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ABSTRACT 

We present an on-shell superspace formulation of ten-dimensional N = 1 

supergravity coupled to N = 1 super Yang-Mills theory. The coupling is com- 

pletely specified in superspace by the Bianchi dH = crtrF2, where H is the 

gauge-invariant S-form field strength of supergravity and F is the 2-form super 

Yang-Mills field strength. We also briefly discuss the theory that results from 

modifying this Bianchi by the addition of a piece proportional to the square of 

the super curvature 2-form. 



1. INTRODUCTION 

A striking feature of ten-dimensional N = 1 supergravity coupled to N = 1 

super Yang-Mills (SYM) theory[l] is that the gauge invariance of the lagrangian 

requires that the antisymmetric potential Bmn(z) transform anomalously un- 

der gauge transformations. The demonstration, by Green and Schwarz (21, of 

anomaly cancellation in superstring theory has shed further light on this curious 

feature of the SYM-supergravity theory. They showed that the anomalous trans- 

formation of B,, under gauge transformations (and similarly under local Lorentz 

transformations) is required for anomaly cancellation in the field theory limit of 

superstrings. More recently, studies of two-dimensional non-linear a-models have 

revealed an unexpected connection between these anomalous transformation laws 

of Bmn and world-sheet properties of the string. Hull and Witten13] have shown 

that the nonlinear a-model describing string propagation in background fields 

(belonging to the massless sector of the string spectrum) has gauge and local 

Lorentz anomalies which can, however, be cancelled by postulating that B,, 

transform anomalously. 

The present work reveals another interesting aspect of this feature of the 

SYM-supergravity theory. We present a superspace formulation of on-shell ten- 

dimensional N=l supergravity coupled to SYM; the coupling is succinctly sum- 

marized by the superspace Bianchi 

dH = crtrF2, (14 

where H is the gauge invariant 3-form field strength of the 2-form potential B 

of supergravity and F is the 2-form SYM field strength. Eqn. (l.l), of course, 

implies that B transforms anomalously under gauge transformations. 
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This work grew out of an attempt to include background SYM fields in Wit- 

ten’s analysis14] of the propagation of the heterotic version151 of the Green-Schwarz 

superstring[el in curved superspace. Crucial to the Green-Schwarz formulation is 

the existence of a local fermionic world-sheet symmetry, the n-symmetry, which 

is needed to gauge away unphysical degrees of freedom. It is necessary to main- 

tain this symmetry while coupling the superstring to background fields. For 

the heterotic string propagating in curved superspace[‘l Witten has shown that 

the /c-symmetry is ensured if the background fields satisfy the supergravity tor- 

sion constraints[81 (which imply the supergravity equations of motion). We have 

shownlQ] that a naive coupling of background SYM fields to this system possesses 

a classical n-symmetry, but that both it and the gauge symmetry of the result- 

ing superspace a-model[lOl are anomalous. These anomalies have, however, been 

shown to be absent if the modified superspace Bianchi for H, (l.l), is used instead 

of the pure supergravity Bianchi dH = 0. Since the torsion constraints of super- 

gravity together with the Bianchi (1.1) ensure the existence of the K-symmetry, 

one might, in analogy with the pure supergravity case, then suspect that the re- 

sulting background system describes the fully coupled SYM-supergravity theory 

in superspace. The purpose of this paper is to show that this is indeed the case. 

The organization of this paper is as follows. Sec. 2 is devoted to establishing 

our notation and discussing some technical preliminaries. The latter are essen- 

tially a paraphrashing of ref. [II] and are included here only for completeness. 

In Sec. 3 we motivate and discuss the coupling of SYM to supergravity from an- 

other point of view. In Sec. 4 solutions of the Bianchis of the coupled system are 

exhibited and some of their more interesting features are discussed. The detailed 

derivation of these solutions is relegated to the appendices. We conclude in Sec. 
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5 with a brief discussion of the theory resulting from modifying (1.1) by adding 

a piece proportional to the square of the supercurvature a-form. 

2. TECHNICAL PRELIMINARIES 

We consider a curved superspace with points parametrized, in local coordi- 

nates, by ZM = (Xm, -&) where Xm (m = 0, 1,2, . . . . 9) are ten ordinary bosonic 

world coordinates and CY‘ (JJ = 1,2, . . . . 16) are 16 anticommutingfermionic world 

coordinates. At each point in superspace we introduce a set of basis l-forms { eA}: 

eA = dZ”eMA, 

where I?MA is the superveilbein. We shall denote its inverse by EAM , so 

eMAEAN = i!i;, EA”eMB = s,B. 

(2.1) 

(2.2) 

The tangent space indices A, B..., can either be bosonic a, b, ..(= 0, 1, . . . . 9) or 

fermionic cy,p..(= 1,2, . . . . 16). A basis for p-forms is constructed from the set 

{eA}, in the usual way, by forming wedge products, except that the wedge product 

is now graded, i.e., 

eAeB = -(-)[AIIBIeBeA, P-3) 

where [a] = 0 and [CY] = 1. We have omitted an explicit wedge symbol. 

