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ABSTRACT 

The ensemble projector Monte Carlo method is a lattice Monte Carlo method 

for studying gauge theories with and without Fermions in the Hamiltonian for- 

mulat ion. We study the compact U(1) lattice gauge theory with fermions in 

d = 2 + 1 dimensions. There are matrix elements with positive and negative 

signs in lattice gauge theories with fermions. As in the case of the Schwinger 

model, we find the energy expectation values calculated from matrix elements 

-using the two subsets of configurations with total positive and negative score to 

agree within the statistical errors to each other as well as to the energy expecta- 

tion value calculated from average scores. We conclude that this method, which 

was previously only used in d = 1 + 1 dimensions can indeed be applied to lattice 

gauge theories with fermions in more than one spatial dimensions. 
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1. INTRODUCTION 

The ability to perform reliable Monte Carlo calculations for lattice gauge 

theories including fermions is crucial for the further progress of lattice gauge 

theories. This progress can come either from more powerful computers or from 

more efficient methods. 

The Hamiltonian formulation of lattice gauge theories’ in d = l+l dimensions 

provides the only example for efficient Monte Carlo methods for gauge theories 

with fermions. So far however, the negative signs, which occur in certain matrix 

elements in theories involving fermions, have been the stumbling block preventing 

the extension of these Hamiltonian methods to higher space dimensions. 

The application of Hamiltonian methods to lattice gauge theories with fermions 

started with the local Hamiltonian Monte Carlo method.2 This method was 

applied with success to model field theories like the massless and massive4 

Schwinger model, to models with gauge bosons, Higgs bosons and fermions5 

and supersymetric models in d = 1 + 1 dimensions.6 

The projector Monte Carlo method’ and its extensions using replications 

-and parallel scores9 demonstrate, that Hamiltonian Monte Carlo methods can be 

applied in more than one space dimensions to pure lattice gauge theories81g and 

to lattice theories with fermionslOpll in d = 1 + 1 dimensions. 

In12 we reported the application of the ensemble projector Monte Carlo 

method to the Schwinger model in a situation where matrix elements and scores 

have positive and negative signs. It was shown, that the energy expectation val- 

ues, calculated from matrix elements using the two sub-ensembles of states with 

positive and negative total scores, as well as calculated from the average scores 
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were all consistent with each other. They were in addition consistent with the 

energy expectation values calculated with the local Hamiltonian Monte Carlo 

method. This latter method displays the correct behaviour in the massless limit, 

where the expectation values can be calculated analytically. It was also shown in 

Ref. 13, that the presence of intrinsic negative signs in the matrix elements does 

not prevent the Hamiltonian Monte Carlo calculations. 

Here we use the method of Ref. 12 studying the compact U(1) lattice gauge 

theory with fermions in d = 2 + 1 dimensions. We find, that for these values of 

the coupling constant, where our method converges in the computer running time 

used, the different energy expectation values are again consistent. We conclude 

from this, that the ensemble projector Monte Carlo method can be applied to 

gauge theories involving fermions in d = 2 + 1 dimensions. 

In Section 2 we formulate the lattice Hamiltonian of the compact U(1) lattice 

gauge theory in d = 2 + 1 dimensions. In Section 3 we discuss the ensemble 

projector Monte Carlo method. Section 4 treats the problem, how to use this 

method for lattice gauge theories including fermions. In Section 5 we apply the 

method to our lattice Hamiltonian and in Section 6 we present and discuss the 

-results. 



2. Hamiltonian Formulation of the U(1) Lattice Gauge 

Theory with Fermions in d = 2 + 1 Dimensions 

A Hamiltonian formulation of 3 dimensional lattice QED was already given 

previously.14p1’ Hamiltonian Monte Carlo calculations were reported from the 

lattice theory without fermions. 8yg The lattice Hamiltonian of compact QED has 

the form 

$ (E& + Et2) 

1 
+- a2g2 1 a;+ j&,2 aF+ &Y 1 a?,2 -I- h.c. 

Here we formulate the Hamiltonian for the d = 2 + 1 dimensional compact U(1) 

gauge theory with fermions. 

