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1. INTRODUCTION 

The purpose of this paper is to introduce the reader to single particle dynamics in circular 
accelerators with an emphasis on nonlinear resonances. In several sections we follow Ref. 1 
closely although the treatment given here is in some cases more general. 

We begin with the Hamiltonian and the equations of motion in the neighborhood of the 
design orbit. In the linear theory this yields linear betatron oscillations about a closed orbit. It 
is useful then to introduce the action-angle variables of the linear problem. 

Next we discuss the nonlinear terms which are present in an actual accelerator, and in par- 
ticular, we motivate the inclusion of sextupoles to cure chromatic effects. To study the effects of 
the nonlinear terms, we next discuss canonical perturbation theory which leads us to nonlinear 
resonances. After showing a few examples of perturbation theory, we abandon it when very close 
to a resonance. 

This leads to the study of an isolated resonance in one degree of freedom with a ‘time’- 
dependent Hamiltonian. We see the familiar resonance structure in phase space which is simply 
closed islands when the nonlinear amplitude dependence of the frequency or ‘tune’ is included. 
To show the limits of the validity of the isolated resonance approximation, we discuss two criteria 
for the onset of chaotic motion. 

Finally, we study an isolated coupling resonance in two degrees of freedom with a ‘time’- 
dependent Hamiltonian and calculate the two invariants in this case. This leads to a surface 
of section which is a 2-torus in 4-dimensional phase space. However, we show that it remains 
a 2-torus when projected into particular S-dimensional subspaces and thus can be viewed in 
perspective. 

2. THE MOTION OF A PARTICLE IN AN ACCELERATOR - 

2.1 THE HAMILTONIAN AND THE EQUATIONS OF MOTION 

The motion of a particle in a circular accelerator is governed by the Lorentz force equation, 

, (2.1) 

where P is the relativistic kinetic momentum and v is the velocity. It is convenient to cast these 
equations in Hamiltonian form. If we introduce the vector and scalar potentials, 

13A 
E= -Vqbcat 

B=VxA , 
(2.2) 
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then the Hamiltonian is given by 

H= e+ + c [m2c2 + (p - eA/c)2]‘/2 , (2.3) 

where p is the canonical momentum. In terms of the kinetic momentum and the vector potential 

p = P + ;A(x, t) . (2.4 

The equations of motion can then be written in terms of Hamilton’s equations, 

dp i?H -= -- 
dt i3x 

dx i3H 

’ t=ap * 
(2-5) 

It is useful to use a coordinate system based on a closed planar reference curve as shown in 
Fig. 1.1. This reference curve is taken to be the closed trajectory of a particle with some reference 
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Fig. 1.1. The coordinate system. 

momentum po in the guiding magnetic field. The 
coordinate system (z, S, y) is similar to a cylindrical 
system, however, the radius of curvature may vary 
along the curve. If r is the coordinate of a particle 
in space, and ro is the point on the reference curve 
closest to r, then 

s = distance along the curve to the point ro 
from a fixed origin somewhere on the curve, . 

x = horizontal projection of the vector r - rg, 

Y = vertical projection of the vector r - rc, 
p = local radius of curvature. 

The Hamiltonian written in terms of these coordinates is2 

H = eqi + c 
[ 
m2c2 + (ps - $ &)2 

(1 + 212 
P 

+ (P. - iA)2 + (P, - :4,,‘] “’ 
- 

where pz and psr are projections of p onto the x and y direction and 

. 

(2.6) 

We will call the vector potential used in Eq. (2.6) the canonical vector potential since A,, AZ, 
End A, are defined analogously to the canonical momenta. In particular note that 

A,=(AG) l+; . 
( > 

Instead of using the Hamiltonian above, it is useful to change the independent variable to 
s rather than t. This can be done provided that s is monotonic in t. This is a standard 
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transformation and can be accomplished by defining another Hamiltonian, 

M z -P&,Pzd,Py,f, -H) . (2-g) 

That is, we solve Eq. (2.6) for p8. With this new Hamiltonian and new independent variable, 
Hamilton’s equations become 

dy dU -=- 
ds ap, ’ 

dp, a~/ -=-- 
ds ay 

(2.10) 

dt au 
ds=a(-H)’ 

4-H) = ax 
ds at * 

Note that (t,-H) now play the role of the third coordinate and conjugate momentum. 

To be specific we will specialize to the case of no electric field and a constant magnetic field 
given by 

By = -Be(s) + Bl(S) x + - * * 

BZ = Bl(s)y +... . ” 
(2.11) 

The main bending field B 0 s is chosen so that a particle at the reference momentum po will ( ) 
bend with a local radius of curvature p(s). Thus, we set 

Be(s) = = . 
44 

(2.12) 

Bl(s) in Eq. (2.11) is simply the gradient of the magnetic field. It is conventional and useful to 
scale the gradient to obtain the focusing function, 

K1(s)=Z . (2.13) 

Using Eqs. (2.12) and (2.13) the canonical vector potential which yields the above magnetic field 
is 

A6d$ + (-.+I> ;+ !!$I+... . (2.14) 

The new Hamiltonian from Eq. (2.9) is 

H2 112 w=(-p.)=+-(l+~) [F-m2c2-Phi] - (2.15) 

Since there is no time dependence, H is a constant of the motion which we call E ( the energy). 
In an actual accelerator the magnetic fields do change in time, and there are longitudinal electric 
fields to accelerate the particles. However, the acceleration process is slow and can be consid- 
ered adiabatic for our purposes. In addition, the longitudinal electric fields cause longitudinal 
oscillations which are omitted here. These are discussed in Ref. 3 in these proceedings. 
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To continue we expand the square root in Eq. (2.15) and substitute the vector potential from 
Eq. (2.14) to obtain 

~=bo-P);+po [(+I) ;+ &f] + 2 + $+- , (2.16) 

where p is the total kinetic momentum of the particle, 

p = [E2/c2 - m2c2]1/2 , (2.17) 

which may be somewhat different from the reference momentum. The expansion of the square 
root is a good approximation provided that 

I I pz,v<l 
P 

, (2.18) 

which is typically the case. From Hamilton’s equations and the Hamiltonian in Eq. (2.16) we 
find 

dx pz dpz -=- , 
ds P 

x=-PO 

dpv dy -pz 
(2.19) 

ds 
- = -poKly . 

p ’ ds 

In terms of x and y Eqs. (2.19) become 

x _ P-PO ’ 
P P 

POKI 
y” + - p Y=o , 

42.20) 

where prime denotes differentiation with respect to s. Equations (2.20) yield the motion of 
particles near the reference orbit. Because Kl and p are periodically dependent on s with period 
C , the circumference, these equations are Hill’s equations. 

