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ABSTRACT 

The method of Discretized Light Cone Quantization (DLCQ), recently pro- 

posed for obtaining non-perturbative solutions to field theories, is applied to 

quantum-electrodynamics in one space dimension (QEDz). The spectrum of 

invariant masses and the eigenfunctions of the light-cone Hamiltonian are cal- 

culated; i.e., the bound state problem is solved for all values of the coupling 

constant. For very strong coupling (Schwinger model proper) DLCQ reproduces 

one-to-one the known exact solutions. For non-vanishing fermion mass (massive 

Schwinger model) the results of DLCQ agree with earlier work and in particular 

with a lattice gauge calculation. 
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1. INTRODUCTION 

One of the most important tasks in particle physics is to calculate the spec- 

trum of states in relativistic field theory, particularly gauge theory. In hadron 

physics it is critical to determine not just the spectrum of color singlet states 

in quantum chromodynamics, but also the quark and gluon composition of the 

hadron wavefunctions. Semiquantitative results for the low lying spectrum have 

been obtained in the lattice version of &CD, but reliable calculations of hadron 

wavefunctions are computationally arduous, and only very approximate measures 

have been obtained. The lattice calculations are particularly hampered by the 

difficulties associated with dynamical fermions. Important constraints on mo- 

ments of wavefunctions have been obtained using the QCD sum rule technique, 

but the numerical reliability of this method is difficult to ascertain. 

In this paper we continue our development of the discretized light cone quan- 

tization method (DLCQ) lP2 and give the first application to gauge theory. By 

quantizing at equal time on the light cone in A+ = 0 gauge3-” a gauge theory 

can be reduced to an eigenvalue problem for the light cone Hamiltonian: 

Taking periodic boundary conditions in the x- direction,“g”O requires that the 

total light cone momentum P + = 27rK/L. Since each constituent momentum 

k+ = 2mz/L must be positive, this restricts the Fock state basis for XP to finite 

dimensional representations (corresponding to the number of partitions of the 

integer K as a sum of positive integers n). The invariant mass does not dependl” 

on the period L. 



This method has a number of important computational advantages: 

(1) The relativistic spectrum emerges as the set of eigenvalues 

M2 = Mf,M;,... 

of a finite, Hermitian,. relatively sparse matrix - the light cone Hamiltonian. 

(2) The wavefunctions are the corresponding eigensolutions of the HLC. In mo- 

mentum space each component $J~ (z, kT, A) corresponds to a finite number of 

quarks and gluons as a function of the light cone momenta and helicities. Given 

the & one can compute hadronic static quantities, current matrix elements, 

structure functions, and distribution amplitudes, thus allowing empirical tests of 

the full structure of the theory. 

(3) Since one works in momentum space there is no problem with fermion dou- 

bling or other special complications involving fermion variables. 

(4) Since the light cone gauge is physical there are no negative metric components 

in either Abelian or non-Abelian theories. 

(5) The approach to the continuum theory is set by magnitude of the harmonic 

resolution K not by the periodicity scale L (which is arbitrary). As K becomes 

large the momentum space structure is resolved at a finer grid of rational points 

k+ - n/K. Unlike th e s p acetime lattice there is no matching condition between 

the wavefunction size and lattice size in DLCQ. 

The Schwinger model 12-16 (massless QED in one space and one time dimen- 

sions) and its massive fermion counterpart (QED2) 3-27 have served as showcases 

for important aspects of field theory such as confinement or bosonization.28-30 

In this paper these theories will serve as important first tests of the application of 

3 



DLCQ to gauge theory. Because of the lack of transverse dimensions the quanta 

corresponding to photons or gluons do not appear. In the case of the Schwinger 

model the fermions are confined, and the theory is equivalent to a free theory of 

bosons l2 with physical mass & = g/,/Z. In DLCQ this spectrum emerges natu- 

rally if one takes care to properly include zero mode fermions; i.e. fermion states 

with zero energy and momentum components.g Remarkably, the exact spectrum 

is obtained as the solution for any value of the resolution K since in the Schwinger 

model the momentum distribution of the bound state wavefunction is flat in x. 24 

In the case of massive QED 2, the zero mode fermions do not appear, and 

we can solve for the spectrum and eigensolutions numerically at any coupling 

strength. The DLCQ method is straightforward and efficient; the results converge 

rapidly as K increases and agree rather well with previous results obtained nu- 

merically using the lattice or equal time quantization. We also give the structure 

function for the lowest mass solution and the probability for finding non-valence 

Fock components. 

Thus at this point DLCQ appears to be a quantitative alternative to existing 

non-perturbative methods. 17-24 Applications to three-space one-time theories 

are much more difficult due to the gluon degrees of freedom, the transverse mo- 

menta, as well as color labels for the non-Abelian theories. An important and 

interesting application is to ordinary QED4 which can be studied for arbitrary 

coupling constant in DLCQ. One can thus provide an important check on the 

range of validity of perturbative expansions for the lepton moments and the 

positronium Lamb shift or hyperfine splitting. Photon zero modes are irrelevant 

since they decouple from gauge invariant quantities such as the wavefunctions of 

neutral bound states. 



The procedure of DLCQ and the present work can be briefly outlined. One 

starts with the Lagrangian density and calculates canonically the energy-momen- 

tum operators Pv in terms of the independent fields. The independent fields are 

quantized at equal light cone time and identified with the free field solutions; 

i.e. , with the most general superposition of plane waves created and destructed 

by anticommuting operators. In this way one expresses energy-momentum as 

operators which act in Fock space (see section 2). Imposing periodic boundary 

conditions, the plane wave momenta become discrete. Lorentz-invariance is vio- 

lated by discretization but is retrieved at the end of the calculation in the contin- 

uum limit, K + 00, to be discussed more thoroughly in section 3. Discretization 

allows one to associate discrete (and for that matter finite dimensional) matrices 

with each of the operators P V. They can be diagonalized by standard numerical 

methods. For example, one generates eigenvalues of the invariant mass squared 

M2 = P”Pv which for the Schwinger model agree one-to-one with the exact val- 

ues (see section 4). The massive Schwinger model and its numerical solutions are 

discussed in section 5. They agree rather well with previous work. 26’24 The mass 

spectrum and the structure function of the lowest mass eigenstate are discussed 

in section 6. Conclusions and prognosis for future work in physical gauge theories 

are discussed in section 7. 



