yang-Mills constraint Fap = 0 and the supergravity constraints (11) and 

(15) do not imply the equations of motion of the coupled SYM-supergravity 

system; for example, the supergravity equations of motion which they imply 

do not have the Yang-Mills source terms. This is somewhat surprising since 

in analogy with the pure supergravity case one would have expected to have 

used the equations of-motion of the coupled background system to ensure the 

K-invariance of the action. More seriously, IyM involves chiral gauge couplings 

so the gauge symmetry is anomalous. As a consequence of this and the fact that 

n-transformation of the $“, (2O), is a gauge transformation, the n-symmetry is 

also anomalous. In the rest of this paper we will show that modifying the H- 

Bianchi (14) in a particular way eliminates th.ese qnomalies. It turns out that 

this modification also gives the coupled equations of motion of the supergravity 

- SYM system,* as has been shown in ref.[15]. 

We have mentioned that in the case of pure supergravity the torsion con- 

straints imply the existence of a closed 3-form H in superspace. This means that 

H can be written as dB, at least locally. It is this 2-form that couples to the 

string . In general, however, dH need not vanish; it is a 4-form and it could 

be equal to some linear combination of the two natural 4-forms that exist in 

curved superspace in the presence of SYM fields, namely, tr F2 and tr R2. Here 

F = dA+A2 is the SYM field strength 2-form and RAN = dwAB +WA~WC~ is the 

super curvature 2-form. Since tr F2 and tr R2 can locally be written respectively 

as dWsyM and dwsL, where WQyM is the SYM Chern-Simons 3-form and WQL is 

the super Lorentz Chern-Simons S-form , we would in this more general case still 

be able to define a 3-form fi satisfying dl? = Ot and hence construct a 2-form 

potential g (which would now couple to the string). A detailed investigation of 

* 
t 

The component field formulation of this theory was studied in [14]. 
This does not mean that the theory is pure supergravity. This is because the Bianchi (21) 

is solved using Hap., = 0 and not I?,,, = 0. 
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the Bianchi* 

dH = cl tr F2, (21) 

along with the Bianchis of supergravity and SYM, shows that it neatly summa- 

rizes the coupling of SYM to supergravity in superspace.[151 We shall eventually 

comment on the inclusion of a piece proportional to tr R2 in (21). Here we note 

that using the torsion-constraints of supergravity (ll), the constraint F,p = 0 of 

SYM, and Hap7 = 0, we can solve (21) for th e various components of H. The 

result is 1151 

H aa/? = e 4’ rasp 

H aba = -2e4’(rab)aP xp (22) 

H abc = -- 3 e44 Tabc + %tr(xrabcX)- 
2 

We see that only the purely bosonic component of H has changed from the pure 

supergravity case. Although this change has no effect on the present problem, it 

has interesting consequences for the compactified solutions of superstring theory. 

I161 

In light of the above modification, we shall now reconsider the coupling of 

the string to SYM in curved superspace. The action is still given by I + IYM, 

with BMN now satisfying 

dB = H - ClW3yM, (23) 

where 

W3yM = tr(AF - iA3). 

Since H is by definition gauge-invariant, (23) implies that B is no longer so. In 

fact, under a gauge transformation, 6nA = DA = dA - [A,A], B transforms as 

* In the conventions used here cl is a numerical constant which will be fixed later. 
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6^B = -crtr(AdA). Th is change in the transformation property of B has the 

welcome feature of removing the anomaly from (18).’ ’ In addition to this (23) 

also removes the anomaly from the n-symmetry, as we shall now show. 

We start by fixing a gauge for the 2-D metric gij. We work in conformal 

gauge, figij = qij, and use the equations of motion for gij which can be 

written as 

where v$ = (vz f vf). Let us now integrate out the gauge fermions from (18). 