2.2 BETATRON OSCILLATIONS 

Before proceeding to discuss the nonlinear terms which have so far been neglected, it is useful 
to discuss the linear equations of motion. Since Eqs. (2.20) are inhomogeneous, we construct a 
general solution by a linear combination of a particular solution of the inhomogeneous equation 
and the general solution of the homogeneous equation. It is conventional and useful to take the 
particular solution to be the periodic solution or closed orbit. 

Let us assume that we have this periodic solution to Eq. (2.20), and let us denote it by 
lx&), r;E (4. The P eriodic solution in the y direction is simply y = 0. (In the presence 
of errors the vertical closed orbit is nonzero and must also be calculated.) Now perform a 
canonical transformation which shifts the origin of phase space to (xc,p6). The transformation 
(X,P> t-+ (q,Pp.) can be performed with the generating function 

F2(GPa) =(x- W)(PB + PM) 9 (2.21) 

which yields the transformation equations 

x = x/J + X6(S) 

P=P/i+Pe(S) 

Up = M + ~Fz/c% , 

(2.22) 

where the identity transformation for y and pv has been suppressed. Substituting into U, the 
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new Hamiltonian is given by 

M~=,[(;-,)~+,~]+~+~+... . (2.23) 

Thus, we are left a Hamiltonian with terms which are quadratic and higher order. In the nonlinear 
case a similar transformation can be performed; however, in this case we must use the periodic 
solutions to the full nonlinear equations. 

The linear differential equations which are obtained from the Hamiltonian in Eq. (2.23) are 
of the form 

z” + K(s)2 = 0 , (2.24) 

with 

K(s) = K(s + C) , (2.25) 

where z stands for either xp or y, and C is the circumference. The periodicity of K is that of 
the closed orbit; however, there may also be stronger periodicity imposed by design. 

Equation (2.24) is Hill’s equation and has a solution of the form 

z = Ap’/2~~~($(~) + 6) , 

where 

0 

and p(s), the Courant-Snyder amplitude function,’ is the periodic solution of 

,@I’ + 4KP’ + 2K’/? = o , 

(2.26) 

:. 

(2.27) 

(2.28) 

with the additional condition 

pp”/2 - (/3’)2/4 + Kp2 = 1 . (2.29) 

Both A and 6 are constants. 

This solution is well known and constitutes a pseudo-harmonic oscillation with a periodically 
varying amplitude and wavelength. This motion is called betatron oscillations after the early 
betatron accelerators although in that case the transverse equations of motion reduced to two 
simple harmonic oscillator equations. 

For stability, the tune u, 
c 

u (2.30) 

must be non-integer. In the case of piecewise constant K, it is useful to use a matrix mapping 
technique to calculate both u and ,O(S).~ This technique is used extensively in the design of 
magnetic lattices for circular accelerators. 



2.3 ACTION- ANGLE VARIABLES 

To calculate the effects of higher-order nonlinear terms, it is useful to change variables to 
the action-angle variables of the linear problem. First assume that we have explicitly calculated 
p(s). Then the transformation to action-angle variables, (2,~~) H (4,J), can be accomplished 
with the generating function 

z2 P’(s) -- Fl W) = 2p(s) tan4 
[ 

-- 2 1 1 

which yields the transformation equations 

z= d2Jp cos$ , 

PZ = -d2m 
( 

sint$ P’ -2cost#J , 
> 

(2.31) 

(2.32) 

Hl = H + BF$3s = J/p(s) . 

where H has been scaled to make it dimensionless (see Section 3.1), and Eq. (2.29) has been 
used to simplify HI. In these new coordinates the solution of the equations of motion is 

J = constant , 

(2.33) 

Note that we have explicitly constructed an invariant, J. Solving for the new action J in terms 
of the old variables we find 

(2.34) 

Equation (2.34) is the equation of a torus in the extended phase space (z, ps, s). If a particle 
has initial conditions which begin on some torus given by Jo, then the coordinates and momentum 
of that particle always stay on that torus. The usual way to view the torus is to take a surface 
of section at some so. The resulting curve is an ellipse in the phase space (2,~~). 

Alternatively, consider a single particle traversing the periodic focusing structure and plot 
its position and momentum in phase space each time it passes s = so. Then, the locus of those 
mints is an ellipse in phase space. At points other than so, the ellipse so generated evolves 
according to Eq. (2.34). 

The invariant J is simply related to the area enclosed by the ellipse, 

Area enclosed = 27rJ . (2.35) 

In accelerator and storage ring terminology there is a quantity called the emittance which is 
closely related to this invariant. The emittance, however, is a property of a distribution of 
particles not a single particle. Consider a Gaussian distribution in amplitude. Then the (rrns) 
emittance, c, is given by 

(Yrm6)2 = P(s) c - 

In terms of the action variable, J, this can be rewritten 

(2.36) 

c= (J) , (2.37) 

where the bracket indicates an average over the distribution in J. 
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Finally note that the form of the new Hamiltonian is not precisely that of a harmonic oscillator 
in that the phase does not advance uniformly. This of course causes no difficulty in that both 
cases are trivial to solve. However, it is possible to perform another canonical transformation to 
c&rdinates which do have a uniformly advancing phase. Thii is accomplished with the canonical 
transformation (4, J) I+ (41, Jl) with the generating function 

Fz(AJl,s) = Jl [T-/f&] +~JI , 

0 
J1=J, 

2AU 
Hl = - 

c 
J1 E - u Jl . 

R 

(2.38) 

In these new coordinates the oscillating part of the phase advance has been extracted leaving 
only the average phase advance. Either these coordinates or the previous set can be used to study 
nonlinear effects. We will use the second set in the section on canonical perturbation theory since 
no reference is made to a specific problem. In the examples of perturbation theory we will use 
the first coordinate set. 

3. THE NONLINEAR TERMS 

3.1 THE SOURCES OF NONLINEARITY AND CHROMATICITY 

The nonlinear terms that have so far been neglected come from several sources. The so- 
called geometric terms arise from terms in the longitudinal vector potential which are higher 
than quadratic. These arise from both deliberate and inadvertent nonlinear magnetic fields. In 
addition, there are higher-order terms in the transverse components of the vector potential which 
are necessary to satisfy Maxwell’s equations. There are also kinematic terms which come from 
the expansion of the square root in Eq. (2.15). F inally, in colliding beam storage rings there is 
the beam-beam force. A particle from one beam feels the electric and magnetic fields due to 
the collection of all the particles in the opposing beam. The beam-beam force is typically very 
strong, quite nonlinear, and of a different character than the others mentioned; therefore, it is 
usually treated separately. For useful reviews of the beam-beam effect see Refs. 4 and 5. 

- Aside from the beam-beam force, a dominant source of nonlinearity comes from the deliberate 
use of sextupoles to cure chromatic effects in storage rings. Before discussing the deleterious 
effects of sextupoles on the homogeneous equations, it is first useful to motivate their inclusion 
in the first place. 