2. THE FOCK SPACE OPERATORS FOR QED2 

Quantum Electrodynamics (QED) d escribes massive fermions $ interacting 

with massless photons AIL as specified by the Lagrangian density 

where WV = PA" - PAP is the usual electro-magnetic field tensor. The canon- - 

ical formalism for one space and one time dimension using light cone coordinates 

z* = z” f x1 is well known. ‘-’ For notational reasons we shall give a short 

summary here. The metric tensor g pV for the light cone coordinates’ has the 

form (g++ = g-- = 0, g+- = g-+ = 2 ). One must distinguish upper and lower 

indices; for example, time derivatives a- = 2l3+ = 2d/&c+ and space deriva- 

tives a+ = 2t3- = 2d/ds- should not be confused. The Dirac matrix algebra, 

i.e. 7+7+=7-7- = 0 and 7+7- + 7-7+ = 4 , is useful for defining projection 

operators lS6 A(*) = :7F7* and projected spinors $* - A(*)$. In light cone 

gauge3 A+ = 0, Maxwell’s equations a,P’p = gjp reduce to only one equation 

-a-a+A-- = g ‘+ J where the light cone fermion density is j+ = $7+$ = 2$!$+. 

The vector potential is determined in this gauge by the fermion field $J+, i.e. 

(2.2) 

In l+l dimensions the transverse directions are absent and the photons do not 

appear as dynamical degrees of freedom. The inverse derivatives (;a+)-’ and 

(a+)-” are used as a convenient notation. In practice, they involve Green’s 
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functions ( see appendix A); for example 

Ccl 
&##J(z-) = -5 

/ 
dY Ix- - YI 4(Y) + Fx- + c - 

-CO 

The c-numbers F and C represent background fields which lead to interesting 

phenomena as discussed by Coleman et a1.18”’ In the present work they are set 

to zero because of boundary conditions. 

The Dirac equation (i7pd, - m) $J = gqpA,+ is reduced to two coupled 

equations i&++ = rny”+- + gA-tJ+ and i@& = m ro$+ . One notes that 

$- is determined by $J+, i.e. $J- = my0 (id+)-l$+ and that the light cone time 

derivative of $+, i.e. 

P-3) 

is a functional of $+ alone. The only independent field is thus $J+, and as such 

is subject to quantization 

{$+(x,, ti;cY)}z+=y+ = A(+) w - y-1 (24 

at equal light cone time. l-8 

The Lagrangian Eq. (2.1) g ives rise to conserved currents. Only two of them 

are considered in this work, namely the fermion current jV = F7"ll) and the 

energy-momentum tensor TpV = i (~7'iY~-W~7~3b) + FXW’Ax - g?T. 

The conserved currents lead to conserved charges, i.e. & = i s dx- j+(x-, x,') 

and PV = f s dx- T+V(x-, x,‘) . The charge &, the light cone momentum P+ 

and the light cone Hamiltonian P- form a set of mutually commuting operators.6 
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Consequently, they can be diagonalized simultaneously, which is equivalent to 

solving the equations of motion. Using Eqs. (2.2) and (2.3) one obtains after 

partial integration 

Q = / dx- $+h+ , P+ = 
/ 

dx- &a+v,L~+ and P-5) 

(2.6) 

The explicit construction of these quantities as operators which act in Fock space 

is the aim of this section. 

The independent spinor field $+ = $J+(x-, x0’) can be chosen freely at an 

arbitrary light cone time x0’ provided one satisfies the anticommutation relation; 

for example, it can be chosen as the most general solution of the free Dirac 

equation with vanishing mass, i.e. of ia-++ = 0. Obviously, the solution cannot 

depend on the light cone time, thus 

$+(x-,x+) = * & B. + DA + & b, eaine + dk e+inC 
n=l 

(2.7) 
- 

We have imposed periodic boundary conditions in x-, see also refs.9 and 10. The 

momentak+=2k-=nF (n=O,l,..., A) b ecome discrete, a condition which 

is relaxed in the continuum limit as discussed below. 

The spinor u is fixed by the projection u = A(+)u and by the normalization 

utu = 1. The creation and destruction operators obey the familiar anticommu- 
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tation relations. They vanish, except for 

{b,,bb) = {dn,dk} = 6n,m 7 but {Bo,BA} = {Do,D~} = i * (2.8) 

By explicit calculation one can verify the field commutation relations, Eq. (2.4). 

Because of Eq. (2.7) the operators P+ and P- depend on the period L. This 

dependence turns out to be explicit, i.e. 

P+=FK and P-=-$-H. P-9) 

The invariant mass squared becomes M2 = P+P- = K H, i.e. independent of 

LA9 

Upon inspection of Eq. (2.6) one can define 

H=m2Ho+eV. 
7r 

(2.10) 

In 1 + 1 dimensions the coupling constant has the dimension of a mass.12 Thus 

all operators under consideration, i.e. the charge Q, the harmonic resolution 

K, the inertia HO and the interaction V are dimensionless. Their evaluation is 

enormously simplified by introducing the dimensionless matrix elements 

{n/m} E $1 dt eint & eimt, [nlm] s $ / dt eint & eimt. (2.11) 
-T --1T 

As shown in the appendix they are well-defined 

{nlm} = ‘&+m,O, {nlO} = {O/m} = 0, (010) = 0 , and 

[nlm] = i&+m,O, [n/O] = [Olm] = 0, [olo] = -tc2 , /c + 00 . 
(2.12) 
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It is then straightforward to show that 

K = 2 n (bkbn + d!dn) 
9 

and Ho = c ; (bkbn +dt,d,) . (2.13) 
n=l n=l 

Both are diagonal and independent of the zero-momentum fermions Bo and DO, 

as opposed to the charge which is off-diagonal in the latter. However, Q can be 

diagonalized by a Bogoliubov transform. By introducing quasi-fermions’ 

b. = B. + DA and di = Bo- 0: , (2.14) 

with anticommutation relations { bo, b, ‘> = {do,$} = 1 according to Eq. (2.8), 

the charge becomes 

Q = e (b!bn - dkdn) s bib0 + 2 (b!bn - d!d,) . (2.15) 
n=O n=l 

Here and in the following we can formally set & - 0, since $+ and hence Q does 

not depend on it. 

The interaction V 

V = i 2 (b:dfbLdi + &b,dlbk) [k + l/m + nl + 
k,l,m,n=O 

(blbmdfdn + bmbidndf) [k + II - m - n] + 

(bLbmb!bn + dmdldndf + blbmdndi + blbmdndi) [k - ml1 - n] + 

( 
dlbfbkbn + bkdldmdt, + b;dkdndf + dldkdmbk > 

[k + ml1 - n] + 

( 
dkbmb;bl + bfb,bkdL + dkbiblbm + bLd,didk > 

[k + ml1 - n] 

is divided into three parts 

(2.16) 

V=VQ+VN+VC . (2.17) 

The charge dependent part VQ contains all of the dependence on the matrix 
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element [O]O], i.e. 

vQ = $“lol 2 ( b;bkbibn + dkdldnd: + blbkd,dL + bLbkdndk 
> 

, 
k,n=O 

and can be written as VQ = a[O]O] (Q + A)2. The cut-off A is a c-number and VQ 

becomes finally 

VQ = ;Q[OlO] (Q + 28) . (2.18) 

Since VQ contains all dependence on [O]O], by definition one has [O]O] = 0 in the 

remainder, i.e. in VN and Vc to be defined. The normal ordered part VN of the 

interaction V becomes 

VN = C (blbibmbn + dtdfdmdn) [k - nil - ml/2 + 
k,l,m,n=O 

bLb,dkdn ([k + ml - 1 - n] - [k - Zlm - n]) + 

( 
bLd!dkdn + dLd,dlbk 

> 
[k + ml1 - n] + 

dlbibkbn + bkbmbldk [k + ml1 - n] 
> 

. 