In 2 + 1 dimensions, fermions are described by two component Dirac spinors. 

Free fermions in the continuum are described by the Dirac equation” 

Using single component Susskind fermionsr6 q5(?‘) with the following anti-commutation 

relations 

bcalwi?)~ = 0; bwl>4+(+2)) = +y2 (3) 

tfl We use the Weyl representation, 
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we write a lattice Hamiltonian 

&(4+(+#@‘+ &) - h.c.) 

(4 
(-l)“+y - 

2a @+(+(r’+ &,) + h.c.) 

Following the analysis of Susskind16 it is found, that the Hamiltonian (4) de- 

scribes in the continuum limit two massless fermions, which we call u and d 

fermions. 

Redefining 

x(3 = eqq (5) 

we write (4) in the form to be used in the following 

H2 = & c (X+(flx(T+ tiz) + h.c.) 
r’ 

(6) 

- (-I)“+’ (x+(f)x(f’+ &) + h.c.) 
1 

We construct a spatial lattice with spacing a and with the fermion operators - 

on the lattice sites. The gauge fields are represented by the following operators 

sitting on the links between the sites 

af . = U- - = exp( iga1j2A- 
r,a 5 2 .) r,a (7) 

where ga1i2AF i are the angles associated with each link, and 9 

E+. = 
5 2 TF, ;/gall2 

5 

(8) 



with the commutation relations. 

- 

This suggests to use basic states, for which the electric field operators is diagonal, 

therefore, we identify as indicated in (7) the operators Uf i with the creation , 
operators af r,i ’ 

The total lattice Hamiltonian for QED in d = 2+1 dimensions with 2 massless 

( u and d ) fermions becomes 

$(E$,~+E$+~) , 

1 
+- a2g2 o&&,2 a+++&,1 a;,2 + h.c. )I (10) (x+(+$5 1 , x(F+ @ i) + h.c.) 

- (-v+y x+( 3 
2a ( r a+ r’,2 x(r’+ P’y) + h.c.)} 



3. The Ensemble Projector Monte Carlo Method 

The ensemble projector Monte Carlo method in the formulation to be used 

here is described in Ref. 12. 

We start from the lattice Hamiltonian H and lattice eigenstates 1 x) and 1 q%) 

not orthogonal to the ground state 1 +). Using the property of exp(-PH) to be 

a projection operator to the lowest energy eigenstate, we calculate expectation 

values of operators as follows: 

,-APH = (,-ApH) = lirn (XIe-(P+Ap)H I 4) 

p-00 (xJe-PH 1 4) 

(11) 
(IcllSllcl> = ;L% (xIemPHQeFPH 14) 

(Xk2PH I 4) 

To calculate the matrix elements appearing in (11) numerically, one splits /3 into 

L intervals p = La AT and the Hamiltonian H into two or more, in our case three 

parts H = C Hi. For sufficiently small AT, corrections of order Ar2 and higher 

became small and, defining Uk = exp(-ArHk), we approximate the partition 

function 

Y(P) = (xle+%9 = (xI(h~2J#ld4 

= C (xli3~+l)(i3~+11u3li3~)(i3~Iu2Ii3~--1) 

i3L+l , 
i3L, . . .il 

(i3L-1 IQ li3L--2) . . . . . . (i2lul lil>(ill4> 

where the sum runs over complete sets of eigenstates iM. 

The subdivision of the Hamiltonian H is to be done in such a way that 

all matrix elements (iiIU,lij) are local. Each of these matrix elements can be 
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represented as a product of a probability Pij and a score S’ij 

(iiluklij) = Pij(k) * Sij(k) (13) 

The Pij, interpreted as probabilities, should be positive definite and normalized 

to one, and are otherwise arbitrary. The freedom in their choice could be used 

to construct a Monte Carlo method which converges optimally. 

