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ABSTRACT 

We introduce a simplicial pseudo-random version of lattice gauge theory. 

In this formulation it is possible to interpolate continuously between a regular 

simplicial lattice and a pseudo-random lattice. Using this method, we study 

-a simple three dimensional Abelian lattice gauge theory. Calculating average 

plaquette expectation values, we find an extremum of the action for our regular 

simplicial lattice. Such a behavior was found in analytical studies in one and two 

dimensions. 
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1. INTRODUCTION 

The lattice gauge theory on a random simplicial lattice was introduced in a 

series of papers by Christ, Friedberg and Lee.’ Monte Carlo calculations of lattice 

gauge theories within this framework were reported by Ren.2 

There are several reasons to prefer the lattice gauge theory defined on a 

random lattice,3*4 we mention here only three of these reasons: 

(i) The inherent rotational invariance of the Euclidean version of the random 

lattice. 

(ii) Due to the higher degree of connectedness, the random lattice with the same 

number of points is more near to the continuum than the usual hypercubic 

lattice. In the d = 4 hypercubic lattice there are Nr/, = 8 links and N2,,, = 

24 plaquettes per lattice point. In the random lattice the corresponding 

numbers are Nrl, w 37.8 and N2/c M 197. This property seems, in the 

absence of phase transitions, to translate into a smoother behavior of the 

measured expectation values, as for instance found by Ren2 in the case of 

the SU(2) lattice gauge theory. 

- (ii;) The random lattice gauge theory is closely related to Regge’s approach to 

Quantum gravity.5j6 Applicati ons of the random lattice gauge theory to 

quantum gravity might lead to further progress on this field.’ 

The linking procedure for a large random lattice turns out to be quite compli- 

cated. So far, all numerical calculations reported2 were done with very few actu- 

ally constructed and linked random lattices. However, theoretical considerations1j4 

always use the assumption, that all averages run over a large number of differ- 

ent random lattices. In fact, it was shown, 1 that the average over all possible 
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orientations of a Wilson loop in one large random lattice is equivalent to the 

quenched average calculated from an ensemble of random lattices. The size of 

actual random lattices constructed so far and used in calculations is however not 

sufficient to exploit this property of the quenched average. Also it seems more 

easy to use an ensemble of not so large random, or pseudo-random lattices, than 

one really big random lattice. 

These problems are our main motivation to introduce a pseudo-random lat- 

tice. The pseudo-random lattice should have the advantages of the random lattice 

when applied to lattice gauge theories but should be easy to construct and link. 

We derive our pseudo-random lattice from a regular simplicial lattice by ran- 

domly shifting the lattice sites, however, without relinking the resulting lattice. 

This can be done if the shifted lattice points remain within the so called invariant 

cell. 

Lattice gauge theory on simplicial lattices were studied by Drouffe et a1.8 in 

a series of papers. We stress however, that in dimensions higher than d = 2 the 

regular simplicial lattice* is not a simplicial lattice in our sense. We consider sim- 

plicial lattices whose elements in d-dimensions are only points, links, 2-simplices 

--or triangles, 3-simplices or tetrahedra, . . . up to d-simplices. The simplicial 

lattices of Drouffe et a1.8 contain for instance plaquettes in form of triangles as 

well as squares. 

We arrive at our simplicial lattice by cutting the elementary cells of a regular 

lattice into simplices. Here we will consider only the case of d = 3 dimensions. 

It was shown by Cohen, g that in d = 1 dimensions the regular lattice is an 

extremum of the action. The corresponding property in d = 2 dimensions was 

found by Pertermann. lo Here we demonstrate numerically, the same behavior 
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in d = 3 dimensions using our formulation of the pseudo-random lattice gauge 

theory, which allows a continuous transition from the initial regular simplicial 

lattice to the pseudo-random lattice. 

In Section 2 we will define our pseudo-random lattice. The gauge theory on 

this lattice is defined in Section 3 and in Section 4 we apply this formulation to 

an Abelian gauge theory in d = 3 dimensions. We find, that for this model, the 

regular simplicial lattice is an extremum of the action. 

2. THE DEFINITION OF A SIMPLICIAL 

PSEUDO-RANDOM LATTICE 

In order to describe the construction of a simplicial pseudo-random lattice we 

restrict ourselves to three dimensions. The lattice is called pseudo-randomsince it 

differs significantly from the random lattice constructed by Christ, Friedberg and 

Lee.l Our construction starts from a regular simplicial lattice. Each point of the 

regular lattice is displaced randomly within a given invariant cell. The invariant 

cells are constructed in such a way, that the linking structure of the initial regular 

lattice can be kept after randomizing the points. In this way it becomes easy to 

-construct many different pseudo-random lattices without excessive computations 

for linking the lattice. Also, since the amount of randomizing the points can be 

controlled by a single parameter V varying between zero and one, it is easy to 

study the effects connected with the transition from a regular simplicial lattice 

to a pseudo-random lattice. 