(2.19) 

The sum of all pairwise contractions of V is denoted by Vc . It turns out to 

be diagonal due to the selection rules in the matrix elements, Eq. (2.12) , i.e. 

Vi = e In pnbn + dL&) + { bo, bi} 2 $ (b:bn - dk&) - (2.20) 
n=l 

To clarify the origin of the second term, the anticommutator 

been written out explicitly. The self-induced inertiasl 

= 1 has 

In s ; &([n-mlm-n]-[n+ml-n-m])=-&+2 --$ (2.21) 
m=l m=l 
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take the value 

I=1 n 9 47 401 - 7r2 2 ’ 8 ’ 36 ’ 288 ’ “’ ’ for 6 n= 1,2,3,4 ,..., 00 (2.22) 

in the limit A -+ 00. 

At first sight it appears as if the light-cone Hamiltonian, specifically the last 

term in VC, Eq. (2.20), is not invariant under charge conjugation when the zero 

momentum fermion operator is included. The charge conjugation operator C is 

defined such that CBoC-’ = Do and CD&‘-’ = Bo. According to Eq. (2.14) 

the quasi-particles transform therefore like C&C-’ = bi. In the interaction VN, 

Eq. (2.19), the quasiparticles appear in exactly three combinations, i.e. linear in 

bo, in bi and in bib,-,. If one picks up the last combination and adds it to the 

second half of Eq. (2.20) , one gets 

(i-bib) $ f (Qbn-d:dn) . 

This expression, as well as the remaining terms in the Hamiltonian is charge 

conjugation invariant. 

As mentioned, the initial field $J+ = $+(x-,x,‘) appearing in Eqs. (2.5) and 

(2.6) is arbitrary. As an alternative, it can be chosen as a solution of the free 

massive Dirac equation id-$+ = mF7’$- and ia+& = mF 7O$+ , i.e. of 

-a-a+$+ = rn$$+ with an arbitrary fermion mass ??ZF. Since ?nF is non- 

zero, the quasi-fermion cannot be a partial solution as in Eq. (2.7), but the most 

general solution taken at x0’ = 0 is independent of mF,l i.e. 

A - 

$+(x-, ~0') = u J& 5 bn emint + di efine with t = 7r> . (2.23) 

In order to get the Fock space operators for this alternative basis, the massive 
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representation, one can set formally bo = 0 in Eqs. (2.15), (2.19) and (2.20); in 

particular, the commutator term in Eq. (2.20) is omitted. 

Finally, one can verify by explicit calculation that the operators Q and Pv 

commute also as Fock space operators, as they should,6 irrespective of whether 

one includes the zero-momentum fermions or not. 

3. DISCUSSION OF THE PROCEDURE 

As in other field theories, QED2 contains an arbitrary scale. This becomes 

particularly clear in the notation of Eq. (2.10) , i.e. H = m2 Ho + $ V. If one 

scales both the fermion mass and the coupling constant by some number C, the 

Hamiltonian and thus the whole mass spectrum scales by the same amount, i.e. 

m + m’ = Cm, 9 + 9’ = cg, thus Mi + Mj = CMi s 

Therefore, apart from a scale, the spectrum cannot depend on m or g separately, 

but only on the dimensionless ratio g/m. It is thus natural to use the parame- 

terization 

and m-65 7 1-X , thus X = 
1 

1 + r (m/s)2 
(3-l) 

which maps the entire range of both m and g onto the finite interval 0 5 X 5 1. 

The numerical value of i% is irrelevant. The final expression for the invariant 

mass squared is thus 

M2 = iTi2 { (1 - X2)KHo + X2KV} . (3.2) 

If not mentioned otherwise the invariant mass eigenvalues will be given in units 

where fi takes the numerical value 1. In sec. 6 we will choose 65 to renormulize 
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the spectrum such that the lowest mass eigenvalue M = 1, independent of the 

interaction strength X. 

The operators of charge, momentum and energy derived in sec. 2 are oper- 

ators which act in Fock space, i.e. in the representation which diagonalizes the 

number operators bLbn and dLdn. Each Fock state I@i) is characterized by the 

single particle discretized momenta n which are occupied by a particle or an 

anti-particle; for instance 

I@i) = InI, n2,. . . ,nN;fil,fi2,. . . ,fi~) E bi, bi,. . . bkdfdi . . . dk IV) , (3.3) 

where Iv) denotes the vacuum. The set of all possible Fock states represent the 

Hilbert space in which one calculates the matrix elements of the three operators 

under consideration, i.e. (ij Q lj), (iI K lj) and (iI H lj). 

The charge operator Q is diagonal in the Fock space representation (see 

Eq. (2.5)). As is well known, QED2 does not allow for free charges. 1WQ In 

the present approach this fact manifests itself in the operator VQ ( Eq. (2.18)), 

which diverges for all non-zero charges. Since this divergence cannot be removed 

by renormalization, QED2 must be confined to the charge zero sector. The 

momentum operator P+ = K F is also diagonal (see Eq. (2.5)). Many Fock states 

can have the same eigenvalue K and Q = 0, but their number Ndim E Ndim(K) 

is strictly finite due both to the fact that n is positive or zero and due to the 

exclusion principle. 

The light cone energy P- = H& is not diagonal for finite interaction X. If one 

orders all possible Fock states according to the eigenvalue of K, it becomes block 

diagonal because P- commutes with both P+ and Q, i.e. (@(K’) I H I@(K)) = 

0, for K’ # K. The dimension of each block matrix is finite and equal to 
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Ndim. Each block can then be diagonalized numerically. As a result of diago- 

nalization one obtains the eigenvalues of the invariant mass squared M2 = KH 

together with the coefficient matrix Cj which represents the eigenstates 

Ndim 
IMi) = 2 Ci I@j) s (3-4 

j=l 

The Fock states for the four lowest values of K are displayed in Table 1 

together with the corresponding blocks of the Hamiltonian. The table lists the 

elements of the invariant mass squared, split into the diagonal KHo and off 

diagonal KV terms according to Eq. (2.10). The finiteness, and in fact the 

relative smallness of the matrices, is an attractive feature of DLCQ. Unfortunately 

the dimension increases exponentially for large values of K, as shown in Table 2. 

In the computer codes the matrix dimension has been limited to Ndim 5 256. 

DLCQ imposes periodic boundary conditions and discretizes the (light cone) 

momenta k+ = 27rF or P+ = 27rg. This violates Lorentz invariance but the 

continuum can be regained by a limiting procedure, i.e. 