Pii is used as the probability to sample the state Iii) from a given state lij) 

and Sij(k) gives the weight of the state obtained. As the result of one iteration 

through all time slices starting from a state I 4) we obtain a sequence of states 

lil), I&). . . l&+1) with a weight 

W (i3L+l, i3L, . . . il) = (xli3L+l)S3L+l,3L - S3~,3~-1...S2,1, . sis+ld> (14) 

The fluctuations of these weights, which might make the projector Monte Carlo 

Method rather ineffective, are suppressed in the replication step. We start with 

an ensemble of say M = 1000 initial lattice states. After each updating of one 

state one uses the score ISij(k)l and some average score S to determine the 

-replication probability qij = Sij(k)/S. If qij 2 1, a given state is retained in 

the ensemble with the probability qij. If qij > 1 we add a number of copies of 

the state to the ensemble corresponding to the integer part of qij and use the 

remainder to determine whether to keep one further copy or not. 

There are two independent ways to calculate ground state energy expectation 

values in the ensemble projector Monte Carlo Method. 

(i) The first method consists in measuring energy expectation values by the 

matrix elements of the Hamiltonian according to (11). 
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(ii) The second method uses the average scores S used in the replication step. S 

is adjusted in such a way that the number of configurations in the ensemble 

remains approximately constant from iteration to iteration. 

Eu=--&lnS (15) 

4. Fermions in the Ensemble Projector Monte Carlo 

Studying a Hamiltonian lattice gauge theory with Fermions introduces one 

essential complication into the calculation: There occur matrix elements with 

positive and negative signs and therefore configurations with positive and neg- 

ative scores in the ensemble of states. In Ref. 12 we found that the ensemble 

projector method gives nevertheless correct energy expectation values in the case 

of the Schwinger model, where the results could be compared with the results 

obtained before4 using the local Hamiltonian method. 

We proceed as follows: 

(i) At the beginning of the calculation we define an ensemble of states and 

perform initial interactions to get the ensemble into thermal equilibrium. 

- (ii) We update all states belonging to the ensemble by one time step using the 

probabilities Pij derived from the matrix elements. 

(iii) After the update step follows the replication step, using the score lS’ij[ de- 

rived from the matrix element and the average score S. Some configurations 

have to be deleted from the ensemble others split into two or more states 

which will evolve independently in the following time steps. We use the re- 

quirement, that the total number of active configurations in the ensemble 

remains approximately constant to determine the average score S. 
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(iv) In a pure gauge theory calculation without fermions, we could after this 

step calculate contributions to all the expectation values of interest. Due 

to the negative signs in the scores we cannot do so here but we store the 

scores which we need for eventually calculating these expectation values 

later 

S O,i,j = 
(ilOe-ATHI j) 

pij 

Likewise, we store the sign of the total score of each configuration of the 

ensemble, this is the product of the signs of all the single scores encountered 

during the updating of this state. 

(v) We repeat steps 2 to 4 for A! time steps, advancing p by e.Ar. During these 

successive updatings the sign of the total score of each configuration will 

change randomly. The fraction of configurations in our ensemble which 

survives the replication decreases but the total number of configurations 

remains of course stable. Because of the random nature of the sign changes 

of the configurations, we expect about equal total numbers of the surviving 

states with positive and negative total scores. Since each state changes the 

- sign of its total score randomly, we do not expect other differences between 

the two sub-ensembles with positive and negative total scores. 

(vi) If our ensemble of states is big enough, and we would decide to select ran- 

domly only a certain fraction of the states to calculate expectation values, 

we would not expect any systematic change of the measured expectation 

values, except for somewhat bigger statistical errors. In fact, such a pro- 

cedure was already used in the local Hamiltonian Monte Carlo method, 

where only the states periodic in time after a total number of L time steps 
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were considered. (This corresponds to a certain fraction of the states with 

positive total score.) 

If we drop from our ensemble all states with negative total score, we should 

not expect that this introduces any systematic error into our calculated 

expectation values. But for states with positive total score it is perfectly 

legal to perform our ensemble projector Monte Carlo ignoring the signs of 

the scores at each replication step. At the end, it is only the total score 

which is important. 

In fact, because of the random nature of the sign changes, we could also 

use only the sub-ensemble with negative total scores and obtain the same 

expectation values. 