Vectors transform under the tangent space group as follows : 

6vA = vBLBA, &VA = -LA~V”. P-4) 

We choose the tangent space group to be SO(1,9) with ordinary (bosonic) vectors 

transforming as the 10 and spinors as the 16 or l% depending on their chirality . 
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This implies that the Lie algebra-valued matrices LAG must satisfy 

L”=O=LQ a a 9 L,P = ;La*(rab)&c (24 

We work with a bimodular representation of the ten-dimensional 7- matrices. 

Thus there are two sets of (symmetric) 16 x 16 7- matrices, l?$ and lYaap . The 

fermionic indices cannot be raised or lowered and an upper fermionic index can 

only be contracted with a lower one. The Dirac algebra is I’~$?P7 + I’$lYaPr = 

2,pb&r . pbc.. is used to denote a totally antisymmetric product of 7- matrices, 

normalized to unit weight. 

The covariant exterior derivative, D = dZ”DM = eADA may be defined by 

its action on vector-valued p-forms : 

DVA = dVA + VB,BA, (2.6) 

OVA = dVA - (-)P~~BV’, (2-V 

wherewAB = dZ"WMAB=t?%CAB is the superconnection l-form. The operator 

d is the exterior derivative defined by d = dZ”dM. It satisfies d2 = 0 and obeys 

the Leibnitz rule with the sign convention of ref. [ll]. From the connection and 

veilbein one can construct the torsion 2-form TA and the curvature 2-form RAN 

defined as : 

TA = DeA, P-8) 

RA B = dwAB + WA%C . B 
(2-g) 
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In terms of components 

TA = 
1 
ZdZNdzMTMN 1CB A = ?e e TBC~, 

R,J~ = idzNdZMRMNA B-l DC - 2e e RCDA~. 

(2.10) 

(2.11) 

As a result of our choice for the tangent space group RAN satisfies 

Raa = 0 = Raa, Rap = iRab(rab)ap. (2.12) 

Similar conditions are also satisfied by WAB. 

In the presence of SYM fields one also needs to consider the field stength F 

which can be written as the Lie algebra-valued (in the gauge group) 2-form : 

IBA F= 2e e FAB, (2.13) 

where we have suppressed the gauge indices. It is defined in terms of the l-form 

potential A = dZ”AM = eBAB as 

F=dA+A2 (2.14) 

All the ‘field strengths’ introduced above satisfy Bianchis by virtue of their 

definition in terms of ‘potentials’. These can be obtained from (2.8), (2.9) and 

(2.14) by using d2 = 0 and are 

DTA - eBRBA = 0, (2.15) 

DRAM - 0 - , (2.16) 

DF=O, (2.17) 

where D is the gauge and superspace covariant derivative. Its action on a Lie 

7 



algebra-valued scalar superfield A is DA = db - [A, A]. 

At this stage it is appropriate to remark that the Bianchis (2.15) and (2.16) 

are not independent. Dragon 1121 has shown that, for the choice of the tangent 

space group made here, (2.16) is in fact identically satisfied by virtue of (2.15). 

Thus the only independent Bianchis are (2.15) and (2.17). In component form 

these are: 

D[ATBc)~ + T[AB~T~,) D - R[ABc)~ = 0 (2.18) 

D[AFBc) +T[AB"F&, ~0, (2.19) 

where [ ) represents graded antisymmetrization normalized to unit weight. Also, 

[ ] and ( ) will be used to represent ordinary antisymmetrization and symmetriza- 

tion with the same normalization. Indices with a caret are excluded from these 

operations. Henceforth (2.18) and (2.19) will be called the T and F-Bianchis 

respectively. 

3. COUPLING OF SYM TO SUPERGRAVITY 

A basic feature of the superspace formulation of a supersymmetric theory is 

that the number of ordinary (i.e., X-space ) fields is usually far greater than the 

number of dynamical fields required to describe the theory. This makes it nec- 

essary to impose constraints on some of the superfields to eliminate redundant 

X-space fields. For pure supergravity these constraints are usually imposed on 

components of the torsion tensor TAB’. In view of Dragon’s result[12], this is a 

natural thing to do, since the supercurvature can be related to the supertorsion 

and its covaiant derivatives through the T-Bianchis (2.18). In the presence of 
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SYM fields one has, in addition, to constrain the field strength FAB. Once con- 

straints are imposed the Bianchis are no longer identically satisfied. In fact, for 

an appropriate set of constraints they determine all the unconstrained superfields 

in terms of the dynamical fields. They also provide equations of motion for these 

fields. 

