SIMPLICIAL PSEUDO-RANDOM LATTICE STUDY OF A THREE DIMENSIONAL ABELIAN GAUGE MODEL, THE REGULAR LATTICE AS AN EXTREMUM OF THE ACTION*

D. Pertermann
Sektion Physik, Karl-Marx-Universität, Leipzig, G.D.R. J. RANFT ${ }^{\dagger}$
Stanford Linear Accelerator Center
Stanford University, Stanford, California, 94905

Abstract

We introduce a simplicial pseudo-random version of lattice gauge theory. In this formulation it is possible to interpolate continuously between a regular simplicial lattice and a pseudo-random lattice. Using this method, we study -a simple three dimensional Abelian lattice gauge theory. Calculating average plaquette expectation values, we find an extremum of the action for our regular simplicial lattice. Such a behavior was found in analytical studies in one and two dimensions.

Submitted to Physical Review D

[^0]
1. INTRODUCTION

The lattice gauge theory on a random simplicial lattice was introduced in a series of papers by Christ, Friedberg and Lee. ${ }^{1}$ Monte Carlo calculations of lattice gauge theories within this framework were reported by Ren. ${ }^{2}$

There are several reasons to prefer the lattice gauge theory defined on a random lattice, ${ }^{3,4}$ we mention here only three of these reasons:
(i) The inherent rotational invariance of the Euclidean version of the random lattice.
(ii) Due to the higher degree of connectedness, the random lattice with the same number of points is more near to the continuum than the usual hypercubic lattice. In the $d=4$ hypercubic lattice there are $N_{1 / 0}=8$ links and $N_{2 / 0}=$ 24 plaquettes per lattice point. In the random lattice the corresponding numbers are $N_{1 / 0} \approx 37.8$ and $N_{2 / 0} \approx 197$. This property seems, in the absence of phase transitions, to translate into a smoother behavior of the measured expectation values, as for instance found by Ren^{2} in the case of the $S U(2)$ lattice gauge theory.

- (iii) The random lattice gauge theory is closely related to Regge's approach to Quantum gravity. ${ }^{5,6}$ Applications of the random lattice gauge theory to quantum gravity might lead to further progress on this field. ${ }^{7}$

The linking procedure for a large random lattice turns out to be quite complicated. So far, all numerical calculations reported ${ }^{2}$ were done with very few actually constructed and linked random lattices. However, theoretical considerations ${ }^{1,4}$ always use the assumption, that all averages run over a large number of different random lattices. In fact, it was shown, ${ }^{1}$ that the average over all possible
orientations of a Wilson loop in one large random lattice is equivalent to the quenched average calculated from an ensemble of random lattices. The size of actual random lattices constructed so far and used in calculations is however not sufficient to exploit this property of the quenched average. Also it seems more easy to use an ensemble of not so large random, or pseudo-random lattices, than one really big random lattice.

These problems are our main motivation to introduce a pseudo-random lattice. The pseudo-random lattice should have the advantages of the random lattice when applied to lattice gauge theories but should be easy to construct and link. We derive our pseudo-random lattice from a regular simplicial lattice by randomly shifting the lattice sites, however, without relinking the resulting lattice. This can be done if the shifted lattice points remain within the so called invariant cell.

Lattice gauge theory on simplicial lattices were studied by Drouffe et al. ${ }^{8}$ in a series of papers. We stress however, that in dimensions higher than $d=2$ the regular simplicial lattice ${ }^{8}$ is not a simplicial lattice in our sense. We consider simplicial lattices whose elements in d-dimensions are only points, links, 2 -simplices -or triangles, 3 -simplices or tetrahedra, . . . up to d-simplices. The simplicial lattices of Drouffe et al. ${ }^{8}$ contain for instance plaquettes in form of triangles as well as squares.

We arrive at our simplicial lattice by cutting the elementary cells of a regular lattice into simplices. Here we will consider only the case of $d=3$ dimensions.

It was shown by Cohen, ${ }^{9}$ that in $d=1$ dimensions the regular lattice is an extremum of the action. The corresponding property in $d=2$ dimensions was found by Pertermann. ${ }^{10}$ Here we demonstrate numerically, the same behavior
in $d=3$ dimensions using our formulation of the pseudo-random lattice gauge theory, which allows a continuous transition from the initial regular simplicial lattice to the pseudo-random lattice.

