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1. THE BOSONIC STRING 

Strings are idealized one-dimensional extended objects. They provide a nat- 

ural generalization of relativistic point particles, which travel along world lines, 

in being described by world surfaces stretching through space-time. Strings have 

more than this simple mathematical attraction, however, because of the possibil- 

ity, proposed many years ago by Scherk and Schwarz Ill and recently buttressed 

impressively by Green and Schwarz PI and by Witten and collaborators P-51 , 
that strings provide the grand unified theory of everything. Whether or not this 

claim is true, strings certainly open a rich field of mathematical physics which 

seems likely to be a very fruitful one over the next few years. 

My intent in these lectures is to present an introduction to the theory of 

strings, covering its main features and extending far enough to reach some of its 

open problems. To do this, I have adopted the strategy of concentrating on the 

basic mathematical formalism and steering away from specific phenomenological 

connections. (The new developments which connect with phenomenology are 

described in the lecture of David Gross in this volume.) Still, though, the material 

presented here will give only a taste of the range and depth of the theory. A 

-comprehensive introduction to the theory of strings would require, not three 

lectures, but thirty. The reader who wishes to study the subject further should 

go on to consult some of the many excellent, more technical reviews which are 

available ls-‘] . 

The topics that I will cover are as follows: In this section, I will discuss 

the basic properties of the simplest string, an unadorned world-sheet immersed 

in space-time. I will discuss the kinematics and the interactions of this string 

theory in a unified way, following a viewpoint due to Mandelstam PO1 . The 
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second section will discuss properties of a supersymmetric generalization of this 

object, the superstring of Green and Schwarz IllI . For both of these systems, I 

will discuss the dynamics using light-cone quantization. This method is, for all 

its obvious frame-dependence, the route which makes most explicit the physics 

that these models contain. In the third section, I will discuss some issues which 

require a more covariant viewpoint, and which bear on the important question 

of how gauge fields can be built of strings. Whereas the material of the first two 

lectures is classic, a firm foundation for further development, the material of the 

last lecture is only a provisional understanding of some deep and still unsolved 

problems. 

Let me begin 

extended object Ul 

by writing the simplest action principle for a one-dimensional 

. The equation of motion for a relativistic point particle imples 

that the particle sweeps out a geodesic path in space-time: 

iS/ds[($)2]t = 0. (1) 

A natural generalization of this idea would be to minimize the invariant area of 

the 2-dimensional surface swept out by the string’s evolution I121 . It is useful to - 

tfl For reference, my conventions are: 

+“=diag(-l,l,..., 1); p,~=O,l,..., d-l 

2-Y =2’.y’-2+y- - x--y+ 9 

where CZ* are light-cone variables: 

Zf = 5 (2 f P-1) . 



formulate this idea as the following action principle1’31 : 

-1 s - 
= 47ra' 

d2 ( fi gabdaxpdbxp 3 (2) 

where t” = (7, a) are coordinates on the string surface and xP( 0, gab (6) are to be 

varied independently. It is not difficult to see how (2) is connected to the problem 

of finding geodesic surfaces. Notice first that (2) has (at least classically) three 

gauge symmetries: 2dimensional reparametrization invariance and, in addition, 

a Weyl symmetry: 

gab + dogab , xp + 5’ . (3) 

Varying (2) with respect to gab gives the equation of motion 

this is equivalent, up to a Weyl motion, to the statement 

- gab = aaxp&,xp , (5) 

which says that gab is equal to the induced metric on the &dimensional surface. 