This is what we do: We divide the total ensemble of the surviving states into 

two sub-ensembles with positive and negative total scores. We check, that 

the number of states in each of these two sub-ensembles is roughly equal (in 

our calculations these numbers differ by less than 2 - 3 %). Otherwise we 

would have to continue up-dating the ensemble over more time steps. We 

calculate the interesting expectation values independently for each of the 

- two sub-ensembles and expect that these expectation values agree within 

the statistical errors. 

(vii) Besides the requirement, that the expectation values calculated for the 

sub-ensembles with positive and negative scores agree, we have a second 

systematic check of our procedure. We calculate according to (15) the 

energy expectation values using the average scores used in the replication 

step. We expect that this third energy expectation value also agrees with 

the two values already obtained. 
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5. Application of the Ensemble Projector Monte 

Carlo Method to the U(1) Lattice Gauge Theory 

In order to obtain local matrix elements, we break up the Hamiltonian (10) 

into three parts. We refer to Fig. 1, where we indicate in the x - y- plane, where 

the three parts are localized on the spatial lattice. Each part of the Hamiltonian 

contains the gauge boson contribution corresponding to the four links around the 

given plaquette. The terms of the Hamiltonian containing the fermionic operators 

are only in the parts HI and Hz. H3 is a pure bosonic operator. 

HI,2 = z o&ven($ (E?l + E;+&,2+E:+@y,l +%2) 

y odd: even 

1 
+- a2g2 1 a;+ j&,2 aF+ &I, 1 aF,2 + h.c. 

)I 

+ $ 1 x+(f) (a; 1 xF+ L) - ajC2 x(F+ gy,> , 
(17) 

+ ( x+(+++ Gy)$+ Gy, 1 + x+(r’+ &)a>+ gz, 2 ) 

- X(F+ $z + gy) + h.c. II 

1 
+- a2g2 

+ h.c. 

We refer to the first and second term of the bosonic Hamiltonian h, = hf + 

h Fagn as to the electric hf’ and magnetic hTagn parts. The matrix element of 
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exp(-Arhg) is calculated by splitting h, in the exponent into three parts and 

keeping only the lowest order contributions. 

(19) 

In Fig. 2 we give the bosonic and fermion occupation numbers of the four links 

and four sites of a plaquette. ml, m2, mg and m4 are the bosonic occupation 

numbers. We obtain for the matrix elements of (19) the expression 

=exp -- 
[ 

“2’ $(mi2 + m!j +mF +mf) exp 
] (-i$) Jm (ig 

AT g2 
* eXP 

1 
-2 4 (4 + 4 + m$ + 74) 1 - &:,ml--m 6,k,,2--m 

* 4nb,ma+m 4n:,mr+m 

(20) 

where Im(. . .) is a modified Bessel function and m is a positive or negative integer, 

the change of the link occupation numbers. We consider in the Monte Carlo - 

calculation all contributions with [ml 5 5. 

The matrix elements for sampling the energy expectation values contain the 

operators hgexp(-Arhg). They can be calculated straightforwardly and are not 

given here. 

The pure bosonic operator H3 does not change the fermion variables at the 

sites of the plaquette. We have to consider the fermion operators only when 

calculating the matrix elements of HI and Hz. Using the notation of Fig. 2 we 
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write the fermionic part of the Hamiltonian (17) as follows 

hf = & (XCaCX2 + x+1x1 - Xla3+X3 - X3+a3Xl 
(21) 

+ XZaZX4 + x4+a4x3 + xzaZJx4 + x4+a2x2) 

The state vectors containing all the occupation numbers related to one plaquette 

have the form 

(22) 

we calculate the fermionic part of the matrix elements only up to order Ar and 

obtain for the hl and ha matrix elements 

m~,ml,,mb,m~,i:,i~,i&,ijp e 
-h he1 

2 g e 
-Arh f ,-Arhyagn e-Fhet 

9 

=exp 
Ar g2 

- 
-2 p(m~+m~+m~+m~+m~2+m~+m~+m~) 1 

-6 ml-m:-m,kl 6 m2--m~-mm,k2 

-6 ii ms-mk+m,k3 m4-md+m,k4 + O(Ar2) 

(23) 