Let us first examine the Hamiltonian for betatron oscillations in Eq. (2.16). Since in all 
cases considered here p is a constant, it is first useful to scale the Hamiltonian with p to make it 
dimensionless. Defining the quantity 

A=P--PO -- 
P ’ 

the effective Hamiltonian becomes 

#= -A; +(1-A) [(;-KI> ;+ K$] + 2 + $+... 

(34 

(3.2) 

which is simply the Hamiltonian in Eq. (2.16) scaled appropriately. Note that in these new 

7 



variables the canonical momenta are simply equal to the slopes dxa/ds and dy/ds a~ is easily 
verified through Hamilton’s equations. The quantity A measures the deviation of the actual mo- 
mentum from the momentum on the reference orbit. It is clear from the Hamiltonian in Eq. (3.2) 
that the solutions of the linear equations of motion will depend on A as a parameter. Since all 
particle beams have a finite spread in momentum, this ‘chromatic’ dependence is undesirable. In 
addition, there are collective instabilities which are enhanced by these chromatic effects; thus, it 
is necessary to provide some chromatic correction. 

3.2 SEXTUPOLES FOR CHROMATIC CORRECTION 

To see the effects of sextupoles we must first include them in the Hamiltonian. The vector 
potential for a sextupole magnet is 

S(s) 3 cA,/c = pi-J- 
6 ( 

x - 3xy2) . 

In terms of the magnetic field 

s(S) = LdLBy . 
pat dx2 (3.4 

S(s) is a periodic function of 8 which is typically piecewise constant in the regions where the 
correction sextupoles are placed and zero elsewhere. If S(s) comes from errors in magnetic field, 
then the strongest contribution is usually in the bending magnets which are typically pure dipole 
magnets. 

The new Hamiltonian including sextupoles is 

I? A; +(1-A) 
X2 

-Kz,+Kl$ I + (1 - A)y(x3 - 3xy2) (3.5) 

where we have defined 

Kz E Kl - t 
P2 

(3.6) 

in order to simplify the notation. Using Hamilton’s equations, the differential equations for the 
motion are 

x” - (1 - A)K,x + (1 - &(x2 - y2) = $ 
(3.7) 

y” + (1 - A)Kry - (1 - A)Sxy = 0 . 

The equations above may look slightly different from and somewhat simpler than others in the 
literature. The difference arises due to the definition of A chosen here. 

At this point it is necessary to calculate the periodic solution to Eq. (3.7) above. This will 
give us the closed orbit for an off momentum particle in the full nonlinear field. By inspection we 
can see that once again the vertical closed orbit simply vanishes. In the horizontal direction it is 
conventional and useful to introduce the ‘dispersion’ function D. If we let the periodic solution 
be xc(s), then _ 

D(s) z xC(s)/A (3.8) 

where, of course, D(s) is a periodic function of s. Writing the equation for the horizontal 
dispersion we find 

D” - (1 - A)K,D + (1 - A);D” = ; . (3-g) 

D(s) is the periodic solution to Eq. (3.9). With this definition, D depends upon A; however, 
since A is typically quite small, the dependence is weak. The more familiar linear dispersion 
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function Do is obtained by setting A and S to zero in Eq. (3.9). D can be thought of as the 
exact dispersion function for the Hamiltonian in Eq. (3.5). 

_ Now we would like to perform a canonical transformation to place the periodic orbit just cal- 
culated at the center of phase space. This transformation (x,pz) H (xp,pp) can be accomplished 
with the generating function 

J’~(x,P/~ = (x - AD(s))(p, + AD’(s)) , (3.10) 

which y.ields the transformation equations 

x = xp + AD(s) 

pz = pp + AD’(s) 
& = ti + 8F2/h . 

Substituting using the Hamiltonian in Eq. (3.5) yields the new Hamiltonian 

~,j=~+~-&-2-+Kl~+~(x; 2; 
- 3qTY2) 

- A x’ (SD(s) - Kz)z - (SD(s) - KI) f + ;(x; - 3xpy2) 1 + A2sD(s) 2 ~ xp - y2) 2 ( 
. 

(3.11) 

(3.12) 

Examining the linear chromatic terms, we find that sextupoles contribute to the linear differential 
equations at points where the dispersion D is nonzero. Thus, by adjusting S(s) one can cancel 
many of the chromatic effects. In particular, one can cancel the linear variation of the tune with 
momentum. 

Unfortunately, in the process of cancelling the chromatic effects, we add nonlinear terms to 
the equations of motion. To begin the study of the effects of these nonlinear terms on the motion, 
in the next section we discuss canonical perturbation theory. 

4. CANONICAL PERTURBATION THEORY 

- In this section we seek a method to study nonlinear effects perturbatively. We do this by 
attempting to find a canonical transformation which makes the new Hamiltonian a function of 
the new momenta alone. This is just the approach which yields the Hamiltonian-Jacobi equation; 
however, in perturbation theory the new Hamiltonian may depend upon the coordinates and time 
in higher order. 

Suppose that the problem can be described by a Hamiltonian 

H = Ho(J) + V(0, J, 0) (4.1) 

where H has been written in terms of action-angle variables of the unperturbed problem and 
bold face characters denote &dimensional vectors. The unperturbed Hamiltonian HO includes 
nonlinear terms which depend only on J; thus, the unperturbed tune may depend upon amplitude. 
In the absence of the perturbation, the action variables are invariant and the motion is confined 
to a (d + 1)-d imensional torus in the extended phase space (J, @, 4). In the following we look for 
the distortions of this torus due to the nonlinear perturbation. 
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Note that in this section we have scaled the independent variable from 8 to 0 so that the 
Hamiltonian is 2~ periodic in both the angle variables @ and the independent variable 8. In 
particular, the nonlinear perturbing term V(@, J, 0) is a periodic function of 8 and @ and has 
z&o average with respect to them, i.e., 

2r 2r 

/ de / d@ V(@, J, 8) = 0 . 

0 0 

If V has a nonzero average, the average value of V can be absorbed into Ho(J). 

Consider a canonical transformation (J, 4) I-+ (51, @I) with a generating function of the 
following form: 

F2 (4, Jl, e) = @.Jl + G(@, Jl, 6’) . (4.3) 

The above transformation is close to the identity provided that G is small. The new coordinates 
and Hamiltonian are given by 

@l =4 + GJ, 
J=J1 + G* (4.4 

HI =H -I- GB 

where the subscripts indicate partial differentiation. 