Inserting (5) or (4) into (2) yields the invariant area of the surface 

/ d2t 4% (6) 

The equation for xi’ which follows from (2) takes the form of a conservation 
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law 

&J-y4 + &P”, = 0, (7) 

where 

6S pa, = - = 
6 daXp 

& d=igab abx, (8) 

is the momentum density on the surface. The boundary condition for xp should 

be the condition that no momentum flows out across the boundary 

Pup = 0 . (9) 

This set of equations can be dramatically simplified by a proper choice of 

gauge. Since gab iS a symmetric 2 X 2 matrix, it contains Only 3 degrees of 

freedom. The gauge freedom of (2) th us suffices to reduce gab to the form 

gab = (10) 

This already reduces (7) to the Laplace equation 

- a2 xp = 0. (11) 

More simplification can be obtained by a specific choice of the coordinates r and 

u. Set r equal to the light-cone coordinate x +, thus insisting that equal-r slices 

are made at fixed x+. Choose o so that the conserved quantity 

p+ = 
/ 

&pr+ 02) 

receives equal contributions from equal increments of 0, i.e., so that PT+ is 
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constant over the surface. This condition implies 

P -0 c+ - 
(13) 

for strings with boundaries (open strings), by the use of the boundary condition 

(9); for strings without boundaries (closed strings), this statement completes the 

specification of gauge by fixing the origin of CT as a function of 7. Our fixing 

of r implies that &,x+(e) = 0. Then (13) implies that go’ = 0. Similarly, the 

condition that Pr+ is a constant implies, from (8), 

We are thus already quite close to (10). The last step may be taken by using 

Weyl invariance to set (14) equal to 1. We have now reached coordinates in which 

and, in particular, 

- p; = 1 
27rcY’ 

p+ = & - (length of string in a) 

(15) 

(16) 

so that the total length of the string is given by 

A0 = 27m’P+ . (17) 

Since we have fixed o and 7, we must have (at least implicitly) eliminated 

two coordinate degrees of freedom of the string. In fact, we eliminated x’(c) 
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explicitly, setting it equal to r. But we have also fixed the value of x-, since 

Sar = 0 implies 

Therefore x- is specified as a function of Z(E). The Hamiltonian density gener- 

ating evolution in r is 

P, = $-& a,x- = & [(a,q2 + (&7q2] - ; (19) 

thus, the Hamiltonian for the unconstrained degrees of freedom is 1141 

2*p+a 

HZ1 
27ra’ J 

da [(&q2 + (&,Z)2] . (20) 
0 

This is the Hamiltonian of a set of (d - 2) massless 2dimensional fields. We 

might study its properties either by diagonalizing it directly or by relating it a 

functional integral over string configurations. The first of these approaches has 

been reviewed, for example, in refs. 6 and 7. Let me, then, adopt the second 

viewpoint here. 

For definiteness in constructing the functional integral, rotate r to Euclidean 

space. Then we must study the Euclidean integral 

+ (O/O)- = / DxeosE , (21) 

where 

SE = 1 
27ra’ J 

dudr[(arq2 + (a,q2] (22) 
0 

and r is now Euclidean time(r = 4~~). For the free string, the domain of (r,o) 

is: 

7 



To unclutter the notation, choose units of mass so that 2~3' = 1. (For my analysis 

of a single string, I will also set P+ = 1 .) With this formalism, we can readily 

work out the spectrum of single-string states. We will see that it also allows us 

to investigate the scattering of strings. 

We should first try to find the string ground state. In Euclidean field theory, 

the ground state wave function is proportional to the amplitude for the system 

to propagate from Euclidean time -oo to a fixed configuration S,(D) at r = 0: 

- 

a,x = 0 

a,x = 0 

Let us compute this amplitude explicitly. At first glance, this looks like quite a 

challenge. However, note that the equation for Z(t), the 2-dimensional Laplace 
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equation, is invariant under arbitrary conformal mappings. This property will 

allow us to solve these equations even on strange-looking domains such as the one 

considered here. To take advantage of this conformal invariance, let us describe 

points on the string surface by a complex variable z = r + io. 

Before confronting the full functional integral, let us consider the classical 

problem of solving the Laplace equation on the half-strip. The solution is given 

in terms of the Green’s function satisfying 

-V2G(z, z’) = 612)(z - z’) (23) 

*with the boundary condition (9) ( i.e., Neumann boundary conditions) along the 

edges of the string and Dirichlet boundary conditions at r = 0. As a step toward 

constructing this function, let us first construct the Neumann Green’s function, 

GN, for the full strip: -oo < r < 00. This can be done by mapping the strip 

onto the upper half plane by the mapping 

w = ez 

and then using the method of images; one finds 

(24 

G~(z,z’) = --&log [(e’ - es’)(ez - es’)] . 