The factors K are given in Table 1 for all combinations of fermionic occupation 

numbers. 
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We split 

probabilities 

the matrix elements M (20) and (21) in the following way into 

P and scores S 

M=eVI -” -(-$$K.ew{--$ ~[m~-f-m~+m~+m~+(ml-m-kl)2 

•I (m2 - m - k2)2 + (m3 + m - k3)2 + (m4 + m - k4)2 

(24 

p = harm. e *g2m2 es I 
2 m (25) 

- 2(mlh + mh + m&3 + m4k4) - Zm(ml + mg - mg - m4) (26) 

+ 2m(kl + k2 - k3 - k4) I) 
The normalization factors ~~~~~ follow from the requirement to normalize the 

probabilities 

- lx P=l (27) 

where the sum runs over all possible transitions. These are the eleven possible 

values of m which we consider ([ml 5 5) and in addition for each value of m 

between one and five fermionic transitions, see Table 1 (for instance 1001 + 

1001, 0101,0011, 1010, 1100 ). 

Only the matrix elements of hl and h2 containing fermion operators and 

K-factors of different signs obtain scores of positive and negative signs. 
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The matrix elements of 

h .,A& a (28) 

which are needed to calculate energy expectation values can be calculated straight 

forwardly and are not given here. 

6. Results and Discussion 

We consider in our Monte Carlo calculation typically an ensemble of 1000 

configurations periodic on a spatial lattice of size n, - ny = 6 x 6 sites. In most 

Monte Carlo runs we iterate the ensemble over 600 time steps. The first 200 

time steps are used to bring the ensemble into equilibrium. We measure the 

expectation values always after a A/? = eAr advance of 0.2, this are two time 

steps at Ar = 0.1 and eight time steps at Ar = 0.025. At small values of 

the coupling constant g, where there seems no interesting g dependence of the 

expectation values we use a smaller number of iterations, obtaining somewhat 

larger statistical errors. At larger values of g the expectation values become 

strongly g-dependent. Since our matrix elements are only correct up to order Ar 

-we have difficulties to get small systematic errors at large values of the coupling 

constant g, the Hamiltonian contains terms proportional to Ar .g2. We use small 

values of Ar down to Ar = O.O25a, where a is the spatial lattice spacing. At 

small values of Ar another limitation appears. Equilibrium is only reached after 

a certain amount of A@ = .JZ. Ar advance. Also the number of configurations 

with positive and negative scores become only equal after a sufficiently big A/? 

advance. Therefore at small Ar, the number of iterations 4!. before measurements 

become possible grows. This limits the possibilities to measure at large g-values, 
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since we are only using running times of lo-15 min of an IBM 3081 per value of 

the coupling constant g. 

At each value of the coupling constant g we measure E+, the energy expec- 

tation value obtained from the sub-ensemble with positive total scores, E-, the 

energy expectation value obtained from the configurations with negative total 

score and EP, the energy expectation value obtained according to (15) from the 

average scores. 

The calculation of EP proceeds as follows: Each time step Ar consists in 

reality of three steps updating the occupation numbers on different plaquettes 

using the Ul, U2, and U3 operators. Because of the non-symmetric division of the 

Hamiltonian into HI, H2 and H3, the average scores Si for these three updatings 

differ. We obtain from the three scores Si the values of the three subenergies 

Er, EC and E.f 

EP =- 4 1% s1,2 
132 Ar nzny 

EC = _ 2 log '93 
Ar nzny 

(29) 

(30) 

Our average energies are normalized per spatial plaquette or per lattice point. - 

The total energy EP is simply obtained as 

EP= (E[+E;+E;)/3 (31) 

Actually, we measure also the subenergies EF on the three kinds of plaquettes. 

The comparison of the subenergies E; obtained with the three different methods 

is interesting. Only the terms HI and H2 contain fermionic operators. H3 is a 

pure bosonic operator, not leading to scores of different signs. The calculation of 

17 



the E3 expectation value is similar to a projector Monte Carlo calculation of the 

pure gauge theory. 8sg The calculation is known to converge for Ar small enough. 