The new Hamiltonian after substituting the transformed variables is 

Hl = Ho(Jl+ GP) + V(Q,Jr + G*,e) + GO . ., (4.5) 

Note that we have substituted so that the Hamiltonian is a function of the same variables as 
G, the old coordinates and the new momenta. Eventually we must complete the substitution; 
however, for the moment it is more convenient to work with the mixed variables. Equation (4.5) 
can be rewritten in the interesting form 

HI = Ho(JI) + [Ho(JI + Ge) - Ho(Jl) - y(Jr) - G*] 

+ iv@, JI + Gd) - V(Q, Jl,e)] 
+ u(J1) . Ga + Ge + V(Q, J1,8) , 

(4.6) 

where u(Jr) is the uector frequency as a function of amplitude of the unperturbed problem, 
- 

v(J) E dHo(J) 
dJ * 

If we can find a solution to-the equation 

Y(JI) . Ge + Ge + V(@, JI, 6) = 0 , (4.8) 

G will be a quantity of order V. All other parts of the new Hamiltonian are either independent 
of the coordinates and time or are of order V2. To see this more easily we can expand for small 
G to obtain 

Since we are looking for the distortions of the invariant torus, we must find the periodic solution 
to Eq. (4.8); h owever, in order for a periodic solution to exist, the average value of V must 
vanish. This was anticipated by our earlier requirement in Eq. (4.2). 
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Since both V and G are periodic functions of a, they can be Fourier analyzed, 

V(@, J1 ,8) = &(J1,B) eim’* 

G(@, Jl,B) = &m(JI,B)cim’* . 
m 

Then the equation to be solved for G becomes 

imps + $ 1 gm=-um , (4.11) 

which has the periodic solution 

e+2r 
i 

Sm = 2 sin(7rm . v) / 
,imW-e-r) um( J1, 6’) & . 

e 

Finally, the full expression for G is given by 

e+2r 

G = g 2sin(im, y) / eim”*+v’e’-8-n”um(J~,B’) de’ . 
e 

(4.10) 

(4.12) 

(4.13) 

Sometimes it is desirable to make use of the fact that V is a periodic function of 6 to expand 
it as a ‘double’ Fourier series 

v=‘T;3 um n (Jl) ei(m’*-ne) . (4.14) 
m,n 

This leads to an alternative expression for the generating function in Eq. (4.13), 

G=i c 
umn(~l) eW+-ne) 

. 
m-u-n m,n 

(4.15) 

Recall that our original purpose was to transform the Hamiltonian into a form which is 
approximately independent of the coordinates and the time. The new Hamiltonian in Eq. (4.9) 
is now given by 

HI = Ho(J1) + [VJ~ * GQ + GQ . JJJ~ - GQ/~ + * * -] 

= Ho(J1) + V’(Jr,%,B) . 
(4.16) 

The remaining nonlinear term can be separated into a part which depends only on the new action 
variable and into another part which involves Jl, 91 and 8 but which has zero average value. 
This oscillatory term is the object of the next canonical transformation, whereas the term which 
is a function of the new action variable J1 leads to a change of frequencies with amplitude. The 
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latter term is given by 

2r 2* 

V’) = (21r;d+l o // 
d8 d@ [VJ, *GQ + GQ- VJ~ *GQ/~+---] . o 

Separating the average value, the new Hamiltonian can be written 

HI = [ Ho(J1) + (V’(Jl)> ] + ,[ V’ --(vl) I, 
= - HOI (Jl) + &(@I, Jl, 8) 

and the new frequency becomes 

aHo W’> 
~JI) = aJ = v(J1) + aJ . 

1 1 

(4.17) 

(4.18) 

(4.19) 

Note that if we examine the new perturbing term VI, it is second order in the strength of the 
perturbation. In addition it is higher order in Jr. If the original perturbation has a lowest-order 
contribution of order J/, then the new term is of order J1 (2b-1). Therefore , for sufficiently small 
JI, we can neglect VI. If this is done, we have a new Hamiltonian which depends only upon the 
new momenta. Therefore, these new momenta are (approximate) constants of the motion, and 
from Eq. (4.4) for J(@, Jl,fl) th e motion is restricted to a (d + 1)-dimensional torus in phase 
space. 

To proceed to higher order in perturbation theory there are two approaches. In the first 
approach we return to the generating function in Eq. (4.3) and express it as a power series in 
the strength of the perturbation. Then upon substitution into the Hamiltonian in Eq. (4.5), we 
obtain a hierarchy of equations as we cancel the perturbing terms order by order. In this approach 
if c is the strength of the perturbing term, after the nth step we are left with a perturbing term 
of order ~(~+l). 

In the second approach we begin where we left off and make successive canonical transfor- 
mations which are formally identical to the first one. This method is called superconvergent 
perturbation theory and was first introduced in this context by Kolmogorov in his proof of the 
KAM theorem.6 It is called superconvergent because on the nth step the remaining perturbing 
term is of order c2”. Despite the name, however, the method need not converge! If the procedure 
does converge, then it does so much faster than the first method. 

Unfortunately these methods do not always work. Everything would be fine if G were always 
small; however, a quick inspection of Eq. (4.13) h s ows that this is not the case for arbitrary V. 
There are resonances whenever 

m.v= integers . (4.20) 

This happens because we have required periodic solutions to the equation for G. It is straight- 
forward to see that if the resonance condition is satisfied, there are no periodic solutions to Eq. 
(4.11). In fact the amplitude of the solution grows linearly in 8. 

Thus, in the neighborhood of a resonance one must abandon perturbation theory at least 
insofar as it applies to the resonance. We can continue to use perturbation theory for the non- 
resonant terms, but we must isolate the resonant term for special treatment. Before beginning 
the study of isolated resonances, it is first useful to apply perturbation theory to a few simple 
cases. 

12 



5. LINEAR PERTURBATIONS 

It is interesting and useful to apply the canonical perturbation theory developed in the previ- 
OG section to linear perturbations. In these cases we can solve the perturbed problems exactly; 
however, it is quite useful to have analytic formulae which describe the effect of a small pertur- 
bation. First consider the perturbation of the quadrupole gradient in one degree of freedom. 

5.1 QUADRUPOLE GRADIENT PERTURBATION 

In this case, the Hamiltonian we consider is 

Hz p2 K(s)z2 + kW2 
2+ 2 - 2 ’ (5.1) 

where k(s), the coefficient of the linear perturbation, is considered small. The transformation to 
the action-angle variables of the unperturbed linear problem yields 

J 

H’ P(s) 
= - + Jk(s;pcsJ [1+cos(2r#J)] . (5.2) 

Before proceeding it is necessary to include the average part of the perturbation in HO, 

Ho = J [l/P(s) + k(s)P(s)/2] . (5.3) 

This yields the shift of the phase advance to first order in the strength of the perturbation, 

The tune shift due to this additional phase advance is thus given by 

- 

c 

A,=& J k(s’)p(s’) ds’ , 
0 

(5.5) 

where C is the circumference. 