In Section 2 we will define our pseudo-random lattice. The gauge theory on this lattice is defined in Section 3 and in Section 4 we apply this formulation to an Abelian gauge theory in $d=3$ dimensions. We find, that for this model, the regular simplicial lattice is an extremum of the action.

2. THE DEFINITION OF A SIMPLICIAL PSEUDO-RANDOM LATTICE

In order to describe the construction of a simplicial pseudo-random lattice we restrict ourselves to three dimensions. The lattice is called pseudo-randomsince it differs significantly from the random lattice constructed by Christ, Friedberg and Lee. ${ }^{1}$ Our construction starts from a regular simplicial lattice. Each point of the regular lattice is displaced randomly within a given invariant cell. The invariant cells are constructed in such a way, that the linking structure of the initial regular lattice can be kept after randomizing the points. In this way it becomes easy to -construct many different pseudo-random lattices without excessive computations for linking the lattice. Also, since the amount of randomizing the points can be controlled by a single parameter V varying between zero and one, it is easy to study the effects connected with the transition from a regular simplicial lattice to a pseudo-random lattice.

We start with lattice sites distributed on a regular Bravais lattice. The simplest case to consider is a cubic lattice, but without much additional effort we can also start from tetragonal, rhombic, rhombohedral, monoclinic or triclinic
lattices. In a usual lattice of this kind, we discuss for simplicity the cubic case, the basic lattice elements are points (sites), links, squares (plaquettes) and cubes. In our simplicial Bravais lattice, the elements should be instead points, links, triangles and tetrahedra. It is easy to go over from the usual lattice to the simplicial lattice by cutting each cube into five tetrahedra, see Fig. 1. The resultant lattice consists of two types of tetrahedra, two types of triangles and three different kinds of links. The multiplicity of these elements increases further in case of the other non-cubic lattices. The cuts in the common faces of adjacent cubes are always the same. Figure 2 gives a possible arrangement of a three dimensional $4 \times 2 \times 2$ lattice. It is obvious, that more than one possibility exists for linking the regular simplicial lattice.

Considering the rhombic configuration (which includes the cubic and tetragonal cases) we choose a cartesian coordinate system with the axes parallel to the lattice axes. The coordinate spacings $\Delta x, \Delta y$ and Δz are identical to the lattice spacings a_{x}, a_{y} and a_{z} along the three axes (see Fig. 3).

For a triclinic lattice (which includes all other cases) it would be possible to use a skew coordinate system parallel to the lattice axes. But we prefer to describe the lattice in a cartesian frame of reference. There are the coordinate spacings $\Delta x, \Delta y$ and Δz and six deviations $\Delta x y, \Delta x z, \Delta y x, \Delta y z, \Delta z x$ and $\Delta z y$. The deviation $\Delta x y$ for instance describes the additional increment to the x -coordinate if one advances by Δy in y-direction (see Fig. 4).

All the important lattice quantities can be collected in a matrix

$$
\left(g_{i j}\right)=\left(\begin{array}{ccc}
\Delta x & \Delta x y & \Delta x z \tag{1}\\
\Delta y x & \Delta y & \Delta y z \\
\Delta z x & \Delta z y & \Delta z
\end{array}\right)
$$

In $d=3$ dimensions one needs only six quantities to describe a geometric object. Therefore, we might fix three of the deviations, for instance

$$
\begin{equation*}
\Delta z x=\Delta z y=\Delta y x=0 \tag{2}
\end{equation*}
$$

In this case, the $x y$ plane and the plane of the lattice axes ξ_{1} and ξ_{2} (see Fig. 4) coincide. Furthermore, the x and ξ_{1} axes are parallel. In this way we describe the triclinic lattice by the matrix

$$
\left(g_{i j}\right)=\left(\begin{array}{ccc}
\Delta x & \Delta x y & \Delta x z \tag{3}\\
0 & \Delta y & \Delta y z \\
0 & 0 & \Delta z
\end{array}\right)
$$

and the rhombic lattice by

$$
\left(g_{i j}\right)=\left(\begin{array}{ccc}
\Delta x & 0 & 0 \tag{4}\\
0 & \Delta y & 0 \\
0 & 0 & \Delta z
\end{array}\right)
$$

After having defined the regular lattice we turn to our method to randomize the lattice points. Allowing arbitrary movements of the points and retaining the link structure of the regular simplicial lattice, we would expect crossing of links. This would lead to the destruction of the simplicial nature of the lattice. Consequently, the random fluctuations of the points have to be small enough.