We start with lattice sites distributed on a regular Bravais lattice. The sim- 

plest case to consider is a cubic lattice, but without much additional effort we 

can also start from tetragonal, rhombic, rhombohedral, monoclinic or triclinic 
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lattices. In a usual lattice of this kind, we discuss for simplicity the cubic case, 

the basic lattice elements are points (sites), links, squares (plaquettes) and cubes. 

In our simplicial Bravais lattice, the elements should be instead points, links, tri- 

angles and tetrahedra. It is easy to go over from the usual lattice to the simplicial 

lattice by cutting each cube into five tetrahedra, see Fig. 1. The resultant lattice 

consists of two types of tetrahedra, two types of triangles and three different 

kinds of links. The multiplicity of these elements increases further in case of the 

other non-cubic lattices. The cuts in the common faces of adjacent cubes are 

always the same. Figure 2 gives a possible arrangement of a three dimensional 

4 x 2 x 2 lattice. It is obvious, that more than one possibility exists for linking 

the regular simplicial lattice. 

Considering the rhombic configuration (which includes the cubic and tetrag- 

onal cases) we choose a Cartesian coordinate system with the axes parallel to the 

lattice axes. The coordinate spacings Ax, Ay and AZ are identical to the lattice 

spacings a,, ay and a, along the three axes (see Fig. 3). 

For a triclinic lattice (which includes all other cases) it would be possible 

to use a skew coordinate system parallel to the lattice axes. But we prefer to 

-describe the lattice in a Cartesian frame of reference. There are the coordinate 

spacings Ax, Ay and AZ and six deviations Asy, Axz, Ayx, Ayz, Azx and 

Azy. The deviation Axy for instance describes the additional increment to the 

x-coordinate if one advances by Ay in y-direction (see Fig. 4). 



All the important lattice quantities can be collected in a matrix 

(Sij) = 

Ax Axy Axz 

Ayx Ay Ayz 

Azx Azy AZ 
(1) 

In d = 3 dimensions one needs only six quantities to describe a geometric 

object. Therefore, we might fix three of the deviations, for instance 

Azx=Azy=Ayx=O (2) 

In this case, the xy plane and the plane of the lattice axes & and (2 (see Fig. 4) 

coincide. Furthermore, the x and & axes are parallel. In this way we describe 

the triclinic lattice by the matrix 

(Sij) = 

and the rhombic lattice by 

- 

(Sij) = 

Ax Axy Axz 

0 AY AYZ 
0 0 AZ 

Ax 0 0 

0 AY 0 
0 0 AZ 

(3) 

(4 

After having defined the regular lattice we turn to our method to randomize the 

lattice points. Allowing arbitrary movements of the points and retaining the link 

structure of the regular simplicial lattice, we would expect crossing of links. This 

would lead to the destruction of the simplicial nature of the lattice. Consequently, 

the random fluctuations of the points have to be small enough. 
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A link crossing is impossible if the site positions vary only within the so called 

invariant cell. We briefly discuss, what this is: In the simplicial Bravais lattice we 

have the usual elementary cells decomposed into simplices. Considering all the 

joint neighbors of a lattice site, including the links between them, we obtain the 

neighboring cell. Following Ref. 1 we get the dual volume of a site by a Voronoi 

construction. We define an inscribed cell within this dual volume. The vertices 

of the inscribed cell are the intersections of the links emerging from the lattice 

site with the faces of the dual volume. We find the inscribed cell to be similar to 

the corresponding neighboring cell with all links of half length. 

If the positions of the lattice sites vary within the inscribed cell of a given 

regular lattice, a link crossing is impossible. But the inscribed cell depends also on 

the non-unique linking structure. As discussed above, for a given Bravais lattice, 

there are several possibilities for a simplicial decomposition using diagonal links. 

We define the invariant cell of a lattice site as independent of the structure of the 

diagonal links. The vertices of this cell are the intersection points of the axial 

links emerging from the lattice site with the faces of the dual volume. In Fig. 5 

we show all the cells discussed here for a two dimensional Bravais lattice. The 

-generalization to d = 3 dimensions is straightforward, but difficult to visualize. 