For the problem at hand, we need a slightly more complex G: one which also 

vanishes on the unit circle in the w plane. The desired function is 

G(z, z’) = -& Re log 
(e* - ez’)(ez - e”‘) 

(e -2 _ eZ’)(e-Z _ eP’) - (25) 

The classical solution for S(z) which agrees with &(a) at r = 0 can be constructed 
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from (25) by 

z,(z) = - 4 dz’ zo(z’)3;G(z’, z) , (26) 

where d, is the derivative in the direction of the outward normal to the boundary. 

We can now compute the full functional integral by shifting the integration 

variable 

44 = xc(z) + 65(z) , (27) 

where 6z(z) satisfies Neumann boundary conditions on the horizontal edges and 

Dirichlet boundary conditions at r = 0. Since z~(.z) solves the classical equations 

of motion, the cross term in SE between zC(z) and 65(z) vanishes. The term 

involving (6~) 2 can be integrated over 6z, this yields a normalization factor which 

is independent of the boundary condition ~(a). The term involving (z~)~ can 

be rearranged as follows: 

SE = $ I / du dT(d,6x)2 

- 1 =- 
27r / 

dud?-x,(-d2x,) + $ 
f 

dz xc &xc (28) 

The kernel is some operator on functions of u. We might expect that the eigen- 

states of this operator are the natural Fourier modes of the string: 

x0(a) =x0+x Lx, n>O fi cos nu ’ (29) 
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This is, in fact, true, as we may check explicitly: 

a a G(~+iu,~‘+iu’) -- - 
ar &’ ~=~‘=I) 

lP 
ciucw’ (30) =- 

27r K (eiu _ &a')2 + (a' --+ -a') + C.C. , > 1 
where P denotes the principal value; it is straightforward to integrate this ex- 

pression with (29) using the integral 

2s 
iu iu' 

p &I et3 
I’ 

*tzp dY’ 
f 

(31) 
0 

(,iu _ eiuf)2 ertw i (eiu~y,12 y'* = 5 27reinu . 

We can then write (28) in the form 

*p+ 

SE = -i- 
27rrp+ J 

du XODZO , where Dcosna = ncosna . (32) 
0 

This implies that 

*[x(u)] = exp[-SE] = exp -c xi [ 1 n>O 
(33) 

which is indeed the wavefunction of the ground state of a system of harmonically 

-oscillating string modes. 

We should next investigate the excited states of the string. These states can 

also be extracted from the functional integral, by recalling that evaluating the 

Euclidean functional integral over a finite interval of r is equivalent to applying 

the operator emHr to a state in Hilbert space. States of given energy are then 

characterized in the functional integral by factors with fixed exponential depen- 

dence on time. We can create such a state from the vacuum by applying an 

operator at a fixed time to the past of r = 0. 
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As a first example of this technique, let us try placing the operator eiZ*s(u=o~rl 

under the functional integral at some finite negative r: 

A = 
J 

Dz essO exp(&. Z-(0 = 0,r)) . (34 

Evaluating the integral by the substitution (27), we find our previous result 

multiplied by the two factors: 

eiZ.Z,(o=O,r) . e-; P(62) (35) 

The second factor is a multiplicative renormalization; ignore it for the moment. 

The first factor may be written more explicitly as: 

exp iz* jdo’xo(o’) [-$ G(+ + id) 
0 II 

=exp Z. 1 J d4&(a’) & { eiuf; er + (a’ + -a’) II (36) 

- 
=exp ZJ [ J x du’xo(a’) 5 [1+e-lr~coso+e-21rlcos20+... 11 . 

As r + -00, this insertion does nothing more than multiply the amplitude 

(33) by eiE’4; this corresponds to the formation of a state of definite nonzero 

transverse momentum. But we can also read from this formula the spacing and 

wave functions of the higher excited states, since the coefficients of exponentials 

e--alzl must be states of energy c above the ground state. In general, the excited 

states appear with integer spacing. If we restore the factors of P+ and a!, we 
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can see that the nth level corresponds to 

AH = Ap- = + = 2n 
2P+ * 2crl 

(37) 
=+ m2 = 2p+p- = 3. 