A link crossing is impossible if the site positions vary only within the so called invariant cell. We briefly discuss, what this is: In the simplicial Bravais lattice we have the usual elementary cells decomposed into simplices. Considering all the joint neighbors of a lattice site, including the links between them, we obtain the neighboring cell. Following Ref. 1 we get the dual volume of a site by a Voronoi construction. We define an inscribed cell within this dual volume. The vertices of the inscribed cell are the intersections of the links emerging from the lattice site with the faces of the dual volume. We find the inscribed cell to be similar to the corresponding neighboring cell with all links of half length.

If the positions of the lattice sites vary within the inscribed cell of a given regular lattice, a link crossing is impossible. But the inscribed cell depends also on the non-unique linking structure. As discussed above, for a given Bravais lattice, there are several possibilities for a simplicial decomposition using diagonal links. We define the invariant cell of a lattice site as independent of the structure of the diagonal links. The vertices of this cell are the intersection points of the axial links emerging from the lattice site with the faces of the dual volume. In Fig. 5 we show all the cells discussed here for a two dimensional Bravais lattice. The generalization to $d=3$ dimensions is straightforward, but difficult to visualize.

We emphasize, the inscribed cell contains the invariant cell. The latter is a characteristic of the original Bravais lattice and independent of the special choice of the diagonal links for the simplicial decomposition.

We summarize the procedure:
(i) Construct a Bravais lattice.
(ii) Choose a simplicial decomposition and fix the linking structure.
(iii) Ensure the conservation of the simplicial structure independent on the special choice of the decomposition by allowing fluctuations of the lattice sites only within the invariant cell of the regular lattice.

In Fig. 6 we give an example for a pseudo-random lattice constructed in this way, again in $d=2$ dimensions.

The site positions of the pseudo-random lattice are characterized by their coordinates in the regular lattice plus a random fluctuation within the invariant cell. It is convenient to generate the fluctuations in diagonal coordinates η_{1}, η_{2} and η_{3} varying within

$$
\begin{equation*}
-\frac{d_{i}}{2} \leq \eta_{2} \leq \frac{d_{i}}{2} \quad ; i=1,2,3 \tag{5}
\end{equation*}
$$

where the d_{i} are the corresponding half diagonals:

$$
\begin{align*}
& d_{1}=\frac{1}{2}\left[(\Delta x+\Delta x y+\Delta x z)^{2}+(\Delta y+\Delta y x+\Delta y z)^{2}+(\Delta z+\Delta z x+\Delta z y)^{2}\right]^{1 / 2} \\
& d_{2}=\frac{1}{2}\left[(\Delta x-\Delta x y+\Delta x z)^{2}+(\Delta y-\Delta y x-\Delta y z)^{2}+(\Delta z+\Delta z x-\Delta z y)^{2}\right]^{1 / 2} \\
& d_{3}=\frac{1}{2}\left[(\Delta x-\Delta x y-\Delta x z)^{2}+(\Delta y-\Delta y x+\Delta y z)^{2}+(\Delta z-\Delta z x+\Delta z y)^{2}\right]^{1 / 2} \tag{6}
\end{align*}
$$