We emphasize, the inscribed cell contains the invariant cell. The latter is a 

characteristic of the original Bravais lattice and independent of the special choice 

of the diagonal links for the simplicial decomposition. 

We summarize the procedure: 

(z) Construct a Bravais lattice. 

(ii) Choose a simplicial decomposition and fix the linking structure. 
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(ii;) Ensure the conservation of the simplicial structure independent on the spe- 

cial choice of the decomposition by allowing fluctuations of the lattice sites 

only within the invariant cell of the regular lattice. 

In Fig. 6 we give an example for a pseudo-random lattice constructed in this 

way, again in d = 2 dimensions. 

The site positions of the pseudo-random lattice are characterized by their 

coordinates in the regular lattice plus a random fluctuation within the invariant 

cell. It is convenient to generate the fluctuations in diagonal coordinates ~1, 72 

and 59 varying within 

(5) 

where the di are the corresponding half diagonals: 

dl = ;[(Ax + A.zy + Axz)~ + (Ay + Ayx + AYZ)~ + (AZ + Azx + AzY)~]~/~ 

d2 = ;[(A, - Axy + Axz)~ + (Ay - Ayx - A~z)~ + (AZ + Azx - AzY)~]~/~ 

d3 = ;[(Ax - Axy - Axz)~ + (Ay - Ayx + AYZ)~ + (AZ - Azx + AzY)~]‘/~ 

(6) - 
Using the cosines between the Cartesian and diagonal coordinates, we find the 

corresponding variations in the Cartesian coordinates of the sites 

6X 0 6y =v 

6Z 

Az+Azy+Axz AZ-Axy+Azz _ AZ-Azy-Azz 
2dl 2da 2ds \ 

Ay+Ayz+Ayz _ Ay-A2y-Ayz 
2dl 2 

Az+Azz+Azz Az+Azz--Azy 
2dl 2da 

AZ-Azz+Azy 
2d3 / 

where V is a parameter, introduced in order to interpolate continuously between 
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the regular simplicial lattice and the pseudo-random lattice. For V = 0, the 

variations Si vanish, we get the regular lattice, for V = 1 we get the pseudo- 

random lattice with maximum randomization of the points. 

3. THE LATTICE GAUGE THEORY ON THE 

SIMPLICIAL PSEUDO-RANDOM LATTICE 

We define the gauge theory on our simplicial pseudo-random lattice following 

Christ, Friedberg and Lee. 1 The theory in d = 3 dimensions is defined by the 

partition function 

z(Pl{Ja}) = / fj d3xi J({x)) / 2 d KY 
i=l e=1 (8) 

where No is the number of lattice sites in the volume R, Nr is the number of 

links. The Euclidean action is A({x}, (27)). The Qa are observables and the J, 

external sources. The action for a pure gauge theory is defined as 

- 
A({x},{U}) = 2 wp (1 - i Re Tr Up) 

p=l 
(9) 

p runs over all Nz triangular plaquettes of the lattice. Up is the product of the 

three link variables around the plaquette. The weight wp of the plaquette is given 

by1 

lP 
WP cc & (10) 

Where Ap is the area of the triangle and .J?, is the length of its dual. We normalize 
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N2 $ wp = g-2, $ (11) 
We measure quenched expectation values’)’ and define the Jacobian J({x}) as 

J({x}) = / fj dUl e-PA -’ 
L=l 1 

The expectation value of a physical quantity 0 becomes 

W)> = & J 5 dxg J fi dUt e-PA.0 
i=l L=l 

(12) 

(13) 

Here we will especially calculate the expectation value of the average plaque- 

tte action 

0 = NW) 
N2 

(14 

All these definitions correspond to the ones used by Rena in his random lattice 

calculations. 

We use in our calculations in d = 3 dimensions pseudo-random lattices with 

No = 64 points. The lattices are derived from an initial 4 x 4 x 4 cubic lattice. 

-Our simplicial lattice has in the average N1io = 12 links per point instead of 

6 in the cubic lattice and N210 = 30 plaquettes per point instead of 12 in the 

cubic lattice. In a random lattice these numbers would be N1lo = 15.54 and 

N2/0 M 40.56. 

Occasionally, there occur plaquettes in the pseudo-random lattice with very 

small area Ap. This could disturb the Monte Carlo results, since such a plaquette 

would get an overwhelming weight. We reject such plaquettes by demanding in 

addition that there should be no plaquette weights larger than wp = 10. 
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4. THE REGULAR LATTICE AS 

AN EXTREMUM OF THE ACTION 

In Fig. 7 we show, by projecting some of the points of pseudo-random lattices 

into the x-y plane, how the random lattice parameter V changes the appearance 

of lattice. This plot demonstrates also, that we interpolate with V between the 

regular lattice (V = 0) and the full pseudo-random lattice (V = 1). 