(The contribution of the transverse momentum to P- is given by the r depen- 

dence of the second factor in (35).) 

To fix the first excited state more cleanly, we should modify the operator in 

(34) so that it creates only states orthogonal to the ground state. A simple choice 

is 

&(a = 0,r) eik”’ . (38) 

Again, the leading contribution comes from saturating with xc(o,r). Since 

i&J = 0,r) = i 
J 

da’Xo(a’) [e-IT1 cos u + 2em21rl cos 20 + . . .] 

-W 

- e --Id . x1 , 

the leading term for large 171 created by this operator is 

- 
e+l - Xi exp - C Xi . 

[ 1 n 
(40) 

This is the first excited state of the lowest mode of oscillation of the string. 

Viewed as a relativistic particle, this state has the quantum numbers of a trans- 

verse vector. Continuing in this way, one can map out the whole spectrum by 

associating each state with an appropriate operator. The operators of this class 

are called vertex operators. The spectrum of states can be seen to be precisely 

the Fock space of string eigenmodes. The nth mass level contains states with 

spin up to n. 
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To connect the vertex operators with specific string eigenstates, we needed 

to apply them at large negative r in order to given their products time to resolve 

into a definite state. However, if we have set up the functional formalism in 

a completely conformally-invariant way, operators positioned near r = -00 are 

equivalent by conformal mapping to operators positioned at finite distances. For 

example, under the mapping: 

an operator near r = -oo can be viewed as one near w = 0. This is a wonderful 

realization, because it allows us to generalize the analysis we have just done of the 

single-string spectrum to compute multi-string scattering amplitudes. As long 

as we can maintain exact conformal invariance, we can convert the operators 

at the infinite time separation needed to define asymptotic states into operators 

separated by finite intervals along the boundary of a simple domain. 
- 

Let us first try to visualize the process of string-string scattering in the special 

system of light-cone coordinates which we have constructed. In (17), we have set 

u proportional to P +. Since P+ is conserved, the interacting string-string system 

always occupies a strip of definite width in 0. A natural hypothesis for the string- 

string interaction, first advanced by Mandelstam PI , is that it is just the process 

of fusing two strings laid out in u into a single string, or of splitting one string 

into two. The process of string-string scattering is then represented by a region 
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in the E plane of the form: 

7TP+ 7rP+ 

nPr+ 

7rP,+ 

0 0 

The width of this strip is mP+, where P+ is the total in the initial or final state. 

Mandelstam’s hypothesis is equivalent to the statement that the string functional 

integral evaluated on this domain, with appropriate boundary conditions at r = 

*cm, gives 

T(AB + CD) - evrP- , (41) 

where T is the string-string T-matrix, r is the total elapsed x+, and the expo- 

nential contains the total P-. 

It is not difficult to evaluate the functional integral on this domain using 

the methods we have developed, as long as we have the freedom to stretch out 

the domain by an arbitrary conformal mapping. Let us, then, assume that the 

exact conformal invariance of the classical field theory associated with (20) is 

maintained in the full evaluation of the functional integral. It is then convenient 

to transform to the complex variable y defined by 

Pj > 0 incoming 
Z= c Pi’log(y - yi) 

j Pj < 0 outgoing , 
(42) 

I 

where the Yj are points on the real axis of the y plane; j = 1,. . . ,N - 1 if the 

process involves IV strings. The region in the z plane containing the scattering 
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strings (the strip 0 5 I~z 5 rP+) is carried by this mapping into the upper half 

y-plane. The points Yj are mapped to Re y = -oo for incoming momenta, and 

toRey= i-oo for outgoing momenta. The imaginary part of z jumps by rPJ+ as 

y passes through Yj. AS y passes from Yj to Yj+r, z comes in from infinity along 

a line of constant Imz, then turns around and goes back out again. Thus, all of 

the cuts marked in the z plane are mapped onto the real axis in y. The positions 

of the endpoints of these cuts, which give the times of joining and splitting of 

strings, are encoded in the values of the Yj. 