Using the cosines between the cartesian and diagonal coordinates, we find the corresponding variations in the cartesian coordinates of the sites

$$
\left(\begin{array}{l}
\delta x \tag{7}\\
\delta y \\
\delta z
\end{array}\right)=V\left(\begin{array}{ccc}
\frac{\Delta x+\Delta x y+\Delta x z}{2 d_{1}} & \frac{\Delta x-\Delta x y+\Delta x z}{2 d_{2}} & -\frac{\Delta x-\Delta x y-\Delta x z}{2 d_{3}} \\
\frac{\Delta y+\Delta y x+\Delta y z}{2 d_{1}} & -\frac{\Delta y-\Delta y x-\Delta y z}{2 d_{2}} & \frac{\Delta y-\Delta y x+\Delta y z}{2 d_{3}} \\
& & \\
\frac{\Delta z+\Delta z x+\Delta z z}{2 d_{1}} & \frac{\Delta z+\Delta z x-\Delta z y}{2 d_{2}} & \frac{\Delta z-\Delta z x+\Delta z y}{2 d_{3}}
\end{array}\right) \cdot\left(\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right)
$$

where V is a parameter, introduced in order to interpolate continuously between
the regular simplicial lattice and the pseudo-random lattice. For $V=0$, the variations δ_{i} vanish, we get the regular lattice, for $V=1$ we get the pseudorandom lattice with maximum randomization of the points.

3. THE LATTICE GAUGE THEORY ON THE SIMPLICIAL PSEUDO-RANDOM LATTICE

We define the gauge theory on our simplicial pseudo-random lattice following Christ, Friedberg and Lee. ${ }^{1}$ The theory in $d=3$ dimensions is defined by the partition function

$$
\begin{align*}
Z\left(\beta_{1}\left\{J_{\alpha}\right\}\right)=\int & \prod_{i=1}^{N_{0}} d^{3} x_{i} J(\{x\}) \int \prod_{\ell=1}^{N_{1}} d U_{\ell} \tag{8}\\
& \cdot e^{-\beta A(\{x\},\{U\})-\sum_{\alpha} J_{\alpha} Q_{\alpha}(\{x\},\{U\})}
\end{align*}
$$

where N_{0} is the number of lattice sites in the volume Ω, N_{1} is the number of links. The Euclidean action is $A(\{x\},\{U\})$. The Q_{α} are observables and the J_{α} external sources. The action for a pure gauge theory is defined as

$$
\begin{equation*}
A(\{x\},\{U\})=\sum_{p=1}^{N_{2}} \omega_{p}\left(1-\frac{1}{n} \operatorname{Re} \operatorname{Tr} U_{p}\right) \tag{9}
\end{equation*}
$$

p runs over all N_{2} triangular plaquettes of the lattice. U_{p} is the product of the three link variables around the plaquette. The weight ω_{p} of the plaquette is given by ${ }^{1}$

$$
\begin{equation*}
\omega_{p} \propto \frac{\ell_{p}}{\Delta p} \tag{10}
\end{equation*}
$$

Where Δp is the area of the triangle and ℓ_{p} is the length of its dual. We normalize
ω_{p} as

$$
\begin{equation*}
\omega_{p}=\frac{N_{2} \frac{\ell_{p}}{\Delta p}}{\sum_{p=1}^{N_{2}} \frac{\ell_{p}}{\Delta p}} \tag{11}
\end{equation*}
$$

We measure quenched expectation values ${ }^{1,2}$ and define the Jacobian $J(\{x\})$ as

$$
\begin{equation*}
J(\{x\})=\left[\int \prod_{\ell=1}^{N_{1}} d U_{\ell} e^{-\beta A}\right]^{-1} \tag{12}
\end{equation*}
$$

The expectation value of a physical quantity 0 becomes

$$
\begin{equation*}
\langle 0(\beta)\rangle=\frac{1}{\Omega^{N_{0}}} \int \prod_{i=1}^{N_{0}} d x_{i}^{3} \int \prod_{\ell=1}^{N_{1}} d U_{\ell} e^{-\beta A} \cdot 0 \tag{13}
\end{equation*}
$$

Here we will especially calculate the expectation value of the average plaquette action

$$
\begin{equation*}
0=\frac{A(\{U\})}{N_{2}} \tag{14}
\end{equation*}
$$

All these definitions correspond to the ones used by Ren ${ }^{2}$ in his random lattice calculations.