Eq. (5.5) above is the well known formula for the tune shift due to a small quadrupole per- 
turbation. In canonical perturbation theory it is obtained simply by averaging the Hamiltonian 
to obtain HO before proceeding to the first step of perturbation theory. 

To calculate the first order distortions of the invariant curves it is only necessary to use the 
formula for the generating function in Eq. (4.13) to obtain 

6+‘2 

G= -51 
4 sin(27rv) J k(s’)P(s’) sin 2(4 + $J(s’) - T/J(S) - TV) ds’ , (54 

6 

where v is the tune which includes the shift in Eq. (5.5). Note that the phase advance $(s) from 
Eq. (5.4) appears in Eq. (5.6) rather than ut? as in Eq. (4.13). The approximate invariant curves 
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I 
are given by 

with 

From Eq. (5.6) we have explicitly 

J=Jl- Jl 
2 sin(27rv) 

J = Jl + $(A 51,~) 

Jl = constant + O(k2) . 

6+C 

J k(s’)/?(a’) cos 2(4 + t,b(s’) - +(a) - TV) ds’ . 
6 

(5.7) 

(5.8) 

(5-g) 

In standard accelerator physics literature one usually finds the distortions of the p function 
calculated rather than the invariant curves. This is simply related to the variation in amplitude 
of the invariant curve at d = 0. Identifying the new beta function p,(s), we find 

“(‘) - po(s) = -’ 
PO (4 2 sin(27rv) 

‘+‘k(i4)Pg(s’) cos 2(t,b(s’) - q!(s) - TV) ds’ . J (5.10) 
6 

This form is somewhat different than usual in that it is the perturbed tune which appears in the 
formula. 

5.2 WEAK LINEAR COUPLING 

It is also interesting to apply canonical perturbation theory to the case of weak linear coupling. 
The perturbed Hamiltonian is given by 

H=$+-- P: 
2 

K&)s2 + K&)y2 + M(s)zy 
2 2 , 

where M(s) is the skew focusing function defined by 

M(s) 
e ?3B, =- 

PoCdy - 

(5.11) 

(5.12) 

In this case the transformation to the action-angle variables of the unperturbed linear problem 
yields - 

H1 = & + & + ~M(~(PI~)“~(JI J2)li2 cos(rjl) co,(+,) 
. (5.13) 

Now if we treat the last term above as a perturbation, we can use the perturbation theory 
developed previously. 

From Eq. (4.13) the generating function in this case is 

G= -(1112)“2 2sin x(v1 + ~2) 
‘@M(s’)[pl (s’)p2(s’)]1/2 sin fP+(& d2 s d)ds’ J , ,, 
6 

_ (r112p2 
S+c 

2sin 7r(v1 - v2) J M(s’)[A (~Pz(#‘~ sin \1;/-(c+b1,&,s,s’)ds’ . 
6 

(5.14) 

where the subscripts 1 and 2 refer to z and y, 11 and I2 are the new action variables, and the 
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phase factors in the integral are given by 

- **(4194234) = (41 + +1(8’) - $1(a) - Wl) f (42 + ti2(s’) - ti2(4 - Rv2) , (5.15) 

where 

’ da’ 
tlr1,2(4 = J a,s . 

0 

To calculate the invariant surfaces we simply use Eq. (4.4) to obtain 

Jl = A+ Ggh42J1,12,4 

J2 = 12 + G&h,42J1,~2,4 , 

(5.16) 

(5.17) 

where 11 and 12 are constant. 

In this case the distorted invariant surface is a btorus in the extended &dimensional phase 
space. If we make a surface of section at some so, then we remain with a 2-torus in 4-dimensional 
phase space. In the uncoupled case this torus is simply the direct product of the two ellipses from 
the horizontal and vertical phase spaces; however, in the case of coupling this is no longer true. 
There are at least two different ways to view the invariant surface. One can make another surface 
of section, say at 42 = 40, and view the resulting curve in (Jr, 41) phase space. Alternatively, 
one can project the surface onto a three dimensional subspace, (&,&, Jl) or (&,&, J2). If we 
examine Eq. (5.17), we find that in these 3-dimensional subspaces the invariant surface remains 
a 2-torus. This surface can be viewed in perspective in each of the subspaces mentioned above. 
This latter method will be discussed in detail in Section 8. 

Finally, in the linear coupling case, it is possible to return to the Hamiltonian in Eq. (5.11) to 
find the eigenvectors which decompose the torus into the direct product of two circles by directly 
solving the linear differential equations. However, these do not project as simple curves in the 
original phase spaces. 

6. A SEXTUPOLE PERTURBATION IN ONE DEGREE OF FREEDOM 

In this section we apply perturbation theory to a sextupole perturbation in one degree of 
frsdom. Since there are also coupling terms in the Hamiltonian in Eq. (3.12), one should 
actually use 2-dimensional perturbation theory. However, for the sake of brevity, we treat only 
one degree of freedom here; the extension to two degrees of freedom is quite straight forward by 
following the previous section. 

From Eq. (3.12) we consider the non-chromatic part of the Hamiltonian for horizontal motion, 

H= ;(p2 + K(s)z2) + yz3 . (6-l) 

Recall that S(s) is periodic with period C (the circumference) but may have stronger periodicity 
imposed by design. Transforming to the action-angle variables introduced in Eq. (2.32) we obtain 
the new Hamiltonian 
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H = J/P(s) + fi +s)(J/~)‘/~ cos3 c$ 

f JlPb) + V(4, J+) . 

From Eq. (6.2) the perturbing term is 

w, J,4 = & S(s)(Jp(~))~/~[cos3qb + 3~0~4 , 

and using Eq. (4.13) the generating function is 

G= - ${ 4siisu ~cd~‘S(.‘)p(,‘)3~2sin[q5 + +(s’) - $(a) - RV] 
8 

S+C 
1 

+ 12 sin 37ru J ds’S(s’)p(s’)3/2 sin 3[+ + $(s’) - $(s) - TV] . 
8 

(6.2) 

(6.3) 

Note that since the phase of betatron motion does not advance uniformly like a harmonic oscil- 
lator, the factor of ye in Eq. (4.13) is replaced in Eq. (6.4) by $J(s) where 

Next we can evaluate the average of the new perturbing term in Eq. (4.17). VJ, and Gg are 
given by 

VJ, = g = -& s(s)(J~)‘/~ /~(s)~/~[cos~~!J + 3cos4 
1 

G/2+- ‘$ { 4si; ?Tu djCds’S(a’)P(a’)3i2 cos[rj + $(a’) - I,+) - w] 
8 

s+c 
1 

+ J 4sin37ru 
ds’ S(s’)pi~‘)~/~ cos3p+ $(a') -$(a) -AU] 

> 
. 