Let us now evaluate the functional integral in these coordinates. By conformal 

invariance, the action is 

SE = L 
7r J 

d2Y (a,Z)2 ; (43) 

the propagator for x(Y) is 

(x’(Y)xj(y’)) = rG(Y,Y’)@ = -iRelog[(Y - Y’)(Y -?)I . (44) 

Each asymptotic state can be characterized by placing the corresponding vertex 

operator at the appropriate Yj. Then the amplitude for a scattering process 

involving N string ground states is given by 

- 

J 

dY2... dyNm2 n : ,&.z(yi) : 

i > 

= 
J 

dYz 
. . . dyNm2 n ,A'fij(log Iyi-yil) 

i#j 

(45) 

= J dY2 * . * dYN-2 n 1% - Yj IFi’ . 
i#j 

In writing this integral over the Yj, I have fixed two of the Yj to definite points: 

Yr = 0, YN-~ = 1; our whole discussion implicitly keeps YN = 00. Fixing these 
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three parameters fixes the three-parameter subgroup of conformal transforma- 

tions which carries the real axis of the y plane into itself. 

To extract the T matrix from (45), we must multiply this integral by the 

factor exp(TP-). Let us cast this factor into a more convenient form. Using 

N-l 
r = Re c Pj’ lOg(Y - yi) 7 (46) 

j=I 

and continuing to consider outgoing momenta as having negative values, we may 

rewrite 

qotCP- = c 7/P; - c Ti Pi- 
final initial 

(47) 
=- c PcPT log IYi - Yjl . 

ij 

Multiplying this into (45), we find 

T= dY2 
J 

** * dYN-2 n lx - Yjlpipj . (48) 
i#i 

This is the Koba-Nielsen formula[‘51 for the multistring scattering amplitude. 

- In my rush to obtain (48), I have, however, overlooked a number of subtleties. 

First of all, I have consistently dropped the singular i = j terms in the evaluation 

of the expectation value of vertex operators in (45) and in the evaluation of rtot. 

Second, I have ignored the factors of [det(-a”)]; which arise from integrating 

over the coordinates x(z). Both of thse factors require regularization and hence 

could break the conformal invariance which I had assumed in setting up this 

formalism. Fortunately, Mandelstam showed in his original work”” that confor- 

ma1 invariance is actually maintained, as the result of cancellations among these 
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factors, as long as two conditions are met: First, external momenta must obey 

-P2 = m2 = -at = -2 (49) 

This fixes the mass of the string ground state. Second, the number of transverse 

coordinates must be fixed so that 

d = 26. (50) 

I do not have space to discuss this cancellation in detail. But we can see one 

piece of it rather easily [161 by returning to the computation of the ground state 

wave function and trying restore the factors of [det(-a2)]; which we had ignored 

in the evaluation of (33). S’ mce these determinants count the zero-point energy 

of the string modes for (d - 2) t ransverse degrees of freedom, the factor we had 

dropped is 

(det[-a2])(d-2)/2 = exp --7. (d - 2) . i 2 n . 
n=O 1 (51) 

with suitable regularization, one may write the divergent sum as a Riemann zeta 

function: Cn = ~(-1) = -l/12, so we find the factor exp[+r], corresponding to 

a ground state P- = -1, or a ground state (mass)2 = -2, only if the number of - 
transverse dimensions is 24. 

Let me briefly note a few properties of the Koba-Nielsen amplitude. First, 

let us evalute T for a 4-particle amplitude. We find 

1 

T= 
J 

dY Yp”p’(l - Y)ps’ps = 
IyPl - P2 + l)IyPz * P3 + 1) 

r(p . (52) 
1. 

p2 + p 
2' 3 

0 

p + 2) 

This is the amplitude guessed by Veneziano 1171 as a candidate for the T matrix of 

the strong interactions which was the starting point for the development of string 
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theory. For Pf = -2, this amplitude has poles at s = -2Pl . P2 - 4 = 2(n - 1); 

these values correspond to the masses of the string modes we found earlier. 