The superspace formulation of ten-dimensional N=l supergravity along these 

lines was first presented by Nilsson[13]. In his formulation the 0 = 0 components 

of the torsion and curvature tensors contain all but the antisymmetric tensor 

degree of freedom. In order to accomodate this degree of freedom at the 0 = 0 

level Nilsson introduced a super 2-form B by constructing a closed 3-form H 

using a suitable set of constraints. Since H is closed it can be written as the 

exterior derivative of a 2-form, at least locally; it is this 2-form that Nilsson 

identified with B. 

In formulating supergravity coupled to (SYM) we introduce the 2-form B 

using a natural generalization of Nilsson’s procedure. We require that the S-form 

H satisfy a Bianchi but will not insist on it being closed (it is not necessary for 

H to be closed to interpret it as the field strength of B). The Bianchi that H 

now obeys must relate dH to other closed 4-forms in the system. Even though 

this Bianchi can be reexpressed as dfi = 0 in terms of a new S-form, I?, related 

to H, this is more general than requiring that H be closed. This is because this 

Bianchi is solved using suitable constraints on H not l?. Now, there are only 

two 4-forms in this system that are naturally closed, namely, trR2 and trF2 (the 

trace in the first term is over tangent space indices and in the second term over 

the group indices). So, in general, the Bianchi for H takes the form 

dH = crtrF2 + c2trR2, (3-l) 
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where cl and cz are apriori arbitrary. Since dtrF2 = dtrR2 = 0 we may write 

them as 

trF2 = dW3yM, 

trR2 = dw3L, 

where W3yM is the SYM Chern-Simons S-form 

W3YM = tr(A F - iA3), 

and wg~ is the super Lorentz Chern-Simons 3-form 

w3L = tr(wR - iw3). 

(3.4 

P-5) 

This implies the following relation between H and B: 

dB = H - cl W3YM - c2 w3,5. (3.6) 

Since H is, by definition, gauge and local Lorentz invariant, (3.6) implies that B 

is no longer so. In fact it transforms as: 

6B = -crtr(dA A) - catr(dn w) (3.7) 

where A and s2 are the superfield parameters of gauge and local Lorentz transfor- 

mations. As mentioned in the introduction, it is precisely this anomalous gauge 

transformation of B that is required for a consistent coupling of the string to 

background SYM fields in curved superspace[g]. The superspace a-model dis- 

cussed in ref. [9] must also have a Lorentz anomaly, as can be seen by expanding 
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the action in powers of 0. We expect that the above anomalous Lorentz trans- 

formation property of B will be required to cancel this anomaly. In most of what 

follows we shall, however, restrict ourselves to the case with cz = 0, i.e., we will 

assume that H satisfies the Bianchi (1.1). In the next section we will solve the T, 

F and H-Bianchis using an appropriate set of torsion constraints. The resulting 

equations of motion and supersymmetry transformation laws describe coupled 

SYM-supergravity theory. 

It is important to realize that (1.1) introduces an arbitrary parameter in the 

coupled theory. If we restore the gauge coupling constant in the definition of F 

and work with fields of canonical dimensions in (l.l), then cl can be seen to be 

of length dimension four. This is precisely the dimension of the ten-dimensional 

gravitational coupling constant. It is, perhaps, appropriate that the gravitational 

constant first appears explicitly in (l.l), since it is this equation that is respon- 

sible for coupling matter to gravity. (This should be contrasted with the pure 

supergravity Bianchis where no arbitrary parameter appears explicitly.) Inter- 

estingly, as we shall see in the next section, cl can actually be removed from all 

equations by appropriate resealings of the various fields, reflecting the fact that 

in the Chapline-Manton theory the coupling constants can be scaled away from 

the lagrangian. 

We end this section by giving the H-Bianchi, (l.l), in component form: 

D[AHBCD) + iTiABFHpCD) - ~Cltr(~~~B~cq) = 0 (34 
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4. SOLUTIONS OF THE BIANCHIS 

In this section we discuss the solutions of the T, F and H-Bianchis. These 

Bianchis are solved using the following set of constraints on the torsion tensor: 

T aP * = 2rtp T b=-T aa b-0 aa - 

Taa’ = VT,,’ = (I’a$)a’ Tap7 = o, 
(4.1) 

where the superfield $*p and the components TabC and Taba are unconstrained. 

This set is due to Witteni4]; although not identical to that used by Nilsson[13], the 

two sets can be shown to be equivalent. We use this set since we find it simpler 

to work with. We also use the following constraints on the superfields HABC and 

FAB: 

H aP7 - - 0, Fap = 0. (4.2) 

Since the algebra is rather involved, a detailed derivation of the solutions is 

relegated to the appendices. Here we present the solutions and discuss some of 

their more interesting features. 