In perturbation theory the resulting effective action, I$,&, can be written as 

a sum of n-point functions all of which, except for n = 2, are finite by power 

counting. Thus, although the gauge field couples to the fermions $J” only through 

the combination A- E (A0 - Al) b ecause of (16), the effective action acquires a 

dependence on A + E (A0 + Al) through the regularization needed for the two- 

point function. Now the gauge variation of IgffM can be shown to be equal to the 

anomaly 

b*Igff~ = & 
/ 

d20ciitr(A3iAj). (26) 

Since the nonlocal part of the effective action is a functional of A- only, the 

effective action must contain a local piece equal to -& s d2atr(A+A-) in order 

to reproduce (26). We may, therefore, write the result of integrating out the 

fermions from (18) as0 : 

I eff YM = 2 / d2atr(A+A-) + G[A-1. 

$ For a-models defined on purely bosonic spaces (as opposed to superspace) an identical 
situation occurs, which was first discussed in [17]. See also refs. [18] and [19]. 

TV This cancellation of gauge anomaly also fixes cl to be -1/167r. More precisely, if we restore 
the gauge coupling constant gro, Newton’s constant lcro and the slope parameter cy’ in the 
action then the anomaly cancellation gives the heterotic string relation 2 w 

o We thank A. Sen for discussions on this point. 
& 1111. 
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Now, under a /c-transformation the gauge field A; transforms as: 

6KAi = G,(diZN)AN + &ZN&A~ 

= DiA, + diZNGKZMFMNy 

where Di = di ZN DN and we have used the definition 

(28) 

A, = GKZNA~. (29) 

Using (3) and (4), the Yang-Mills constraint F,p = 0 and the solution for Faa, 

we can simplify (28) to get: 

6KAi= Din, +Xa(fiifi-)aP~+p. (30) 

It follows from (30) and (25) that the K-variation of A-. is exactly a gauge transfor- 

mation, &A- = D-A,, with the field-dependent parameter A,. This observation 

is crucial for the present analysis since it allows us to compute the n-variation of 

(26) without knowing the exact form of G. In fact, using (26), (27) and (30) we 

find that 

&I;‘, = -& / d20eijtr(A,diAj) - $ 
J 

d2~tr(Xa(iG+fr-)aP,+pA-). (31) 

To find the variation of the full action under a n-transformation we must add 

the s-variation of (1) to (31). The variation of the B-term is: 

& 
J 

d2a&hZNa .Z”B a 3 MN=3 
J 

d2~~iidiZNdiZMG,ZLdILBMN) 

= J d2a~i’diZNdiZM6,ZL[HLMN - ~cI(W~YM)[LMN)] 
’ 

: 

where in the last equality we have used (23), and [ ) represents graded antisym- 

metrisation with unit weight. The K-variation of the first term in (1) combines 
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with the H-term above and vanishes on using (ll), (22) and (25), as in the case 

of pure supergravity. The W3yM piece contributes: 

2Cl 
J 

d20eijtr[AKdiAj + Xa ( fii /CI-)aP,+pAj]. (32) 

Using cl = -A and (25) one can verify that the sum of (31) and (32) vanishes. 

In summary, we have constructed a gauge invariant action which describes 

the propagation of the heterotic string in curved superspace in the presence of 

background super Yang-Mills fields. We have also demonstrated that the coupled 

equations of motion of the supergravity-super Yang-Mills system ensure that the 

string coupling to the background is consistent, i.e. gauge and n-invariant. We, 

however, do not expect this to be the end of the story since the action in (1) 

must have a Lorentz anomaly.* We strongly suspect that the cancellation of 

this anomaly will require modification of (21) by a term proportional to trR2 :’ 

dH = crtrF2 + c2trR2. (33) 

Preliminary investigation of the superspace Bianchi (33) indicates that the equa- 

tions of motion for the resulting system are infinite expansions in the parameter 

~2. A detailed investigation of the superspace system described by (33) as well 

as an investigation of the quantum properties of the action in (1) is in progress. 
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