The same poles, and the same particles, appear as t-channel exchanges. Sec- 

ondly, let me note that the Koba-Nielsen amplitude can be put into a manifestly 

conformally-invariant form: 

T=L dYl 
v5 J 

. . .dY, fi (yi - Yj)Rfi , 

i#j=l 
(53) 

where V$ is the volume of the group of conformal transformations which leaves 

the real y axis fixed. 

Finally, I would like to discuss the implications of the Koba-Nielsen formula 

for the properties of the first excited state of the string. The wavefunction (40) 

indicates that this state is a transverse vector. The longitudinal component of 

this vector is missing; this is consistent with Lorentz invariance only if this vector 

has zero mass. But, fortunately, the sum of the zerwpoint and excitation energies 

is 

m2 =2(-l+l)=O. (54 

It is clear, though, that we are still in a dangerous corner: Radiative corrections 

will drive this mass away from zero unless the result (54) is guaranteed by some 

underlying principle, such as local gauge invariance. But one can check that 

the cancellations required by local gauge invariance are working in the string 

amplitudes. Consider, for example, dotting the vector vertex operator (38) with 

the (transverse) momentum it introduces: 

d 
& . 2;(ri)eii.Z _ dr eiLZ , 

i 
(55) 

and inserting this expression into the functional integral for T. Because one 
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integrates over the time of splitting or joining, (55) can be integrated away to 

foe. Potentially, one may find a contact term when eik’= is passed through 

another vertex operator. However, such a term would have the form IY - Yjlk’kj, 

evaluated at Y = Yja Since this factor is defined by continuation from spacelike 

momenta, k * kj > 0, the contact terms are zero. Thus, 

= 0 

This is the Ward identity for a gauge boson. Neveu and Scherk[l*] computed 

explicitly the T-matrix for the scattering of four vectors and showed that, at low 

energies s << (Y’, it coincides exactly with the tree graphs of Yang-Mills theory. 

So it is quite likely that the string theory actually contains a gauge principle 

which keeps the vectors massless and transverse. 

So far in this lecture, I have discussed only open strings. Let me conclude 

by sketching the generalization to closed strings. This entails generalizing the 

formalism we have developed to coordinate fields X(Z) which propagate on a strip 

with periodic boundary conditions in u (0 5 u 5 z). An appropriate Green’s 

function can be found by mapping this domain into the whole complex plane, 

using the mapping w = e2’. One finds, then 

G = --& log(e2Z - e2”) . (56) 

Because z appears in the form e2z, the spacing of levels in P- is now double the 

spacing in the open string. There is a second change as well from the open string 
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results; this comes from a constraint which we noted earlier but which becomes 

important only in this system. The definition of our coordinate system included 

the condition s Pb+ = 0. Th’ 1s condition was satisfied automatically for open 

strings but must be imposed as a subsidiary condition for closed strings. If we 

Fourier decompose 

O"l O” l- 
x(u) = x + C - Xneinu + C -Xnevinu , 

*cl + *=I+ 

the ground state of the closed string is: 

9(O) =eXp [-gXnXn] , 

(57) 

(58) 

as before. But the natural candidate for the first excited state 

has net Pb+. The first excited state with nonzero P$ has one left-moving and 

one right-moving excitation - 

x;~;@co) . (60) 

This state is a transverse spin 2 particle. For consistency with Lorentz invari- 

ance, it must be massless; then it must also have the couplings of a graviton. The 

constraints on the conformal invariance of the closed-string functional integral 

place the ground state mass at m2 = -8 or P- = -4, so these state do turn out 

to be massless. The vertex operator for the spin-2 state is given by the natural 
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I 

generalization of (38)) 

J 
dt7 f!3,xi&xi : eik” : . (61) 

Dotting (61) with the transverse momentum k’ gives the total derivative 

J ( 
du 2, &ci : eik” : 

> 
, (62) 

so this vertex satisfies a Ward identity analogous to that satified by the vector 

vertex. Indeed, Scherk and Schwarz PI have verified that, at low energies, these 

particles have the scattering amplitudes of gravitons. 