T-Bianchis 

Using (4.1) and (2.18) one obtains a number of equations for the uncon- 

strained components of torsion and curvature . These have been listed in Ap- 

pendix A, eqns. (Al) - (A7). A n immediate consequence of these equations is 

that the superfield Tabc 3 Tabdqdc, which is apriori antisymmetric in its first two 

indices only, is actually totally antisymmetric. This result is interesting because 

it makes Tabc have symmetry properties identical to those of Habc. In fact, as we 

will see when we discuss the solutions of the H-Bianchis, these two superfields 

are simply related. 
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There are a number of additional results that can be obtained from (Al)- 

(A7). One can determine the superfields $*p and Rapab E R,padqdb completely 

in terms Of Tabe: 

+afl = - &Tabc (rabc)ap (4.3) 

Rapab = ~Tc&(rabcde)ap i- 3Tabcr$ (4.4) 

Also, using the following decomposition of Taba in terms of SO(1,9) irreducibles 

Taba = Jab” i- 2Jp[,rqPa -I- JP(rab)pa (4.5) 

where 

J/jar*pa = 0 (4-7) 

one can show that 

JPa = -$[DQ(f’,+)“, + 288Jaraap]. P-9) 

From (4.7) and (4.9) one finds that $ must satisfy the equation Da$*’ = 0, 

which implies 

Jp = 0. (4.10) 

This equation will eventually turn out to be the equation of motion for the 

supergravity ‘spin-i’ field. The remaining irreducible component Jaba can be 
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related to a fermionic derivative on Tabc, as in (A25). This expression satisfies 

(4.6) identically and so does not lead to any further constraints. The Rarita- 

Schwinger equation is obtained from 

Taba(rabc)ap = 16Jpdqdc, (4.11) 

once we have solved for Jpa using the H-Bianchis. 

Finally, one can also relate Raabc and Rabcd to Tabc and its fermionic deriva- 

tives. The latter relation leads to the following two results; the equation 

DaTbc* = 0 (4.12) 

which will turn out to be the equation of motion for the field strength Habe, and 

an expression for the Ricci tensor 

Racb,j?jcd E R,b = DaJparbap + iqabT2 - iTib, (4.13) 

where we have used the notation T2 G TabcTabc, Tib E TacdTbCd. Although not 

evident in (4.13), Rab is actually symmetric, as shown in Appendix C. 

In summary, the T-Bianchis enable us to relate all the unconstrained com- 

ponents of the torsion tensor and all the components of the curvature tensor to 

the single superfield Tabc. They also give us a number of equations which will 

eventually turn out to be the equations of motion for some of the dynamical fields 

of the theory. 

F-Bianchis 

Using (4.1) and (4.2) in (2.19) these Bianchis can be written out in compo- 

nents as in Appendix B, eqns. (Bl) - (B4). It follows from (B2) that Faa is of 
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the form 

J’aa = raapXP, (4.14) 

where the ‘spin-i’ superfield x is a 16 of SO(1,9) and transforms in the adjoint 

representation of the gauge group. We identify it as the gluino, the superpartner 

of the gauge field. It is now relatively straightforward to obtain the following 

equations: 

Da,' = +,a(rab)/ (4.15) 

DaFab = 2rlabpblXP - Tad”,pXP - 2(r[a’$‘rb])aPXP (4.16) 

(4.17) 

The first two of these are essentially the variations of the gluino and the gauge 

field strength under a supersymmetry transformation and the last is the equation 

of motion for the gluino. The simplicity of this equation is deceptive-we remind 

the reader that all our covariant derivatives are torsionful. There is one more 

result that can be derived from (Bl) - (B4). It is the Yang-Mills equation, 

1 
DbFbc = srcapx a~P - TabcFab - 8Jacxa. (4.18) 

In summary, the F-Bianchis can be completely solved using the results of the 

T-Bianchis. One obtains in this way the supersymmetry variations of the SYM 

fields and the equations of motion for them. 
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H-Bianchis 

So far the scalar and ‘spin-k’ degrees of freedom of supergravity have not 

appeared in our discussion. As we shall see below, the solutions of the H-Bianchis 

contain these missing degrees of freedom. In addition, we will be able to relate 

Habc and Tabc, solve for a fermionic derivative on Tabc and obtain an expression 

for Jaa in terms of the other superfields whose 0 = 0 components are directly 

related to the dynamical fields of the theory. This will enable us to obtain all 

the equations of motion and also show that, on-shell, all the superfields can be 

expressed in terms of the dynamical fields of the SYM-supergravity system. 

Using (4.1) and (4.2) in (3.8) one can write the H-Bianchis in components 

as in Appendix C, eqns. (Cl) - (C5). Eqn. (C2) is solved by[151 

H aa/? = @aa, (4.19) 

where r$ is a scalar superfield, whose 0 = 0 component is just the dilaton. Its 

superpartner is the 0 = 0 component of the ‘spin- $’ superfield X, which is defined 

by 

Xa E Dad (4.20) 

Using (4.19) eqns. (C3) and (C5) can be solved for the other components of 

HABC. We obtain 

H aba = -~(ra,)opxp (4.21) 

(4.22) 
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One other important equation that can be obtained from (C5) is 

DaXp = -r$Da4 + ~(rabc),~[Habc + $(rabc),@(x7x6)]. (4.23) 

This equation is essentially the supersymmetry variation of X. 