We consider therefore the differences between three E3 values Ez, EF and E[ 

as an indicator for systematic errors due to the imperfections of our Monte Carlo 

calculations (Ar two large, number of time steps two small). Our statistical errors 

obtained from subdividing the total sample into 5-10 parts, vary between f0.02 

and 9~0.03. If the E3 differences are of the order of the statistical errors and the 

corresponding differences between the three El,2 expectation values are of the 

same order we consider these residual deviations not as systematic deviations 

of our method. In fact we find, that we are only able to calculate meaningful 

expectation values of E3 or El,2 for coupling constants g 5 2. 

We present the total energy expectation values E+, E- and EP for the cou- 

pling constants g considered in Table 2 and Fig. 3. In Table 3 and Fig. 4 we 

present the expectation values of the sub-energies Ez, Et: and Er. The results 

are only presented for such values of g and Ar, where the errors are still tolerable. 

We find in nearly all cases, and the E+ and E- expectation values agree rather 

well with each other. The biggest deviations occur between Et? and Es+. The 

-agreement between the values obtained by the different methods can be inter- 

preted as an indicator that the ensemble projector method gives valid results also 

in the presence of fermions. Unfortunately, there are no other calculations of the 

U(1) gauge theory with fermions in d = 2 + 1 dimensions available. Therefore, 

we compare our results only with the lowest order showing coupling estimate per 

lattice point 

E S.C. = -&-+O(&) (32) 
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This is also plotted in Fig. 3. Obviously, in the region, where the strong coupling 

estimate is best, we are limited by the systematic errors of our calculation. Also 

the statistical errors are bigger than the very small energy values according to 

Eq. (32) in the strong coupling region. 

The energy expectation value near to g = 1.5 shows a sudden jump. This 

could indicate the existence of a phase transition, but to our knowledge no phase 

transition is expected in this model. 

Concluding, we find the results of this first application of the ensemble pro- 

jection Monte Carlo method to a model gauge theory with fermions in d = 2 + 1 

encouraging. We find it worthwhile to continue such studies, further improv- 

ing the method, extending it to d = 3 + 1 and studying the properties of the 

considered lattice gauge theory, in more detail. 
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Table 1. Factors K in the non-vanishing matrix elements (23) of the operator 

exp(-Arhl,z) up to first order in Ar 

il i2 iJ id ;LT ii ii ig ijp K kl h k3 h 

0 0 0 0 0 0 ,o 0 1 0 0 0 0 

1 0 0 0 
1 0 0 0 
1 0 0 0 
0 1 0 0 
0 1 0 0 
0 0 1 0 
0 0 1 0 
0 0 0 1 

1 0 0 0 1 
0 1 0 0 -Ar/2a 
0 0 1 0 +Ar/2a 
0 1 0 0 1 
00 0 1 -Ar /2a 
00 10 1 
00 0 1 -Ar/2a 
00 0 1 1 

0 0 0 0 
fl 0 0 0 

0 0 fl 0 
0 0 0 0 
0 fl 0 0 
0 0 0 0 
0 0 0 fl 
0 0 0 0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 

1 
1 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 

0 -0 

0 0 
0 0 
0 0 
1 0 
1 0 
1 0 
0 1 
0 1 
0 1 
1 0 
1 0 
1 0 
0 1 
1 1 

1 1 0 
0 1 1 
1 0 0 
1 0 1 
0 1 1 
1 0 0 
1 0 0 
0 1 0 
00 1 
0 1 1 
0 1 0 
00 1 
0 1 0 
0 0 1 

0 1 0 0 0 0 
0 -Ar /2a 
1 -Ar/2a 
0 1 
0 -Ar/2a 
1 -Ar/2a 
1 1 
1 -Ar/2a 
1 +Ar/2a 
0 1 
1 -Ar/2a 
1 +Ar/2a 
1 1 
1 1 