Thus we find, emerging automatically from the dynamics of quantized strings, 

gauge bosons and gravitons. We find that the conformal invariance which this 

dynamics requires restricts the dimensionality of space (unfortunately, to d = 26). 

At this level, still, the theory contains no fermions and, thus, no possibilities 

for matter. This difficulty, however, is readily resolved by considering a more 

sophisticated string theory, to which we now turn. 

2. THE SUPERSTRING OF GREEN AND SCHWARZ 

Having now studied the physics of an unadorned world-sheet propagating 

%-I space-time, let us now consider a generalization of that theory which includes 

fermions and-maybe-everything else of relevance to physics. I will present this 

theory in the light-cone formulation derived only relatively recently by Green and 

Schwarz”” . The full construction is technically rather complex-too complex, 

unfortunately, to explain in one lecture. I will discuss its general structure, by 

emphasizing the analogy to the structure of the low-energy limit of the open- 

string theory, 10-D supersymmetric Yang-Mills theory, an analogy stressed by 

Green and Schwarzll” . 
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In the last section, we discussed a theory whose action was that of d coor- 

dinates treated as of Bose fields and coupled invariantly to the geometry of the 

surface. From our modern perspective, a natural generalization of this theory 

is given by 2-D supcrgrczuity interacting with a supermultiplet of matter fields 

(xp,+$. In this construction, $J, is a 2-D Majorana fermion; the space-time 

index ~1 indexes the matter multiplets and thus stands outside the supersym- 

metry. This generalization was actually formulated by Neveu, Schwarz, and 

Ramond[20’211 well before the development of supersymmetry. One can carry out 

the light-cone quantization of this string as discussed above; one finds a consis- 

tent Lorentz-invariant theory-provided that d = 10. For the open strings, two 

possible sets of boundary conditions for the fermions are compatible with the 

boundary conditions for X(Z) given above. One of these sets gives string states 

which are fermions, of which the lowest state is massless; the other gives bosons, 

with a ground-state tachyon and a massless vector as before. However, now a 

symmetry distinguishes these particles. The theory has a conserved quantity G; 

the tachyon has G = -1, the vector has G = +l. Gliozzi, Scherk, and Olive WI 

noticed that if one keeps only G = +l bosons and only fermions which are both 

Majorana and Weyl (as is possible in d = lo), the resulting spectrum has no 

tachyon and is supersymmetric in 10-D space-time, possessing equal number of 

f ermion and boson degrees of freedom at each mass level. 

Green and Schwarz subsequently reformulated the theory by exchanging the 

8 transverse vi’s, which belong to the vector representation of the transverse 

symmetry group O(8), f or a multiplet Sz belonging to the 8-D Weyl fermion 

representation of O(8). Th is is possible because of a magical property of O(8), 

that the vector and the two (real and inequivalent) Weyl spinor representations 
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are of the same size and are, in fact, interchangeable by an automorphism of the 

algebra (“triality”). I will describe this construction for you. To do this, I will 

proceed as follows: First, I will develop the necessary features of 10-D spinor 

algebra. Next, I will discuss 10-D supersymmetric Yang-Mills theory and its 

quantization in the light-cone frame. Finally, I will assemble the ingredients of 

the string theory in parallel with the analysis of this simpler system. 

In order to discuss 10-D fermions and 10-D supersymmetry we need 10-D 

Dirac matrices. It will be useful to construct these matrices directly in a Majo- 

rana representation. I will define the Majorana condition by the rather strong 

requirement that Dirac spinors may be taken to be real: 

(A complete discussion of the existence of Majorana representations in various 

dimensions has been given by van Nieuwenhuizen in ref. 23.) Dirac spinors in 

d dimensions generally have 2d/2 components, so ,$ will be 32-dimensional. The 

Dirac equation for c reads 

0 = ir *a[ = (ify . a,$)* = -iy* . at* ; 

<his is consistent with (63) only if 

The anticommutation relations {7p,7”} = -2qpV then imply 

(7°)T = -7’) (7i)T = 7’) so that 7°(7”)T70 = -7p . 