Eqns. (4.22) and (4.23) are extremely interesting. The first tells us that 

the field strength Habc is proportional to the spacetime torsion in the absence of 

coupling to SYM[“). When SYM fields are present this relation is modified by 

the appearance of the gluino bilinear. Since all our equations, with the exception 

of (4.23)) are written in terms of Tabc, they will involve Habe only in this specific 

combination with the gluino bilinear. The fact that Habe always appears in a spe- 

cific combination with the gluino bilinear, except in the supersymmetry variation 

of X, has interesting consequences for the compactified solutions of superstring 

theory. As argued in ref. [17] th is means that it might be possible to have vac- 

uum solutions with a vanishing cosmological constant even when supersymmetry 

is broken. Equation (4.22) 1 a so explains the ‘perfect square’ of ref. [17]; this 

appears through the T2 terms in (4.13). 

Returning to eqns. (Cl) - (C5), th ere is another important result that we can 

obtain from them. This result, given in (C13), expresses a fermionic derivative 

of Tabc in terms of the other superfields. A number of relations follow from this 

equation. First of all, imposing the restriction (4.10) gives the X equation of 

motion : 

I’aaPDaXp = 29!~*~$ -I- ;(rab)aptr(Fabxp). 

From this one can obtain the equation of motion for 4: 

DaDa = --$m2 - ~Tabc(rabc)aptr(XaXP) i- $tr(FabFab) 

(4.24) 

(4.25) 
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Finally, one can obtain the following expression for Jaa 

Jaa = 6’ T[Da&z - (I’,$ + 2$I’a)aPXp + ;(3rbcI’, - 21’aI’bc)aptr(F~c~P)]. 

(4.26) 

Eqn. (4.11) then gives us the Rarita-Schwinger equation while the Ricci tensor 

can be obtained from (4.13). The latter is 

Rab = -$r2(qaDb)ii) + C&-l tr(Xr(aDb)X) 

+ ;4-’ tr(XrjqaX)Tb)jg 

- 24-l rlabtr(XrcdeX)Tcde 

+ 2 r#-‘tr(4F,cFcb + gVabKdFCd) 

(4.27) 

-I- i4w2 rlab (ArcdeA)Tcde 

- $+-” tr[FhjX(rhhjab + i26tL,r’rb))x] 

We have used an obvious compact notation in this equation. All expected source 

terms appear in it, though in a noncanonical form. The last equation of mo- 

tion, that for Habc, is obtained from (4.12) and (4.22). Having obtained all the 

equations of motion we can now see that the parameter cl can be removed from 

them by the field resealings 4 + cl4 (which also implies X + crX through (4.21)) 

and Habc + ClHabc - ( In the 0 + 0 limit, this corresponds to resealing the 

antisymmetric potential B,,.) 
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We should mention here that in solving the three sets of Bianchis one comes 

across a number of consistency conditions. We have checked that they are all 

satisfied. For example, one might have thought that one could solve for Taba 

in terms of the other superfields since it is related to a fermionic derivative of 

Tabc for which an expression has been obtained in (C13). It turns out that this 

is not the case, as explained in Appendix C. This is as it should be since the 

0 = 0 component of Taba involves a dynamical field, the Rarita-Schwinger field. 

However, fermionic derivatives of Tab a can be expressed in terms of the other 

fields. In fact, from the solutions we have obtained it is not difficult to see 

that this is true of all the superfields. Hence the constraints (4.1) and (4.2) are 

sufficient to determine the on-shell system completely. 

A detailed comparison of this theory with the Chapline-Manton theory[l] 

entails working out the 0 + 0 limit of the equations of motion and supersymme- 

try transformations for the various fields and then finding the appropriate field 

redefinitions. We shall not attempt to do this here but only remark that quali- 

tatively all our equations of motion and transformation laws agree with those of 

the Chapline-Manton theory, except for the presence of extra terms quartic in 

x. These terms are necessary for the theory to be supersymmeteric, as was first 

noted in ref. [17]. 
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5. CONCLUDING REMARKS 

In the preeceding sections we have discussed the coupling of SYM to super- 

gravity, which was achieved by considering (3.1) with only cl nonzero. However, 

for reasons mentioned earlier, we expect that a consistent treatment of super- 

string propagation in curved superspace in the presence of background SYM 

fields would require H to satisfy the full Bianchi (3.1). It is therefore of interest 

to extend the previous analysis to this case. Another reason for doing so is that 

SYM-supergravity theory is known to be anomalous, and, as demonstrated by 

Green and Schwarz12], a modification in the definition of the field strength H sim- 

ilar to (3.6), in X-space is required for anomaly cancellation. In this concluding 

section we will briefly investigate the effect of this modification on our previous 

results. 