We use in our calculation the Abelian U(1) gauge group, which we approxi- 

mate in the calculation by the discrete 260 group. The U(1) lattice gauge theory 

in d = 3 dimensions was studied in detail by Bhanot and Creutz?’ and by Am- 

bjorn, Hey and Otto. l2 There is no phase transition in this theory. We will not 

study in the present paper the properties of this theory. We calculate only the 

average action per plaquette as function of the coupling constant /? and study the 

effects which occur if one goes from the regular simplicial lattice to the pseudo- 

random lattice. 

There are two effects: 

(i) When calculating expectation values on regular lattices of the same size, 

there are no systematic differences between independent calculations. Only 
- statistical errors and possibly effects connected with the lack of thermal 

equilibrium lead to different results. This is not so when calculating expec- 

tation values on a random lattice or pseudo-random lattice of finite size. 

Depending on the actual realization of the random lattice we find system- 

atic differences between the expectation values. We have to average the 

expectation values over a sufficiently large number of independent random 

or pseudo-random lattices as prescribed by the quenched average.13 This is 

always true if we are using a lattice with a finite size practical for a numeric 
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calculation. To illustrate this feature, we present in Fig. 8 distributions of 

plaquette expectation values obtained from calculations with 21 indepen- 

dent random lattices. The expectation values on each lattice and for each 

value ,L3 are calculated over 100 iterations of the lattice using the Metropolis 

method. 

(ii) The expectation values of the average action depend in a systematic way 

on the random lattice parameter V, which interpolates between the regular 

lattice and the pseudo-random lattice. In Fig. 9 we plot average plaquette 

expectation values for six different P-values as functions of V. For each 

value of V, the expectation values are the result of calculations with several 

independently generated random lattices (4 lattices at the lower V values 

up to 21 lattices at V = 1). The statistical errors are hardly bigger than 

the points plotted. The expectation values were measured in a calculation 

lowering p in steps of 0.1, with 100 iterations per point and lattice. 

We find from Fig. 9, that the action has a minimum for the regular lattice. 

This behavior was conjecture by Cohen9 who could show it in d = 1 dimensions. 

Pertermann” found such a behavior in d = 2 dimensions. 

Our experience with the first application of the pseudo-random Monte Carlo 

shows, that this method is promising, it needs hardly more computing resources 

than Monte Carlo calculations on a regular hypercubic lattice. The advantages of 

random lattice theory seem to be also present in pseudo-random lattice calcula- 

tions, but with the pseudo-random lattice the linking step in the construction of 

the lattice is done very efficiently, at least as compared with the algorithm, which 

we were using previously to link a random lattice. Using the pseudo-random lat- 

tice, there is nothing which would prevent the proper calculation of quenched or 
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annealed averages over many lattices when studying lattice gauge theories. 
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FIGURE CAPTIONS 

Figure 1 The elementary cell of a three dimensional Bravais lattice (a) in 

the usual sense and (b) decomposed in tetrahedra (3-simplices) 

by diagonal links. 

Figure 2 Example of a regular simplicial lattice derived from a 4 x 2 x 2 

cubic lattice. Each elementary cube is cut as shown in Fig. lb. 

Figure 3 The rhombic lattice and the corresponding lattice spacings. 

Figure 4 The coordinate intervals Ax, Ay and AZ and deviations Axy, 

Axz, Ayx, Ayz, Azx and Azy of a triclinic Bravais lattice with 

=es El, t2 and b. 

Figure 5 A piece of a two dimensional Bravais lattice with all important 

cell configurations. 

Figure 6 A two dimensional pseudo-random configuration over the back- 

ground Bravais lattice producing the invariant cells. 

Figure 7 The pseudo-random lattice for different values of the parameter 

V (a) V = 0.4, (b) V = 0.8, (c) V = 0.9 and (d) V = 1.0. We 

plot the projection of part of the pseudo-random lattice on the 

x - y plane. The positions of the original points in a regular cubic 

lattice are also shown (open points). 
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Figure 8 Distributions of average plaquette expectation values obtained 

from calculations with 21 independent random lattices (V = 1) 

in the form of histograms for 6 different values of ,O. 

Figure 9 Average plaquette expectation values for six values of p as func- 

tion of~the random lattice parameter V. For the regular lattice 

we find a minimumof the action. The calculation is for the U(1) 

lattice gauge theory in d = 3 dimensions. 
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