L + CO, K --) 00, but P+ = 27r$ finite , P-5) 

and similarly for k + = 27rn/L. The physical spectrum Mi(K) is thus obtained 

only in the continuum limit K -+ 00, and in the strict sense this limit cannot be 

reached. In practice, it can be approximated to arbitrary accuracy by studying 

the convergence of the mass spectrum M(K) as it becomes sufficiently indepen- 

dent of K. But discretization has obvious advantages, not the least being the 

denumerability of Fock states and the representation of Fock space operators as 

strictly finite dimensional matrices. The spectrum is manifestly independent of 
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the two formal and redundant parameters, the cut-off in single particle momenta 

A and the period L. Last, but not least, as we discuss in the next sections, the 

qualitative aspects of the solutions show up at comparatively small value of the 

resolution’ K. 

4. THE STRONG LIMIT: THE SCHWINGER MODEL 

The Schwinger model is defined as QED2 with vanishing Lagrangian mass. 

As shown by Schwinger12 this theory is equivalent to the theory of free massive 

neutral bosons: The boson fields AV obey 

(a,#‘+%“) AY=O, withmass &&- . 
fi 

(4-l) 

According to Casher, Kogut and Susskind,14 non-zero charge solutions i.e. free 

electrons cannot exist; they would acquire an infinite mass. 

To make the comparison between the Schwinger model and the bosonized 

theory, it is convenient to cast Eq. (4.1) in 0 t a Lagrangian, quantize at equal 

light cone time and calculate energy and momentum in very much the same way 

as in ref.1 . The operators of invariant mass squared M2 and of resolution K are 

then given by 

A 1 ~2 = &2~x -$o,,, and K = kna:an, 
n=l n=l 

(44 

respectively. The boson operators obey [an,ak] = 6n,m . In other words, the 

momentum and the energy of the Schwinger model are diagonal in the Boson 

representation, and one can readily evaluate the spectrum of invariant masses. 
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For small resolution they are given in Table 3 in units of 6, together with the 

corresponding boson Fock states. Their number for each K is identical with the 

number of fermion Fock states (see Table 1). 

The Schwinger model mass spectrum is plotted in Fig. 1 as a function of the 

resolution. In the lowest state K1 
I > 

one boson takes all the momentum K and 

has invariant mass M = 1. In the next higher states the total momentum K is 

shared by two bosons. According to Eq. (4.2) one has 

M2 - 
4 

1 - (n/K2)2 
F2-ii;,r2+E > =0 for n=O,l,..., K2-1, (4.3) 

where K2 z K/2. The state rz2 
I > 

describes two bosons at rest relative to 

each other, with an invariant mass of precisely M = 2. The states with relative 

momenta n 2 1 generate masses M > 2, i.e. a band spectrum corresponding to 

two bosons in relative motion. Similarly, states with M = 3,4.. . correspond to 

3,4... bosons at relative rest, each of them being at the head of a band of states 

in the continuum limit. The spectrum ends with a state TK 
I > 

of mass M = K 

corresponding to a boson condensate of K bosons with momentum n = 1. 

The continuum limit is now obvious. The lowest state is isolated and has an 

invariant mass M = 1. Above M = 2 follows a continuumof states corresponding 

to two or more bosons in relative motion. 

Returning to Eq. (3.2) the Lagrangian mass m approaches zero in the strong 

coupling limit X + 1, and the invariant mass in the DLCQ approach satisfies 

the equation M2 = i?i2KV. Examples of the matrices KV are given in Table 

1. In order to obtain the eigenvalues, these matrices must be diagonalized. For 

resolutions K = 1 and K = 2 this can be done analytically; the eigenvalues 1 
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and 4 agree precisely with the exact results in Table 3. For the higher reso- 

lutions diagonalization can be done numerically. The numerical identity of all 

eigenualues with the exact values of Eq. (4.2) was verified for all resolutions up to 

K = 16. The explicit test up to K = 16 seems sufficient to conclude that DLCQ 

reproduces in one-to-one fashion the exact solutions of the Schwinger model also 

in the continuum limit. 

Diagonalization also gives the eigenfunctions. An inspection of the numeri- 

cal results reveals simple correlations which we can give in closed form. Three 

examples might suffice. The eigenstate with eigenvalue M = 1 has the structure 

1’1) = lk) = -& y bLdk_, Iv) 
. 

n-0 
(44 

No other eigenstate was observed being built up only by two particle Fock states. 

The next higher states can be interpreted as two-boson configurations. According 

to Eq. (4.3) one has exactly K/2 states of this kind, and the two lowest among 

them have the eigenstates 

(*2) = I%“> =${- K’ b;dk-, + y bt,dk-, 
n=O n=Kz 

K-l Kz-m-l 

+ 2 c c bt bt dt dt m m+n Ka-m-n Kz-m Iv) 
m=O n=l 

(4.5) 

and 
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K-l 

bt dt n K-n + c bkdk-n 
n=Ks+l 

- c bt,bf.,+& -,-,dk a a -n 
n=O (4.6) 

is-2 KS-m 

+ c c bt bt dt m min Kz-m-n+1 dt KS-m-1 
m=O n=3 

Kz-3 KS-m-2 

with eigenvalues given by Eq. (4.3). 

Precisely the same eigenfunctions are obtained if one identifies the bosons of 

Eq. (4.2) with superpositions of ff pairs, i.e. 

af = 5 

n-l 00 co 

m=O bLd!Lm + mGob!+mbm - mgl &+mdm c 
> 

, n > 1 , (4.7) 

in terms of which the Hamiltonian, Eq. (2.10) becomes simply 

H = m2 2 i (btbn + dida) + $ e :a!,. (4.8) 
n=l n=l 

in the charge zero sector. (See also Bergknoff.24 ) 

It is interesting to note that the first eigenstate with six particle Fock states 

has a mass M  2 3. Equality holds if the total momentum is shared equally by 

the three bosons. 

One can check that the above pattern of solutions hold for every K; thus, 

these features hold also in the continuum limit and represent exact solutions. The 
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fact that the spectrum in DLCQ is obtained correctly even at the very smallest 

values of K where the wavefunction is only resolved in a gross fashion seems 

remarkable; in fact this result is special to the Schwinger model and is due to 

the fact that the wavefunction of the boson is local and thus independent of the 

fermion momentum. We return to this point in Chapter 6. 

5. QUANTUM ELECTRODYNAMICS IN 

ONE SPACE AND ONE TIME DIMENSION 

In this chapter we apply the DLCQ method to the massive Schwinger model: 

QED2 with finite mass fermions. It is natural to choose massive fermion states 

with nonzero k+ as the Fock state basis. Unless stated otherwise, we will express 

the mass eigenvalues in units of the Schwinger boson mass 6. 