To see what this modification entails it is necessary to look at the Bianchi 

(3.1) in components. These are: 

D[e Habd] + ij [ea 3 T f Hjbd] - % tr(Fi,, Fbd]) - 7 R[eafg Rbd]gf = o (5-l) 

-I- 3$” r[ezBHab]7 - 6cl tr(F[ea rb]a6 X*) 

(5.2) 

(5.3) 

(5.4 

- 18c2 R[eafg Rb]6g f=o 
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. 

D[e Ha]ps -I- D(p H6)ea + 3 Teaf Hfps + I$ Hfea 

+2c1 rreb6 rap7 tr(xa x7) (5.5) 

- 3C2 Reafg &dgf + SC2 Ri,pfg Ra]Ggf 

+ 3c2 R[eifg Ra]/3g f = 0. 

Since the T and F-Bianchis do not change, their solutions in terms of the su- 

perfields Tabc , Fab and xa are unchanged and can still be used in (5.1)-(5.5) to 

solve for the various components of HABC. However, the presence of curvature 

squared terms in these equations now makes them harder to solve. Assuming 

that a consistent set of solutions exists, it is almost certain that it cannot be 

obtained in a closed form. However, it seems feasible to obtain the solutions in 

a power series in the parameter ~2. 

To see how this can be done, we first note that since the curvature component 

R aflab is simply related to Tabc through (4.4), eqn. (5.2) can be solved for H,,p. 

The solution is modified from (4.19) by terms proportional to the square of 

T abc. To solve (5.3) and (5.5) for Haba and Habc to first order in c2 it suffices 

to substitute the zeroth order solution for DaTabc in these equations. This is 

because all terms involving DaTabe appear either through Hasp or the curvature 

squared terms and so are alredy first order in cz. Substituting these solutions in 

(5.4), DaTabe can be determined to first order in ~2. This procedure can obviously 

be iterated to generate series solutions of (5.1)-(5.5). 

It is clear that the equations of motion of this theory obtained by the above 
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procedure will be infinite series in the parameter cz. Since the theory is manifestly 

supersymmetric and anomaly free (for specific values of cl and cz) it is tempting 

to conclude that it is some kind of low-energy field theory approximation to 

superstring theory. Precisely in what sense, if at all, it arises from superstring 

theory is, however, far from clear. In any case, the iterative procedure outlined 

above provides a systematic way of obtaining an anomaly free SYM- supergravity 

field theory. In this connection we mention the recent attempt&l81 that have been 

made using the component field formalism. The superspace approach presented 

here is technically more efficient, but a detailed analysis is required to establish 

its consistency. Work in this direction is in progress. 

Note added After this work was completed, L. Mezincescu brought to our at- 

tention the recent preprint of R. Kallosh and B. Nilsson (CERN-TH-4300/85) 

which also discusses some of the issues studied here. 
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APPENDIX A: THE T-BIANCHIS 

In this appendix we discuss the solutions of the T-Bianchis (2.18). In com- 

ponent form these Bianchis are: 

D[a Tbc]d - T[abe T,]ed - R[abc]d = 0 

D[a Tbc]6 - T[abe T,]e6 - T[ab7 rclrE tic6 = 0 

Dp Tbcd + 2Tbc7 r$ - 2Rp[bc] d- - 0 

Dp Tbc6 + 2D[b ‘i@ qpE + Tbce tie” repE 

6- 
+ 2+” @I*” r[bjt rc)a7 - &p - 0 

Ra(p7)6 + DC, tic6 I’,+ - r;p Tea’ = 0. 

We first study the algebraic equations (A3) and (A6). From (A3) we find: 

Ra(p7)” = 0. 

Using this in (A6) we get: 

Taba = 0 . 

Contracting a with d in (A6) and using (A9) we find: 
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(A51 

(A61 

W) 

(A8) 

(A9) 



or, equivalently, 

tp) r,,p r;, = 0. 

Also, multiplying (AlO) with l?Pr we get: 

tp r;, = 0. 

(All) 

W2) 

Using this equation and the part of (A6) symmetric in a and d we find 

T a(bc) = OS VW 

Since Tabe in antisymmetric in the first two indices this tells us that Tabc is totally 

antisymmetric. 

Now ?,!@ may be expanded in S0(1,9) irreducibles as: 

,p = G&y6 + Gabc(rabc)E6 i- Gabcde(tabcde)E6 (A14 

where Gabc is antisymmetric and Gab& , as well as Pbcde , are both antisymmetric 

and self-dual. Equation (A12) forces Gb to vanish while (A13) and the part of 

(A6) symmetric in a and d implies that the 126 is absent. So, 

W) 

To determine Gabc we proceed as follows. Multiplying (A3) with I’@7 and con- 

tracting S with (Y we find: 
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while multiplying it with I’@7(Pf)gQ gives us: 

R aPcd (racdef)ap - i8R,pef rasp 

W7) 
- 2Rapea rfaP + a~~~fa reap = 0. 