8 

First we average over 4 to get rid of the cross term and then average over s to obtain 

(VJ, Gg) = - & /” da /3(s)3/2 S(s) s]c~(s~)3’lS(s’)ds’ 

0 8 

x 

1 

3cos(Tj(s') - $(a) L AU) + cos3(f+qs') - $(a) - w) 
sin 7ru sin 37ru > 

. 

(6.6) 

(6.7) 

If the actual distribution of sextupoles is known, the integral in Eq. (6.7) can be evaluated. If 
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we drop the fluctuating term, the new Hamiltonian is given by 

HI = Jl/P(a)+(G~ VJ,)+... . 
The new tune is then obtained by integrating the phase advance through one turn 

c 

ul(Jl) = & /( 
0 

$)+ aJ1 . 
W,vJ,) ds 

> 

= u + ca(GdVJ1) 
27r i9J1 

(6.8) 

(6.9) 

Since the additional term in the new Hamiltonian in Eq. (6.8) is of order J2, the tune in Eq. 
(6.9) varies linearly with J. This is similar to the first-order effect of an octupole perturbation 
(- z*); therefore, a sextupole perturbation in second order produces an octupole-like nonlinear 
frequency shift with amplitude. 

Finally, the approximate invariant torus is given by 

J = Jl +Gg(Jl,+) , (6.10) 

with J1 = constant. As the tune approaches n/3 the phase space curves obtained at some surface 
of section 8 = se develop the characteristic 3 rd harmonic distortion of the third integer resonance. 
However, when the tune is too close to a third integer resonance, G is not small and perturbation 
theory is not appropriate. In the next sections we confront this problem for general nonlinear 
resonances. 

7. A NONLINEAR RESONANCE IN ONE DEGREE OF FREEDOM 

In Section 4 we discovered that there were resonances whenever 

m-v=n. (7.1) 

Perturbation theory is not the appropriate method for studying the behavior in the neighborhood 
of such a resonance. In this section we study an isolated nonlinear resonance in one degree of 
freedom in detail, that is, a 2-dimensional phase space with a ‘time’ dependent Hamiltonian. We 
suppose that we are close to a resonance and that all other nonresonant terms in the Hamiltonian 
can be neglected. Thus, we are left with the truncated Hamiltonian, 

HT = UJ + CY(J) + ~(J)cos(~+ - ntl) . (7.2) 

Note that we have separated Ho into a linear and nonlinear part, and that f(J) is taken to be 
positive in the region of interest. 

This problem can be solved exactly by using a canonical transformation to a rotating system 
in phase space. The generating function for the transformation (J, 4) H (51, $1) is 

&(A Jd = (4 - 44 Jl , P-3) 
which yields the transformation equations 

tjl =gS-d/m, J1 = J . (7.4 

The new Hamiltonian is then given by 

HI= HT - n/m 51 =b Jl+a(Jl) + f(Jl)cosmdl , V-5) 
where 

ii=u-n/m . (74 
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The Hamiltonian has been cast in a form explicitly independent of the ‘time’ variable 8; thus, it 
is a constant of the motion. 

5.1 FIXED POINTS 

In the phase space (41~51) we can find a set of points where the trajectories are stationary. 
These fized pointer can be obtained by the conditions 

aHr o aH1 o 
-= ’ wl= ~JI , (7-V 

which yield 
sinm& = 0 

6 + a’(J1) + f’(Jl)cosm& = 0 (7.8) , 

where the prime above indicates differentiation with respect to 31. 

In the polar coordinates (a,&), th ese form a string of points surrounding the origin, as 
shown in Fig. 7.1. In fact when sin mc$l = 0, cos rn’jl = fl and for different signs of cos rnr$l the 

c 1 I I I I I I I I I I l 
12-35 b300A2 

Fig. 7.1. Phase space for a sixth order reso- 
nance with a width of AJ H .2J,. 

characteristics of the fixed points are differ- 
ent. The trajectories surrounding stable fixed 
points, SFP, are closed (ellipses), while those 
surrounding unstable fixed points, UFP, are 
open (hyperbolic). Those fixed points where 
cos mq51 = -1 (+l) are stable (unstable) 
since the potential has a minimum (maxi- 
mum) there. 

Suppose we define Jr as that amplitude 
which yields an oscillation frequency at res- 
onance, i. c., 

u + a’(J,) = n/m , (7-g) 

then Eq. (7.8) becomes 

a’( Jl) - a’(J,) + f’(Jl) cos rn& = 0 (7.10) 

or expanding for 51 close to Jr 

(Jl - Jr) f’(Jr) N --cos mf& . a”( Jr) 
(7.11) 

Therefore, provided that f’/ CY” is positive, the amplitude of the UFP is slightly less than Jr while 
the amplitude of the SFP is slightly larger than Jr. 
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7.2 RESONANCE ISLAND WIDTH 

The boundaries of the stable islands shown in Fig. 7.1 are formed by curves joining the 
unstable &red points. These curves are separatrices and their equation can be easily found by 
the fact that the new Hamiltonian HI is a constant. on the curve. 

From Eqs. (7.5) and (7.8), we have 

SJl + I + f(Jl)c=mh = SJ, + a(J,) + f(JY) , (7.12) 

where Ju is the action at the unstable fixed point. Expanding for J close to J,, and recalling that 
J, N J& we find that on the separatrix 

(J - Ju)2 H 2f(J,)(l- coswh) 
a”(J,) ’ 

From Eq. (7.13) we find the maximum separation or island width 

(7.13) 

(7.14) 

where ct”(Jr) has been assumed positive for simplicity. Keep in mind that this is only valid 
when AJ < J,. In addition, the other resonances which have so far been neglected must be far 
away. If the widths calculated using the isolated resonance assumption are such that neighboring 
resonances overlap each other, then it is clearly incorrect to consider the resonances isolated. 

To summarize the phase space portrait shown in Fig. 7.1, at small amplitude the motion is 
relatively unaffected by the resonance. Near the resonance the circles are distorted. Finally, at 
the resonant amplitude there is a string of stable islands with widths determined (approximately) 
by Eq. (7.14). 

7.3 ISLAND SEPARATION AND THE CHIRIKOV CRITERION 

It has been observed that if the main resonance islands have widths which are close to their 
separation, there is chaotic behavior in the overlap region. This has been investigated extensively 
by B. Chirikov’ and is used as a criterion to estimate the onset of stochastic instability. To apply 
the Chirikou criterion it is first necessary to calculate the spacing of the resonance islands. 