5.1 FREE FERMION PAIRS AT WEAK COUPLING. 

For X2 < 1 the mass operator reduces to the diagonal form M2 = KHo. The 

spectrum is illustrated in Fig. 2 for different values of K. The lowest possible 

mass is obtained if the total momentum K = 2K2 can be shared equally by a 

fermion and an antifermion, corresponding to the two particles at rest relative 

to each other. As in the bosonic case, one can construct a band of states for two 

particles in relative motion, i.e. 

M2 - 
4 

1 - (n/K2)2 > 
IK~-~;I?~+Fz)=O, for n = O,.. .,K2 - 1. (5.1) 

Contrary to the bosonic case, however, each of the eigenvalues is twofold degener- 

ate for n 2 1 since IK2 + n; K2 - ii) is a different state with the same eigenvalue. 

As is clear from figure 2, one can also identify bands with three or more particles. 
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For any specific resolution K, the spectrum is of finite dimension. The highest 

possible mass state is obtained by putting N fermions and antifermions into the 
- - 

lowest possible momentum states Il,2,. . . , N; 1,2,. . . , m). This state has total 

momentum K = N(N + 1) and an invariant mass 

N1 
M2=2Kxn. 

n=l 
P-2) 

The largest mass in the spectrum is thus proportional to dm as opposed 

to the boson case where it is linear in K. The exclusion principle prohibits a 

condensate. 

The continuum limit of the spectrum is fairly obvious from Fig. 2 and from 

Eq. (5.2). The continuum of masses can be disentangled into multidegenerate 

continuous bands of states starting at M = 2,4,. . ., corresponding to the relative 

motion of two or more fermions. 

5.2 THE CONTINUUM LIMIT FOR FINITE COUPLING. 

In both the weak and the strong coupling limit one can discuss the analytic 

solution to QED2 terms of non-interacting particles, fermion pairs in one limit 

and bosons in the other. In the intermediate region 0 < X < 1, the solutions can 

be given numerically. 

The lowest mass eigenvalues are displayed as function of X in the left part 

of Fig. 3 . They are obtained from numerical diagonalization of the full mass 

matrix for K = 16. The results of a lattice gauge calculation 26 are inserted into 

the figure as reference points. The comparison with previous numerical work is 

discussed in greater detail in the next section. 
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For small X the spectra can be identified as the continuation of the free so- 

lutions (Fig. 2), but they obviously disagree in the strong coupling limit. The 

higher mass states obviously suffer from poor resolution; i.e.: insufficiently large 

K. Increasing K presents the difficulty that the matrix dimensions increase 

exponentially; see for example Table 3. However, as we show below, a simple ap- 

proximation based on projection onto the lowest number valence Fock component 

can be used to greatly accelerate the convergence to the continuum limit. 

The eigenfunctions of the entire spectrum are obtained as a byproduct of 

diagonalization in the DLCQ method. As one can see by inspection for resolu- 

tions up to K = 16, the lowest eigenstates are built mostly from the Ilf; lf) 

Fock states. The amplitudes of the four particle states, i.e. 12f; 2f), or of larger 

particle numbers are very much smaller, typically by 2-3 orders of magnitude. 

The strength of the two-particle states saturates the unitary bound up to a small 

fraction. Therefore one can diagonalize the Hamiltonian in the projected ( lf; lfi 

space to a high degree of accuracy. The eigenvalues obtained in this manner agree 

with the full solutions for almost all values of the interaction strength. Only at 

X = 1 and its immediate vicinity is the approximation somewhat less quanti- 

tative, since the exact wave functions of the high mass states have significant 

contributions from the 12f; 2f) states; see Eqs. (4.5) and (4.6). 

The spectrum of the projected space is shown in the right part of Fig. 3 for 

the comparatively large value of K = 128. Despite the large resolution it is rather 

similar to the left part. 

In general the rate of convergence in K depends on the interaction strength. 

Indeed, if one plots the mass of the lowest state as function of X for different 

values of the resolution as done in Fig. 4, the curves coincide almost completely 
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for X 5 0.9. However, for X - 1, the convergence to the exact value of the lowest 

mass “vector” state (MI = 1) is rather slow. 

On the other hand one knows from section 4, that the exact value at X = 1 is 

reproduced for any value of K provided the quasi-fermion is included. Therefore, 

we repeated the above calculations using the mussless fermion representation; the 

results are plotted in the same figure. Now the vector mass is reproduced exactly 

for X = 1, but for slightly smaller values (say X - 0.9) the massless representation 

converges even slower from below than the massive representation converges from 

above. The discrepancy between the two representations is a strong function of 

X. For K = 240 it decreases from about 40 percent at X = 1 to about 10 percent 

at X - 0.9 and reduces to a fraction of a percent for X - 0.7. 

The two representations coincide in the limit K + 00. This can be shown 

by replacing summation with integration which converts the matrix equation 

HLC\E = M2Q into an integral equation. Restricting to the (If; lf3 space 

one arrives at the same integral equation as Bergknoff,24 details being given 

elsewhere. 32 . The lowest mass eigenvalue is displayed in Fig. 4 and represents 

the continuum limit. 

The excited states show a similar behavior. In Fig. 5 the lowest members of 

the renormalized spectrum M;/Ml are plotted as function of K at two values of 

X. Again, one notes a faster convergence in the massive representation than in 

the massless one, but for sufficiently large K they do yield the same value. 

One concludes that the continuum limit exists and that the massive repre- 

sentation converges faster for almost all interactions except in the immediate 

vicinity of the Schwinger point. The continuum limit does not yield new qualita- 

tive aspects, such as new states being pulled down from the continuum into the 

23 



low mass region. 

5.3 COMPARISON WITH EARLIER WORK 

The quantitative aspects of the DLCQ approach can be checked by compar- 

ison with other work. 17-24 

Tables 4 and 5 collect all the results of Bergknoffa4 , recast into the units used 

here. They agree with the present results to within about one percent, except 

one point in Table 4 where the discrepancy is about 6 percent. One is tempted 

to interprete Bergknoff’s results for X = 0.707 and X = 0.981 as printing errors, 

since they drop out from the systematics of the recalculated values displayed in 

Fig. 4. 

The renormalized spectrum as given in Table 5 agrees with the present result 

within the accuracy quoted by Bergknoff. 

Due to the work of Crewther and Hamer26 a comparison with a lattice gauge 

calculation is possible. The latter is believed to be the most quantitative among 

the nonperturbative methods and is in some ways complimentary to the present 

approach. On the lattice one discretizes in usual space and quantizes at usual 

time, as opposed to DLCQ where one discretizes in momentum space and quan- 

tizes at equal light cone time. It is therefore rather significant the lattice gauge 

results agree by and large with the present results as displayed in Table 6. 

It seems inherent to the numerical part of the lattice calculation that the 

vector mass m- (lowest state) can be calculated more precisely than the scalar 

mass m+ (second state). Crewther and Hamer quote precisions of l-2 and l-5 

percent, respectively. The higher mass states have not been calculated so far. 