Similarily, multiplying (A6) with (lYacdef)7fl we get: 

24 X 16 X 42 Gaef + (raedefy@ R,pcd = 0, (A181 

while multiplying it with I’:’ we find 

6 X 64 Gaed - R7pad rf7 + 32Tead = 0. (A 19) 

Using (A17)-(A19) we can derive (4.3). Substituting this in (A6) we get (4.4). 

We now study the remaining equations and show that all the other unknown 

superfields can be related to Tabc and its fermionic derivative. From (A4) we see: 

RPcbd = f Dp Tcbd + Tcb7 rdTP + Tdb’ rcvP -k ?-de7 rbTP. Wo) 

Multiplying (A7) by rf7 and (A20) by a (I’,rbd)p6 and eliminating RPcbd we can 

derive the equation: 

6Tec6 - D, V6 (L Fe)7 

= ; Dp Tbcd (r, rbd)@ + ; Tcb7 (rb re)7p 

+ i Tbd7(rbd rc re)76 - Ted7 (rd rc)76 

bw 

. 
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Using (4.5) this becomes: 

6Tec6 - D, tie6 (L re>? - f Dp&d (r, rbd)p6 

= 36Jac I’r6 - 8 Jae rr6 (A24 

+ 27Jp (I’, re)p6 - 18J6 qec. 

Contracting c and e in this equation we get (4.8), while multiplying it with I’i7 

gives (4.9). Using the constraint (4.7) on Jae and (4.8) we find: 

Dp tip6 = 0. (A231 

This implies that the 16 in Tbd” vanishes while the 144 is given by: 

Jye = -& Dp (Fe ti)‘7. (A24 

Using (4.5) and (A22) we can obtain an expression for the remaining irreducible, 

the 560: 

Jec6 = + ; Dp Teck I? ( A251 

Combining these results we can relate the superfield Tec6 to fermionic derivatives 

of T,b,: 

ww 
From (A20), we see that the same is true of Rpcbd. Finally, we obtain an expres- 

sion for the Ricci tensor in terms of T,bc and its fermionic derivatives. Multiplying 
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(A5) by (re rf)S’ and evaluating some traces we find: 

R chef = ; Dp Tbc6 (re rf)6’ + D[b Tclef 

+ f Tbcd Tefd + I& ?‘e[c vb]f T2 WV 

+ a ‘?e[b Tc] jk Tfik - i qf [b Tc]jk Tejk- 

The Ricci tensor is then: 

1 
Rce = i Dp Tbc6 (r, rb)/ - 2 ’ Db Tech 

(A28) 
+ a qec T2 - % Tejk Tcjk, 

where R,, = vbfRcbef. This expression can be simplified by using 

Dp Tbcp = 0 Wg) 

which follows from (A5). The first term in (A28) may then be expressed in terms 

of a fermionic derivative on the 144 of Tbc 6. The antisymmetric (in c and e) part 

of the resulting equation is 

Rice] = Dp J7~cI’e]P7 - :Da T,ca. Wo) 

On the other hand, from (Al) we get: 

Da Tbc= + 2R[bc] = 0. G-w 

Comparing (A30) and (A31) we see 

Dp J7[aryP7 = -De Tabes 
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Now using (A26) and (A29) and the result 

Da Dp TabC rePa = -16De Tabe, (fw 

which can be obtained by using the relation for the anticommutator of fermionic 

derivatives, we get 

D, Dp Tjk[a (rb]jk)pa = 24De Tabe- (A34) 

This equation along with (A24) and (A33) gives us: 

Dp J7[,qp7 = -4De Tabe. (fw 

Comparing (A32) and (A35) g ives us the equation of motion for Tabc, (4.12). 

Also, this result can be used to simplify (A28) t o obtain the expression for the 

Ricci tensor given in (4.13). 
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APPENDIX B: THE F-BIANCHIS 

In this appendix we discuss the solutions of the F- Bianchis (2.19). In com- 

ponent form these Bianchis are: 

D[c Fba] - T[cbd Fa]d - T[cb6 Fa]6 = o w 

13f7/3 Fa)d = o (B2) 

2D[, &,]a + Da Fcb + Tcbd Fda - 2T,$ -&]6 = 0 w 

4, F’)a + r$ Fda = 0. VW 

Writing Fad in terms of irreducibles we may use (B2) to show that the 144 is 

absent and so (4.14) follows. Writing D, x6 in irreducibles we may use (B4) to 

show that the 1 and 210 are absent and thus derive (4.15). Eqn. (B3) directly 

gives us (4.16). 