We use in our calculations in $d=3$ dimensions pseudo-random lattices with $N_{0}=64$ points. The lattices are derived from an initial $4 \times 4 \times 4$ cubic lattice. -Our simplicial lattice has in the average $N_{1 / 0}=12$ links per point instead of 6 in the cubic lattice and $N_{2 / 0}=30$ plaquettes per point instead of 12 in the cubic lattice. In a random lattice these numbers would be $N_{1 / 0} \approx 15.54$ and $N_{2 / 0} \approx 40.56$.

Occasionally, there occur plaquettes in the pseudo-random lattice with very small area Δp. This could disturb the Monte Carlo results, since such a plaquette would get an overwhelming weight. We reject such plaquettes by demanding in addition that there should be no plaquette weights larger than $\omega_{p}=10$.

4. THE REGULAR LATTICE AS AN EXTREMUM OF THE ACTION

In Fig. 7 we show, by projecting some of the points of pseudo-random lattices into the $x-y$ plane, how the random lattice parameter V changes the appearance of lattice. This plot demonstrates also, that we interpolate with V between the regular lattice $(V=0)$ and the full pseudo-random lattice $(V=1)$.

We use in our calculation the Abelian $U(1)$ gauge group, which we approximate in the calculation by the discrete Z_{60} group. The $U(1)$ lattice gauge theory in $d=3$ dimensions was studied in detail by Bhanot and Creutz ${ }^{11}$ and by Ambjorn, Hey and Otto. ${ }^{12}$ There is no phase transition in this theory. We will not study in the present paper the properties of this theory. We calculate only the average action per plaquette as function of the coupling constant β and study the effects which occur if one goes from the regular simplicial lattice to the pseudorandom lattice.

There are two effects:
(i) When calculating expectation values on regular lattices of the same size, there are no systematic differences between independent calculations. Only - statistical errors and possibly effects connected with the lack of thermal equilibrium lead to different results. This is not so when calculating expectation values on a random lattice or pseudo-random lattice of finite size. Depending on the actual realization of the random lattice we find systematic differences between the expectation values. We have to average the expectation values over a sufficiently large number of independent random or pseudo-random lattices as prescribed by the quenched average. ${ }^{13}$ This is always true if we are using a lattice with a finite size practical for a numeric
calculation. To illustrate this feature, we present in Fig. 8 distributions of plaquette expectation values obtained from calculations with 21 independent random lattices. The expectation values on each lattice and for each value β are calculated over 100 iterations of the lattice using the Metropolis method.
(ii) The expectation values of the average action depend in a systematic way on the random lattice parameter V, which interpolates between the regular lattice and the pseudo-random lattice. In Fig. 9 we plot average plaquette expectation values for six different β-values as functions of V. For each value of V, the expectation values are the result of calculations with several independently generated random lattices (4 lattices at the lower V values up to 21 lattices at $V=1$). The statistical errors are hardly bigger than the points plotted. The expectation values were measured in a calculation lowering β in steps of 0.1 , with 100 iterations per point and lattice.

We find from Fig. 9, that the action has a minimum for the regular lattice. This behavior was conjecture by Cohen ${ }^{9}$ who could show it in $d=1$ dimensions. Pertermann ${ }^{10}$ found such a behavior in $d=2$ dimensions.

Our experience with the first application of the pseudo-random Monte Carlo shows, that this method is promising, it needs hardly more computing resources than Monte Carlo calculations on a regular hypercubic lattice. The advantages of random lattice theory seem to be also present in pseudo-random lattice calculations, but with the pseudo-random lattice the linking step in the construction of the lattice is done very efficiently, at least as compared with the algorithm, which we were using previously to link a random lattice. Using the pseudo-random lattice, there is nothing which would prevent the proper calculation of quenched or
annealed averages over many lattices when studying lattice gauge theories.

ACKNOWLEDGEMENTS

One of the authors (J.R.) would like to thank Professor S. D. Drell for support and the possibility to stay in the theory group of SLAC. This research was supported by the Department of Energy, contract DE-AC03-76SF00515.