The values compiled in Table 6 are taken from a figure, in which the authors 
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plot what they call the binding energy I& zz (m+ - 2m)/g. The additional 

uncertainty is estimated to about l-2 percent. The values of E* in the original 

units are displayed in the table together with the values of m+ in our units, which 

can be compared with the present results for Ml and M2. 

Within the limits of error defined above, the lattice gauge calculation agrees 

with the DLCQ values for both the vector and the scalar state for all interactions 

except at the largest values of X = 0.976. The discrepancy of the vector mass 

(- 8%) can be explained easily by an insufficiently large K. The continuum 

calculation for the vector mass dispayed in Fig. 4 agrees quite well with the 

lattice gauge calculation for all interactions X. 

6. THE MASS SPECTRUM AND 

STRUCTURE FUNCTION IN QED2 

As we have shown in the previous section, by restricting the Fock basis to 

the Ilf;lf) P s ace, the spectrum is considerably simplified, and the lowest set 

of mass eigenvalues are still obtained with high accuracy. What is the role of 

these approximate states as compared to the full solution? Having established 

the continuum limit and the quantitative aspects of the DLCQ approach, one can 

treat this question qualitatively for the comparatively small value of K = 16. 

Fig. 6 shows the 124 masses of the full Fock space for all possible interactions. 

We interpret the complex spectrum of the full space as follows. The (massive) 

Fock space for K = 16 contains Fock states with at most six particles, i.e. 18 

13f; 3f> states. As we discussed in section 5 one expects for small coupling the 

onset of a continuum band of states beginning at M = 3, which is hidden in 

the continuum of the band starting at M = 2. (See also Fig. 2.) The latter 
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correspond to the 91 12f; 2f) t t s a es. It is remarkable that the band at M 2 2 

persists for all values of the interaction. Finally, the band of the 15 Ilf; lf) 

states starts at M = 1. 

The particle number seems to be important for the interpretation of the 

spectrum. This surmise is supported both by inspection of the wavefunction and 

by the following auxiliary calculation. In the left part of Fig. 7 we have plotted 

the masses as obtained from diagonalization within only the (If; lfl space, and in 

the right part those obtained from diagonalizing within the (2f; 2f> space alone. 

It is amazing to see how every state in Fig. 7 finds its analogue in Fig. 6. Ignoring 

the regime where crossing points occur, there is good quantitative agreement in 

the respective spectra. 

The full spectrum of Fig. 6 can thus be disentangled into two distinct com- 

ponents. The (If; lfl component stays discrete even in the continuum limit. 

(See also the discussion in the preceeding section.) The discrete states can be 

understood as intrinsic exitations of a meson or positronium-like system. In anal- 

ogy to the Schwinger model, the second component of the (2f; 2f] states can be 

interpreted as continuum scattering states with nonzero relative motion of two 

bosons. The residual interactions, the matrix elements (If; lf( H 12f; 2f) gen- 

erate mixtures of these two components, which obviously have not much impact 

on the mass eigenvalues except at the crossing points. 

The Schwinger model has a mass gap between M = 1 and M = 2. In the 

massive theory this gap is now occupied by bound states, the mentioned exci- 

tations of a positronium-like system. For M 2 2 they are potentially unstable, 

decaying by a small perturbation into two or more effective bosons. Further anal- 

ysis in terms of decay rates and branching ratios requires further development 
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of scattering theory within the DLCQ framework. (See e.g. the recent work at 

equal time of Krijger. 31 ) 

One of the most important advantages of the DLCQ method is the fact that 

the wavefunctions required for calculating scattering amplitudes, current matrix 

elements, form factors, etc. are obtained automatically as the eigenfunction co- 

efficients Ci of Eq. (3.4). It is interesting to report one representative example 

where the eigenfunctions are needed, i.e. the bound state structure function ap- 

pearing in deep inelastic lepton scattering. The structure function f(z) is the 

probability to find a fermion carrying the fraction z of the total momentum P+. 

Since x = p+/P+, i.e. x = n/K one has 

fi(x)dx = (Mi, KI b:bn IMi, K) = C lC!12 (@iI b:bn I@j) at X = g 3 (6-l). 
j 

The normalization is fixed by the requirement &r dx fi(x) = 1 . The matrix 

element (@j I bkbn 1 Qj) is 1 or 0 depending on whether or not the fermion state 

n is occupied in I ~i). 

The structure function for the lowest state f(x) G fi(x) is plotted in Fig.8 

for various values of X. The results show the transition from weak coupling, 

nonrelativistic dynamics at small X to the broad distribution expected for highly 

relativistic binding at large X. As a consequence of discretization, the support 

is discrete, and f is a distribution rather than a function; in practice this is 

irrelevant for large resolution. The results shown here are for K = 240. 

In QED2 the lowest eigenstate is dominated by the two-fermion Fock com- 

ponent; i.e., two “quarks”. The structure function is thus peaked close to x = i 

and it is approximately symmetric in x about this point. At x = 1 the struc- 

ture function is strictly zero since the highest possible momentum state for the 
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fermion is K - 1, i.e. bk_,df Iv). We find that the contribution of higher Fock 

states to the lowest mass state structure function is strikingly small. The ratio of 

probabilities of all the higher particle number states relative to the valence Fock 

state never exceeds 10s4 at any X and K 5 16. This can be understood from the 

fact that at both very low and very high couplings the bound state consists of 

only two fermions. 

At X = 1, QED2 becomes the Schwinger model. As indicated in section 4, in 

this case the structure function is a constant: f(x) = 1; i.e. the quasifermion has 

the same occupation number in all other momentum states. The bound state is 

thus local in position space. We note that our results are in fair agreement with 

the structure function displayed by Bergknoff. 24 

The details of the higher Fock space contributions to the structure function 

as well as other properties of the eigenstates such as distribution amplitudes or 

charge distribution functions will be given separately.32 

7. SUMMARY AND CONCLUSIONS 

The basis of the Discretized Light Cone Quantization Method (DLCQ)’ for 

solving field theories is conceptually simple: One quantizes the independent fields 

at equal light cone time r and requires them to be periodic in light cone space 

with period 2L. The commuting operators, the light cone momentum P+ = 

FK and the light cone energy P- = &H are constructed explicitly in a Fock 

space representation and diagonalized simultaneously. The eigenvalues give the 

physical spectrum: the invariant mass squared M2 = P’P,. The eigenfunctions 

give the wavefunctions at equal r and allow one to compute the current matrix 

elements, structure functions, and distribution amplitudes required for physical 
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processes. All of these quantities are manifestly independent of L, since M2 = 

P+P- = HK. Lorentz-invariance is violated by periodicity, but reestablished at 

the end of the calculation by going to the continuumlimit: L + 00, K + 00 with 

P+ finite. In the case of gauge theory, the use of the light cone gauge A+ = 0 

eliminates negative metric states in both abelian and non-abelian theories. 