0 0 fl 0 
0 fl 0 0 
0 0 0 0 

fl 0 0 0 
0 0 0 fl 
0 0 0 0 

fl 0 0 0 
0 0 fl 0 
0 0 0 0 
0 0 0 fl 
0 fl 0 0 
0 0 0 0 
0 0 0 0 

1 1 1 0 1 1 1 0 1 0 0 0 0 
1 1 1 0 1 1 0 1 -Ar/2a 0 0 0 fl 
1 1 1 0 1 0 1 1 -Ar/2a 0 It1 0 0 
1 1 0 1 1 1 0 1 1 0 0 0 0 
1 1 0 1 0 1 1 1 - Ar/2a 0 0 fl 0 
1 0 1 1 1 0 1 1 1 0 0 0 0 
1 0 1 1 0 1 1 1 - Ar/2a fl 0 0 0 
0 1 1 1 0 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 0 0 0 0 
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Table 2. Energy expectation values calculated at different values of the cou- 

pling constant g. The statistical errors of the energy expectation values are 

between AE = f0.02 and f0.03. W, E- and EP are explained in the main 

text. 

Ar 9 l/g2 E+ E- EP 

0.1 

0.1 

0.1 

0.1 

0.1 

0.05 

0.05 

0.05 

0.025 

0.025 

0.025 

0.5 

l/d 
114 
xm 

1.3 

1.5 

1.65 

1.80 

d 

4.00 0.34 0.33 0.29 
3.00 0.33 0.33 0.29 
2.00 0.37 0.35 0.33 

1.5 0.32 0.32 0.28 

1.00 0.32 0.32 0.29 

0.75 0.31 0.305 0.28 

0.5917 0.235 0.235 0.21 

0.4444 0.205 0.20 0.18 

0.3673 0.005 0.00 -0.02 

0.3086 0.01 0.005 -0.01 

0.2 -0.01 -0.01 -0.02 
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Table 3. Energy expectation values El, E-J and E3 obtained with the three different 

methods (Es?, Et7 and EP i ) considered in this paper. Note that H3 is a purely bosonic 

operator. Differences between the three values EC, EF and E[ indicate the statistical 

and systematic errors at too large values of Ar or a too small number of iterations. El 

and E2 are influenced by the fermion operators in HI and Hz. The statistical errors of the 

expectation values are of the order of f0.02 to 0.03. 

Ar 9 E1+ E, EP Ez+ E, Ezp E3+ E; ET 

0.1 0.5 

0.1 lIti 
0.1 114 
0.1 fl 
0.1 1.0 
0.05 &p 
0.05 1.3 
0.05 1.5 
0.025 1.65 
0.025 1.80 
0.025 fi 

-0.02 -0.01 -0.05 
-0.01 +0.01 -0.05 
+0.03 0.00 -0.02 
-0.01 -0.02 -0.07 
-0.02 -0.04 -0.07 
-0.06 -0.07 -0.08 

-.ll -.ll -.15 
-0.11 -0.12 -0.16 

-.33 -.33 -.37 
-0.35 -0.37 -0.40 
-0.36 -0.36 -0.45 

+0.01 +0.01 -0.07 1.02 1.01 0.98 

+0.03 -0.03 -0.07 1.01 1.02 0.98 

+0.02 0.00 -0.03 1.05 1.05 1.02 
-0.05 -0.03 -0.07 1.01 1.00 0.97 
+0.01 0.00 -0.06 1.01 1.01 0.98 
-0.05 -0.06 -0.08 1.00 1.01 1.00 

-.lO -.105 -.145 0.93 0.97 0.93 
-0.19 -0.17 -0.21 0.89 0.89 0.90 

-.38 -.38 -.45 .15 .12 .74 
-0.33 -0.33 -0.39 .72 .71 .75 
-0.35 -0.34 -0.43 .69 .69 .75 



FIGURE CAPTIONS 

Fig. 1. Break up of the Hamiltonian H into the three parts HI, H2 and H3. 

Fig. 2. Boson and fermion occupation numbers on the four links and four sites of 

a spatial plaquette. 

Fig. 3. Energy expectation values E+, E- and EP as function of the square of 

the inverse coupling conduct l/g 2. The line gives the lowest order strong 

coupling estimate, see Eq. (32). 

Fig. 4. Expectation values of the sub-energies EF, Er, Ez and Er as function of 

the square of the inverse coupling constant l/g2. The E+f and EC values 

are in general near to the El values and omitted in the plot. 
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