To find the distance to a neighboring resonance, we first find the spacing in frequency and 
then convert that to amplitude. Near Jr the amplitude dependence of the tune is nearly linear. 
Therefore, two resonances with a spacing of Au are separated in amplitude by 

- 
6J = A+“(Jr). (7.15) 

To estimate the separation in frequency consider two neighboring resonances n/m and n//m 
such that nm’ - n’m = fl. (The sense in which these are close is discussed in Refs. 8 and 9.) 
Then in this case the spacing is given by 

bJ=ke 1 
a”( Jr) m’ma”( Jr) ’ 

(7.16) 

To avoid chaotic behavior we require that the island width be much less than the island spacing. 
Using Eqs. (7.14) and (7.16) this becomes 

&“(Jr)f(Jr) =c & . 

Equation (7.17) sets a limit to the validity of the isolated resonance analysis. This condition 
requires that the nonlinear detuning, cy”, not be too large since in this case the resonances do not, 
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separate. On the other hand if CY” is small, the widths of the islands get large. Unfortunately, as 
we increase d’ the island width decreases more slowly than the separation. Thus, if we increase 
the nonlinear detuning we eventually get island overlap and stochastic instability. This leads one 
to select a moderate nonlinear detuning to avoid chaotic behavior. 

7.4 ISLAND ‘TUNE’ AND GREENE’S RESIDUE CRITERION 

Having understood the phase space structure in general, we can study a particular island. 
Consider a small island width. In this case it is useful to expand the Hamiltonian in Eq. (7.5) 
for small deviations about Jr, 

HT d’(Jr) N -(J - Jr)2 + f(J,)cosm& + a.. . (7.18) 

We have dropped constant terms and used the resonance cpndition in Eq. (7.9) for simplification. 
The Hamiltonian above is that for a pendulum; from Hamilton’s equations we find 

x + a”(J,)mf ( Jr) sinm& = o . (7.19) 

This is the equation of motion for a pendulum with familiar phase space structure shown in 
Fig. 7.2. 

When the amplitude is small, the small amplitude oscillation frequency or ‘tune’ R can be 

r-l 
J 

I I I I 
3.0 3.5 4.0 4.5 

11-84 91 4919A5 

Fig. 7.2. Pendulum-like phase space structure. 

obtained from Eq. (7.19) by approx- 
imating 

sinm& = mqSr , e 

which yields 

(7.20) 

f12 = a”(Jl)f(J,)m2 . (7.21) 

Using this frequency an alternate ex- 
pression for the overlap condition can 
be derived. 

J. Greene has established that 
the last invariant curve which sepa- 
rates two neighboring island chains 
survives provided that the ‘residue’ 
of the neighboring stable fixed points 
is less than about l/4. lo The residue 
R of resonance treated here is sim- 
PlY 

II = sin2 (?rmfl) . (7.22) 

If we rewrite the residue condition in terms of the frequency calculated above, it becomes 

1 
mflCE , (7.23) 
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which yields 

Ja”(Jr)f(Jr) < & . 
At this point the region between the two island chains is typically quite stochastic. Thus, to avoid 
large scale stochastic behavior, the inequality in Eq. (7.24) should be strongly satisfied. Notice 
that the residue criterion and the overlap criterion are essentially identical in form although the 
residue criterion is a much more precise statement. Many more details of the residue criterion 
can be found in Refs. 8 and 9. 

7.5 UNBOUNDED MOTION 

So far we have treated cases in which the frequency of the unperturbed problem is a function 
of amplitude. This is important in that it yields finite island widths. However, if the unperturbed 
Hamiltonian is simply linear, then an isolated resonance causes unbounded motion. This case 
is particularly important for particle accelerators since the amplitude dependence of the tune is 
typically quite weak and in many cases can be neglected. To illustrate this consider a sextupole 
induced third order resonance with the Hamiltonian 

HT = VJ + cJ312 cos(34 - 0) . (7.25) 

If we transform to the rotating system in phase space, we find the new invariant Hamiltonian 

HI = SJ1 + cJtj2 cos(3&) = constant , ‘(7.26) 

where in this case 

6=u-l/3 . (7.27) 

I I I I I I I I I I I I I I 

.- 

I- . . -I 

12-85 5300A4 

Fig. 7.3. Phase space near a third order 
resonance with a = 0. 

For 6 nonzero the motion in phase space is 
shown in Fig. 7.3. The curves shown correspond 
to four different values of the invariant HI. At 
small amplitude the circles are distorted and are 
described well by the first order perturbation the- 
ory in Section 6. For larger amplitude the curves 
approach a triangular shape with three unstable 
fixed points at the points of the triangle. Finally, 
at sufficiently large amplitude the motion is un- 
bounded. As b is decreased to zero, the stable 
area inside the triangle goes to zero. This effect 
is quite well known in accelerator physics litera- 
ture since it is used as a mechanism for driving 
particles in a beam to large amplitude to extract 
them from circular accelerators. ‘I 

Unfortunately, sextupoles provide not only 
the cubic term which yields the resonance struc- 
ture shown in Fig. 7.3, but also a coupling term 
H zy2 as shown in Eq. (3.5). This leads us to the 
next section to consider coupling resonances. 
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8. AN ISOLATED RESONANCE IN TWO DEGREES FREEDOM 

It is interesting and useful to consider an isolated resonance in 2 degrees of freedom (with 
a%me dependent Hamiltonian). In a particle accelerator this corresponds typically to the cou- 
pling of the two transverse degrees of freedom; however, it could involve one transverse and the 
longitudinal degree of freedom. We will consider the former case here. In this case the resonance 
condition becomes 

rnlul + m2u2 = n . (8.1) 
where nar, rn2 and n are integers, and y and y are the tunes in the two transverse degrees 
of freedom. In the previous section we found resonances at all rational values of the tune, that 
is, at a set of points in tune space. In this case the resonances consist of lines in 2-dimensional 
tune space (~1, y). In Fig. 8.1 we illustrate this with several examples. Note that as we include 
higher-order resonances the tune space rapidly fills up. Thus, to avoid resonances it is necessary 
to carefully place the two tunes. 