As we have shown in this paper the application of DLCQ to a gauge invariant 

Abelian field theory like QED2 is straightforward. For any given resolution K 

the number of contributing Fock states is finite because of the positivity of the 

light cone momenta and the Pauli principle (in the case of massless fermions). 

No unexpected problems appear in the calculations. QED2 in A+ = 0 gauge is 

much simpler than the scalar Yukawa field theory,2 since the transverse degrees 

of freedom and therefore the photons are absent in l+l dimensions. One can 

see immediately in the DLCQ approach that QED2 has an arbitrary mass scale. 

This scale can be adjusted by ( r normalizing the lowest mass to an arbitrary e) 

but fixed value. 

We have also established precise agreement between the DLCQ results and 

the exact solutions of the Schwinger model proper at any resolution K, as well 

as in the continuum limit. This result gives further evidence that quantizing a 

system at equal light cone time is equivalent to quantizing it at equal usual time. 

In the case of the massive Schwinger model (QEDz), we established the exis- 

tence of the continuum limit numerically; for sufficiently large resolution K the 

results become independent of K. The essential criteria for convergence is that 

the intrinsic dynamical structure of the wavefunctions is sufficiently resolved at 

the rational values x = n/K,n = 1,2, . . K - 1 accessible at a given K. Unlike 

the case in the usual space-time methods, the size of the discretization or lattice 
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length scale L, is irrelevant. 

In the large K limit, the eigenvalues agree quantitatively with the results 

of Bergknoff 24 and with those of a lattice gauge calculation by Crewther and 

Hamer . 26 This result is important in establishing the equivalence of different 

complementary nonperturbative methods. 

We also verified numerically that different Fock space representations yield 

the same physical results. In particular we solved the QED2 spectrum in the 

space corresponding to the solutions of the free, massive Dirac equation (icypaP + 

rnF)$ = 0 as well as of the massless equation iypa,$ = 0. We only found 

convergence problems for the very large coupling regime X near 1 . 

Even for moderately large values of the resolution, DLCQ provides one with a 

qualitatively correct picture of the whole spectrum of eigenfunctions. This aspect 

becomes important for the development of scattering theory within the DLCQ 

approach. For example we have found the rather surprising result that the lowest 

eigenfunction has virtually no components of 12f; 2f) and higher particle Fock 

states (i.e. no ‘sea quarks’). The structure functions for the sea quarks will be 

given in a separate paper. 

There are a number of important advantages of the DLCQ method which 

have emerged from this study of two-dimensional field theories. 

(1) The Fock space is denumerable and finite in particle number for any 

fixed resolution K. In the case of gauge theory in 3+1 dimensions, we expect 

that photon or gluon quanta with zero 4-momentum decouple from neutral or 

color-singlet bound states, and thus need not be included in the Fock basis. The 

transverse momenta are additive and can be introduced on a Cartesian grid. We 

are currently developing methods to implement the color degrees of freedom for 
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the non-Abelian theories. 

(2) Unlike lattice gauge theory, there are no special difficulties with fermions: 

e.g., no fermion doubling, fermion determinants, or necessity for a quenched 

approximation. Furthermore, the discretized theory has basically the same ul- 

traviolet structure as the continuum theory. We emphasize that unlike lattice 

calculations, there is no constraint or relationship between the physical size of 

the bound state and the length scale L. 

(3) The DLCQ method has the remarkable feature of generating the complete 

spectrum of the theory; bound states and continuum states alike. These can be 

separated by tracing their minimum Fock state content down to small coupling 

constant since the continuum states have higher particle number content. In 

lattice gauge theory it appears intractable to obtain information on excited or 

scattering states or their correlations. The wavefunctions generated at equal light 

cone time have the immediate form required for relativistic scattering problems. 

(4) DLCQ is basically relativistic many body theory, including particle num- 

ber creation and destruction, and is thus a basis for relativistic nuclear and 

atomic problems. In the non-relativistic limit the theory is equivalent to many- 

body Schriidinger theory. 

The immediate goal is gauge theory in 3+1 dimensions. Even in the Abelian 

case it will be interesting to analyze QED and the positronium spectrum in the 

large a! limit. Whether the non-Abelian theory can be solved using DLCQ - 

considering its greater number of degrees of freedom and its complex vacuum 

and symmetry properties is an open question. The studies we have reported here 

for Abelian gauge theory in l+l dimensions do give some grounds for optimism. 
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APPENDIX The Matrix Elements {mln} and [mln]. 

The inverse derivative (ido-l is introduced for notational convenience but 

stands for a Green’s function or a propagator in the following sense. Suppose a 

function g( I, ‘7) is given for all values of [ and q. The unknown function r$( t, 7) is 

to be determined by ia& = g or by 4 = & g . This can be achieved by means 

of a Green’s function G(t, x) = i r(e - x) which solves ;a,G(e, x) = S(e - x) , 

i.e. 

4(&r]) = rdx G(L4 s(x,rl) + C , (Al) 
--oo 

the arbitrary constant C being a solution to the homogeneous equation. 

The inverse derivative has a property of a partial derivative. Consider I E 

j-d@3~‘f)i-+V . I n t egrate partially to get I = (a;‘f) V - s d(‘ j V . Substitute 
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V = dl’g and get 

/dE(a;‘f)s = (a;‘f)(+) -/dFfa,‘g , 642) 

i.e. the inverse partial can be shifted from f to g without changing their order. 

These properties can be used to evaluate the matrix element {mln} as defined 

by {m]n} = & JTKx de eime & eine , I n choosing boundary conditions such that 

the constant C in Eq. (Al) vanishes, one arrives straightforwardly at 

{ II{ mn = & bm+n,O ifm#Oandn#O 

= 0 ifm=Oorn=O * 
(A31 

We use the opportunity to correct an error in ref.2 . There, the limits of inte- 

gration of the Green’s function have been put consistently (zIx) instead of the 

correct values (foe) as in Eq. (Al). Th is error does not affect the final results, 

since Eq. (A3) was used consistently. 

One proceeds similarly with (idoS2 , defining 4(E) - 6 eine . The Green’s 

function of the problem is given by G([, x) = i ]e - x] and the most gen- 

eral solution by 4(c) = i s-‘,” dx ]t - x] einz + Ft + C , with F and C being 

arbitrary constants. Boundaries are chosen such that C and F vanish. The 

integral is not well defined except upon introducing a convergence factor, i.e. 

4(e) = lim,,o eint Jr dx emKz cos nx which gives rjn( 0 = I$$$$ eint . One 

keeps n finite, taking the limit at the end. 