To obtain the gluino equation of motion, (4.17), we use the anticommutation 

relation: 

(Dp, Da) x6 = -2r;, Dc x6 - Rp,67 x7. w 

Contracting Q and S and using (4.16) we get: 

i’rap6Da X6 = -f Tbcd (rbcd)p6 X” + 9tir6 $6 rb6E x’ + Rpcva7x7 VW 

Using (4.3) and (4.4) th is simplifies to (4.17). F inally, the Yang-Mills equation 
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is obtained by using the commutation relation: 

[&, Da] x6 = Fbo! x6 - RbaC7 x7 - Tbap Dp x6. W) 

Multiplying this with (reb)ga, using (4.15) in the first term and commuting De 

through Da in the second term on the left hand side we find: 

164 Fbe = 8 Xa r$ Xp 

- i Da Tbcd (rbcd re)6a X6 

- 16 Tebd Fbd 

9 
- z Tbc6(rc reb)r6 X7 Pw 

-t Tbc6(rce rb)76 X7 

+ 3 Tcd6(rcd re)r6 X7 

+ ; Tec6rC 76 X7 

Using (A24) we may simplify this to: 

Db Fbe = $‘eapx”xp - Tebd Fbd - 8 J7e ~7 w 
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APPENDIX C: THE H-BIANCHIS 

In this appendix we discuss the solutions of the H-Bianchis (3.8). In compo- 

nent form, these Bianchis are: 

Die Habd] + % T[eaf Hfbd] - 2 3c1 tr(F[,, Fad]) = o (Cl) 

$a Hj96) = ’ W) 

D(e H,p)d + 2r(Ea Hjp)d = ’ 

3D[e Hab]6 - D6 Heab + 3T[eaF Hj?b]6 

63) 

w 

+ 3’4’l” rletiHab]7 - 6~1 tr(qea rb]a6 X*) = 0 

1 
Dk HalP6 -I- D(p H6)ea -I- 2 Tea f HfP6 + ri6 Hfea 

+ 2~1 rie@ ra]67 tr(Xa X7) = 0 

Eqn. (C2) is solved by (4.19). Using this (C3) can be solved for Hfdp. To obtain 

the solution we multiply this equation with I’@ and find: 

8x, 6; + &(rd rcy + 2(rf rc)/ Hfpd -I- 16 wed = 0. w 

We may write Hfdp in terms of irreducibles as: 

HfdP = NfdP + 2x[fa rd]aP + b (rfdw (C7) 

where the superfields ?/fdp and Xf* satisfy the constraints: 

(9 
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xfQ r$ = 0 w 

Equation (C6) then requires that the 560 in Hfdp be absent. Contracting c and 

a! in this equation we can solve for the 16: 

xp = -f xp. ( w 

Substituting this in (C6) we find that the 144 vanishes, thus resulting in (4.21). 

To solve for Habc, we multiply (C5) with rdPs to get: 

Hdea = -4 Tdea + h (rdea)PE Dp Xe 
(C11) 

+ $ (rdea)ap tr (X*X’), 

while multiplying (C5) with (I’bcdea)PC and using the expression for the anticom- 

mutator of two fermionic derivatives on 4, we get, after some algebra: 

Dp ii, = -rie Db 4 - g Tabc (rabc)pe 
(W 

+ 2 tr (x*x7) (rabda7 (rabch. 

Equations (Cll) and (C12) lead to (4.22) and (4.23). Finally, an expression for 

a fermionic derivative on Tabc can be obtained from (C4) by using (Cll): 

D7 Tabc = 2T[abarc]ay + d-‘D[aXB(rbc])? 

- 4-l (r[a$rbc])7P~p + %6’(ref rad7ptr(Fef xp) 

+ 4cl~-1r[a~~tr(4c]x~) 

This completes the set of solutions of the H-Bianchis. We shall now derive the 

equations of motion for X and 4. Multiplying (C13) by (I’abc)67 and using (4.10) 
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we get (4.24). Taking the fermionic derivative of (4.24) and using the expression 

for the commutator of a bosonic and a fermionic derivative on X and several of the 

previous results we obtain the equation of motion for 4, (4.25). The expression, 

(4.26), for the 144 in TabQ may be derived by multiplying (C13) by (lYbc)p7. 

We may now evaluate the first source term in the Einstein equation; this 

is a little tedious. Using (4.26), (4.24), the expression for the commutator of a 

bosonic and a fermionic derivative on X, the expression for the commutator of 

two bosonic derivatives on cj, (A20), (A26) and (B3), we find: 

Dp j,,rbp7 = -$e2(~r(aDbj~) i- Ci6-’ tr(Xr(a&)X) 

- bm1D(aDb)4 - i Tajk Tbik 

-I ;4-’ tr(Xrjk(aX)Tb)jk 

- 24-l qabtr(XrcdeX)Tcde 

+ $ 4-‘tr(4FacFCb + SQabFcdFcd) 
(Cl4 

+ -&j-’ qab(XrcdeX)Tcde 

- f$-” tr[FhjX(rhiqab + i2sl”,rirb))i!] 

We have used an obvious compact notation in this equation. This expression is 

symmetric in a and b, thus satisfying the constraint on it, from (A32) and (A35), 

identically. Also, the Ricci tensor is, therefore, symmetric. 

Finally, we show that (C13) and (A26) do not determine Tab6 in terms of the 
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other superfields. Substituting (C13) in (A26) we see that all terms involving the 

560 of TabQ cancel and the resulting equation just determines the 144. 
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