REFERENCES

1. N. H. Christ, R. Friedberg and T. D. Lee, Nucl. Phys. B202, 89 (1982); Nucl. Phys. B210 [FS6], 310 (1982); Nucl. Phys. B210 [FS6], 337 (1982).
2. H. -C. Ren, Nucl. Phys. B251, 247 (1985); Nucl. Phys. B235, 321 (1984), R. Friedberg and H. -C. Ren, Nucl. Phys. B235, 310 (1984).
3. T. D. Lee, Phys. Lett. 122B, 217 (1983); Nucl. Phys. B235 [FS9], 1 (1983).
4. C. Itzykson, Cargese Summer Institute 1983, p. 337; M. Bander and C. Itzykson in Meudon Seminar 1983, p. 257, Springer Verlag 1983.
5. T. Regge, Nuovo Cim. 19, 558 (1961).
6. G. Feinberg, R. Friedberg, T. D. Lee and H. -C. Ren, Nucl. Phys. B245, 343 (1984); R. Friedberg and T. D. Lee, Nucl. Phys. B242, 145 (1984).
7. H. W. Hamber and R. M. Williams, Nucl. Phys. B248, 292 (1984); Preprint, IAS, Princeton (1985); B. Berg, Florida State University Preprint FSU-SCRI-85-3, (1985).
8. J. M. Drouffe and K. J. M. Moriarty, J. Phys. G10, L-221 (1984); J. M. Drouffe and K. J. M. Moriarty and C. N. Moukas, J. Phys. G10, 115 (1984); Comput. Phys. Commun. 30, 249 (1983); J. M. Drouffe and K. J. M. Moriarty, Z. Phys. C24, 395 (1984); R. W. B. Ardill, J. P. Clarke, J. M. Drouffe and K. J. M. Moriarty, Phys. Lett. 128B, 203 (1983); J. M. Drouffe, K. J. M. Moriarty, Nucl. Phys. B220, 253 (1983).
9. E. Cohen, Harvard University Preprints HUTP-84/A011 (1984) and HUTP84/A014 (1984).
10. D. Pertermann, Leipzig Preprint KMU-HEP-85-06 (1985).
11. G. Bhanot and M. Creutz, Phys. Rev. D21, 2892 (1980).
12. J. Ambjorn, A. J. G. Hey and S. Otto, Nucl. Phys. B210 [FS6], 347 (1982).

FIGURE CAPTIONS

Figure 1 The elementary cell of a three dimensional Bravais lattice (a) in the usual sense and (b) decomposed in tetrahedra (3-simplices) by diagonal links.

Figure 2 Example of a regular simplicial lattice derived from a $4 \times 2 \times 2$ cubic lattice. Each elementary cube is cut as shown in Fig. 1b.

Figure 3 The rhombic lattice and the corresponding lattice spacings.

Figure 4 The coordinate intervals $\Delta x, \Delta y$ and Δz and deviations $\Delta x y$, $\Delta x z, \Delta y x, \Delta y z, \Delta z x$ and $\Delta z y$ of a triclinic Bravais lattice with axes ξ_{1}, ξ_{2} and ξ_{3}.

Figure 5 A piece of a two dimensional Bravais lattice with all important cell configurations.

Figure 6 A two dimensional pseudo-random configuration over the background Bravais lattice producing the invariant cells.

Figure 7 The pseudo-random lattice for different values of the parameter V (a) $V=0.4$, (b) $V=0.8$, (c) $V=0.9$ and (d) $V=1.0$. We plot the projection of part of the pseudo-random lattice on the $x-y$ plane. The positions of the original points in a regular cubic lattice are also shown (open points).

Figure 8 Distributions of average plaquette expectation values obtained from calculations with 21 independent random lattices ($V=1$) in the form of histograms for 6 different values of β.

Figure 9 Average plaquette expectation values for six values of β as function of the random lattice parameter V. For the regular lattice we find a minimum of the action. The calculation is for the $U(1)$ lattice gauge theory in $d=3$ dimensions.

Fig. 1

Fig. 2

11-85
5285A3

Fig. 3

Fig. 4

-..- Neighboring Cell
--- Dual Volume
--- Inscribed Cell

- Invariant Cell
..... Elementary Cell

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

[^0]: * Work supported by the Department of Energy, contract DE-AC03-76SF00515.
 \dagger Permanent address: Sektion Physik, Karl-Marx-Universität, Leipzig, G.D.R.