Having defined [mln] = & J-J d[ eimc 

0 and n # 0 

[mln] = -$ bm+n,O ,[mlO] = 0 ,[Oln] = 0 ,[OlO] = -$ . (A4 

One notes that [O]O] d iverges in the limit tc 40. 
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In choosing the integration constants F and C one has not much freedom. For 

self-bound systems one has to omit external fields (i.e. F = 0); however, see also 

the work of Coleman.18’1g For nonzero values of C, the light cone momentum 

and the energy would not commute, as can be verified by explicit calculation. 
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TABLE CAPTIONS 

1. The inuariant mass squared in Fock space representation. - Both, the diag- 

onal inertia matrix KHo and the interaction matrix KV are dimensionless 

and related to the invariant mass squared by M2 = m2KHo + g2/rKV. 

Entries are the Fock states 1;) = Inf; no. 

2. Matrix dimensions for diflerent resolutions K.- The right part of the table 

gives the contribution to Ndirn according to the number of fermions in the 

massless representation. 

3. The Schwinger model in boson representation.- The eigenvalues of the 

invariant mass squared M,? are given for low resolution K, together with 

the Fock states for massive bosons. 

4. Comparison with the uector mass of Bergknofi2* - The vector mass (i&) 

as calculated by Bergknoff for different m,/%/g is converted into the present 

units and compared with DLCQ (Ml) for K = 240. 

5. Comparison with the spectrum of Bergknof.24 The first 4 normalized 

masses (Mi/M ) 1 B are compared with the DLCQ results A&/Ml. Calcu- 

lations are done at m&/g = 2 (A = 0.447) for K = 240. 

6. Comparison with the results of Crewther and Hamer.26 - The so called 

binding energies I& are interpolated graphically from their Fig. 10, con- 

verted to masses rnk = gE* + 2m in the present units and compared to 

the DLCQ results Ml,2 for K = 240. 
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Table 1: The invariant mass squared in Fock space representation. 

KHo KV 

11) 14 13) 14) 15) 

(+(o;il I 1 K=l 

(11 = (o;Z( 1 ; K=2 

(2(= (i;i( 4 -i 5 

(11 = (o;SI 1 g K=3 

(21 = (1;ZI ; -; y 

(31 = (2;iI i -$ -i g 

205 
(11 = (0;4l 1 36 K=4 

(4 = (14 y -y s 

(31 = (2;21 4 -; -T y 

205 
(41 = (3;il $ -f -f -y 36 

(51 = (o,l;i,Z( 10 -5 3 -3 t 7 
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Table 2: Matrix dimensions for diRerent resolutions K. 

Contribution to Ndirn from 

K Ndim (If; lfl (2f; 2fl (3f;31? (4f;4n (5f; 5fl (6f;6f3 

1 1 1 

4 5 4 1 

9 30 9 20 1 

16 231 16 140 74 1 

25 1958 25 572 1136 224 1 

36 17977 36 1785 8866 6685 604 1 



Table 3: The Schwinger model in boson representation. 

K i Mf IP)i 

1 1 1 13 
2 1 1 15) 

2 4 IT2> 
3 1 1 IN 

2 912 I% 3 
3 9 IT3) 

4 1 1 I3 
2 4 lS2> 
3 16/3 IK 3 

4 10 15, P) 

5 16 IT*) 
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Table 4: Comparison with the vector mass of Bergknoff.24 

x 

0.196 5.0 10.50 2.06 2.088 

0.447 2.0 4.79 2.14 2.135 

0.707 1.0 2.70 1.91 2.018 

0.981 0.2 1.50 1.47 1.457 

Mv MI 

Table 5: Comparison with the spectrum of Bergknoff.24 

t$fi @)B +I$ 
4.79 1.00 1.000 

5.97 1.25 1.248 

6.90 1.44 1.437 

1 7.70 1 1.61 1.597 

42 



Table 6: Comparison with the results of Crewther and Hamer.26 

m P x 

25 0.018 0.19 0.49 2.006 2.006 1.004 1.004 

24 0.035 0.25 0.62 2.014 2.013 1.011 1.010 

23 01070 0.30 0.77 2.032 2.030 1.038 1.025 

22 0.140 0.35 0.93 2.067 2.064 1.070 1.060 

2l 0.271 0.41 1.10 2.122 2.114 1.156 1.135 

2O 0.491 0.46 1.19 2.143 2.129 1.296 1.279 

2-l 0.748 0.50 1.15 1.990 1.975 1.433 1.497 

2-2 0.914 0.52 1.12 1.653 1.675 1.588 1.753 

2-3 0.976 0.54 1.11 1.367 1.476 1.721 1.943 

Es E+ m- MI Et 
m- 2 
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FIGURE CAPTIONS 

1. The spectrum of invariant mass for free massive bosons. - The mass eigen- 

values for free bosons are plotted in units of the free boson mass G = 1 
fi 

for each fixed value of the resolution K. 

2. The spectrum oj invariant mass for free massive jermions. - The mass 

eigenvalues for free massive fermions in the charge Q = 0 sector are plotted 

in units of the fermion mass m for each fixed value of the resolution K. 

3. The lowest eight mass eigenvalues versus the interaction A. - The mass 

eigenvalues in units of 6, calculated in the massive representation in steps 

of AA = 0.05, are plotted in the left part for K = 16 (Ndim = 124) using 

the full Fock space (see also Fig. 6) and in the right part for K = 128 

(Ndim = 127) using only the (If; lf) part of the Fock space. - The results 

of the lattice gauge calculation (see table 6) are inserted as reference points. 

- The dashed curves in the left part represent mass eigenvalues for K = 16 

with the (If; lf) Fock space. 

4. The continuum limit for the vector mass. - The vector mass in units of 6 

is calculated as function of X with the (If; lf) Fock space in the massless 

(lower band) and the massive representation (upper band) for six values of 

K = 40,80,..., 240. Calculations are done in steps of AX = 0.01. - The 

recalculated continuum limit (similar to ref. 24) is given by the diamonds; 

the triangles and squares refer to the results of Bergknoff2* (Table 4) and 

of the lattice gauge calculation 26 (Table 6), respectively. 

5. The continuum limit for the excited states. - The normalized masses 

Mi/Ml for i = 2,3,4 as calculated with the projected (If; lfl Fock space in 
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the massless (lower curves) and the massive representation (upper curves) 

are plotted versus the resolution K at two coupling constants X = 0.491 

(left) and X = 0.748 (right). 

6. The renormalized spectrum of invariant masses. - The invariant masses 

Mi/Ml as calculated with the full Fock space of the massive representation 

for K = 16 is plotted versus all values of the coupling constant X. - 

Note the qualitatively different parts of the spectrum. Many quasi-crossings 

are not resolved graphically despite the small step in the calculation, AX = 

0.01. 

7. Discrete and Continuous spectra. - The left part displays the renormalized 

masses for K = 16 as calculated from the eigenvalues in only the (If; lf) 

Fock space and the right part as calculated in only (2 j; 2fl Fock space. 

Both spectra are renormalized with the same G(X). 

8. The structure junction for the lowest eigenstate. - The structure function 

is calculated in the massless representation for K = 128 and plotted versus 

the BjGrken variable x = & for different interactions X. 
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