8.1 CALCULATION OF THE INVARIANTS 

Now consider two tunes which are close to one of the lines with finite slope in Fig. 8.1 but far 
from the intersection of any two lines. Thus, the system is close to an isolated coupling resonance. 
As in the previous section truncate the Hamiltonian so that only the dominant resonant term is 
retained. This yields 

HT = vlJ1 + v2J2 + f(J1, J2)cos(ml& + m&2 - no) , (8.2) 

where for simplicity we have taken the unperturbed Hamiltonian to be that for uncoupled linear 
oscillation. Once again the truncated problem above can be solved exactly by transforming to a 
rotating system in phase space. The generating function for the transformation (4i, Ji) H ($i, Ki) 
is 

S(4i,Ki,@) = (ml41 + w42 - ne)Kl + 42K2 . (8.3) 

$1 = ml& + m&2 - nt? J1 = mlK1 

$2 = 42 J2=m2Kl+Kz , 
(84 

and the new Hamiltonian becomes 

H1 = (ml4 + m2u2 - n)Kl+ u&2 + f(Kl,K~)costLl , (8.5) 

where 

f(KdGJ = f(mlKl,mKl + Kz) . (8.6) 

Since the Hamiltonian above is independent of the independent variable, it is a constant of 
the motion. In addition, however, it is independent of $2. Therefore, the new action K2 is also 
an invariant. Thus, we have 

(mlul + m2u2 - n) K1 + uzK2 + f( Kl , K2) cos $1 = constant (8.7) 

K2 = constant . (8-8) 

In terms of the old coordinates this becomes 

vlJ1 + u2J2 - &Jl + f(J1, Jz)cos(ml& + m&a - ne) = constant (8.9) 

m2 J2 - -Jl = constant . 
ml 

(8.10) 
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Fig. 8.1. Resonance lines in tune space. The figures include IrnlI + ]rn2] 5 3, 5, and 6. The 
outlined area in the sixth order case is blown up to show detail. 

From Eq. (8.10) th ere are two distinct cases. In the case of a sum resonance, [sign(ml) = 
sign(mz)], stability is not guaranteed. However, in the case of a difference resonance [sign(ml) 
= -sign(m stability is guaranteed since the weighted sum of the actions is a constant. In this 
second case there can be ‘emittance’ exchange; however, the overall motion is bounded. 

8.2 VIEWING COUPLED MOTIONED 

As in the case discussed in Section 5.2, the motion near a coupling resonance is confined to 
a 3-torus in the extended phase space (41, 42, Jl,J2,0). If we take a surface of section at some 
60, then the resulting figure is a 2-torus in &dimensional phase space. We can view the 2-torus 
by taking yet another surface of section at 41 = ~$0 which yields a curve in (~$1, Jl) space, or we 
could set ~$2 = ~$0 and view the resulting curve in (42,Jz) space. 
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There is, however, another alternative as mentioned previously in Section 5.2. We can project 
the Z&torus onto a 3-dimensional subspace (&,+z,Jl) or (41 , 42, Jz). In these subspaces we obtain 
ag-torus imbedded in bdimensional space which can be viewed in perspective. This method 
is especially powerful if we are comparing theory and numerical experiments. In numerical 
experiments it is quite difficult to take a second surface of section mentioned above because there 
are so few points on it. The first surface of section does not suffer from this difficulty since it 
simply corresponds to the integration of the equations of motion through multiples of 2~. 

To illustrate the technique 6rst consider a system with a-degrees of freedom far from a cou- 
pling resonances but close to a resonance ul N l/3 mod(l). In this case the motion is nearly 
that corresponding to one degree of freedom. In Fig. 8.2 we show three equivalent ways of 
viewing the motion. In 8.2(a) you see the phase space (J:” cos 41, - Ji” sin 41) which would 
yield a circle for the case of uncoupled harmonic oscillation. The points are plotted at multiples 

- 

12-85 
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Fig. 8.2. Surface of section near a third integer resonance (~1 = 5.331, u2 = 5.144). 
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of 27r in 8 without regard to J2 or 42. The locus of the points has the characteristic distortion 
of a l/3 integer resonance superimposed onto basically circular motion. In Fig. 8.2(b) we unfold 
W(a) and plot 31 us. $1 to see the modulation due to the resonance more clearly. Notice that 
although the motion is very nearly in one degree of freedom, there is still a small coupling which 
leads to a band of motion rather than a curve. Finally in Fig. 8.2(c) you see the 2-torus in 
(&,&, Jl) space as calculated from first order perturbation theory. The influence of the l/3 
resonance is shown as the dominant wave on the torus. Notice that if we project the surface onto 
the (Jl,&) plane, we obtain a figure essentially identical to 8.2(b). The coupling causes small 
ripples in the 2-torus which give rise to the band of motion in 8.2(b). 

To view a coupling resonance with this technique consider the sextupole-induced resonance 

2u2 - Ul = integer . (8.11) 

First let us view the motion by numerical integration of the equations of motion. In Fig. 8.3 we 
plot (41, Jl) and (+2,32) at 8 = 80 mod(2rr) which in the case of simple’linear motion would yield 
straight lines. In both plots we see a wide band of motion; however, this scattering of points does 
not indicate chaotic motion. To see this clearly we turn to the perspective method just described. 
In Fig. 8.4 we show the surface of section 6 = 80 mod(&) near the coupling resonance. In 8.4(a) 
and 8.4(b) we plot the 2-torus as calculated with perturbation theory. Below in 8.4(c) and 8.4(d) 
we again plot all the data points obtained by numerical integration. The data fall nicely on 
the torus obtained by perturbation theory. Notice that near a coupling resonance the surface is 
similar to that in Fig. 8.2; however, the ripples no longer run parallel to one of the axes. 

Using this technique it is possible in numerical experiments to separate chaotic motion from 
mere coupling. Chaotic motion is shown as departures from a surface similar to the departures 
from closed curves for the case of chaotic motion in one degree of freedom. 

12-85 $1 $2 5300A7 

Fig. 8.3. The two phase space projections of coupled motion (ur = 5.317, ur = 5.164). 

. 
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12-85 53OOA8 

Fig. 8.4. Surface of section near a coupling resonance (vr = 5.317, v2 = 5.164). 
- 

9. CONCLUDING REMARKS 

This paper has attempted to cover the ground which lies between the relativistic equations of 
motion for a particle in an accelerator and the nonlinear resonances which affect particle motion 
near the reference orbit. The basic principles and techniques have been emphasized with a few 
examples for illustration. The treatment has been necessarily brief although most of the topics 
discussed deserve a much more thorough discussion. 

Some topics have been completely omitted here. In particular, the dynamic aperture and 
methods for its determination in a particle accelerator have not been discussed; however, this 
gap is filled in Refs. 13 and 14 which also appear in these proceedings. In addition, the beam- 
beam effect was not treated here although many of the methods discussed are quite useful for 
that purpose. The reader is referred to Refs. 4 and 5 for useful reviews of the beam-beam 
effect. Finally, we included no discussion of ‘synchrobetatron’ resonances. Since the frequency of 
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oscillation in the longitudinal degree of freedom is typically quite small compared to the transverse 
dsrees of freedom, this coupling is usually treated separately. A review of this subject in Ref. 3 
appears in these proceedings. 

To conclude, let us emphasize that this paper has almost exclusively concentrated on in- 
tegrable or nearly-integrable motion. Although the transition to chaotic behavior is extremely 
important in the design of particle accelerators, we have only briefly mentioned the overlap cri- 
terion and the residue criterion for determining the breakdown of invariant surfaces. We hope 
that this will encourage the reader. to consult Refs. 9 and 15 and the other relevant papers in 
these proceedings. 
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