(64 

(65) 

(66) 

Using this relation, we can see that each matrix of the form 7°I’~V’***6, where 

l?‘Vx***6 = 7[‘7y7x . . . r61, has a definite symmetry: (7°1’++6)T = f(7°1’P***6). 
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o Now, the matrices 7 I’ pvX.*a form a complete set of 32 x 32 matrices, so we must 

find 528 symmetric and 496 antisymmetric matrices. It is not hard to enumerate 

the cases, beginning with 

(7oy = -7O , (y07qT = +7O7fi , (701yT = +70rpv , (67) 

and, in fact, the counting turns out to work exactly. This counting condition turns 

out to be a sufficient condition for the existence of a Majorana representation. 

The corresponding statement works in d =2, 4, 10, 12, 18, 20, . . . A similar 

argument shows that it is consistent to have a representation of the (Euclidean) 

Clifford algebra {ri, 7j) = 26’j in 8 dimensions in which the ri are real symmetric 

matrices. Let us label the matrices of this representation as 76. 

Since our main interest will be in exploring light-cone dynamics in 10 dimen- 

sions, it will be useful to choose a representation for the Dirac matrices in which 

those matrices corresponding to light-cone directions are especially simple. Thus, 

writing the 32 x 32 matrices 7p as matrices of 16 x 16 blocks, choose 

- 7O= (4-y r9= (:4-q 

so that 

7+c(; -F) 

(7*)2 = 0 

0 0 
7- = ( ) &i 0 

{7+,7-) = 2 . 

(68) 

(69) 

The other 7’s must anticommute with these. A set which satisfies all the necessary 
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requirements is: 

7i=(~*) ’ (70) 

where the 7: are the real symmetric 16 x 16 matrices which represent the 8- 

dimensional Euclidean algebra. 

A remarkable feature of the lo-dimensional Dirac algebra, already noted 

above, is that fact that Majorana fermions may be further restricted by a Weyl 

condition 

711( = (fl)c , where 711 = 7°71...787g , (71) 

To see how this works, first define 

7: = 7:782 . ..7." . 

This matrix satisfies 

7: = (7sgJT = (73-' = (73* ; (79)2 = 1 

- 
We can therefore choose the 7: so that 7: takes the form 

-1 0 H--J 0 1' 

where the blocks are now 8 x 8. In this basis, the 7: take the block form: 

(&j-y 

(72) 

(73) 

(74 

(75) 
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with 7:(,) = (7kc-,)T. Using this form for 7:, we can evaluate 

-7: 
= (+I = 

7: 
diag (l,-l,-1,l) . 

(76) 

where 1 is the 8 x 8 identity matrix. 7” is real, so the Weyl condition (71) is 

compatible with the Majorana condition (63). This state of affairs is peculiar to 

2, 10, 18, . . . dimensions. 

It is instructive to see what the supersymmetry algebra looks like in this 

basis. The standard form of the supersymmetry algebra is 

{9=,&d = -2 (7 - p)ap (77) 

Multiplying by 7’ and using the explicit forms 

7+7O = a 
1 0 (+) 0 0 

7-7O = a (q-J 7’7O= (#,,,) 

- 

we can write out these commutation relations as (8 x 8 blocks): 

2P- 0 0 4w3(-) - p’ 

{Q~,QJ) = h : 
2P- -&=h(+) -F 0 

-m&3(-) * p’ 2P+ 0 

-fi%(+) -6 0 0 2PS I 
(79) 

But it is possible to define a smaller algebra than (79), since, in 10-D, we may 

take Q to be a Majorana-Weyl spinor. This choice gives the minimal number 
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of supersymmetries (N = 1 supersymmetry) in 10 dimensions. The Majorana 

condition sets Q t = Q. The Weyl condition restricts Q so that, e.g., 711Q = -Q. 

If we apply this condition, we reduce Q to the form 

Q = 211” (80) 

where each entry is 8 x 1. The commutation relations of supersymmetry then 

take the form: 

{Q+a, Q+p) = 2P+6,p 

{Q+Ct, Q-p) = -Jz (%(-) * @(l/3 

{Qma,Q+} = 2P-hop = 2HSap . 

Thus, half of the supersymmetries are relatively trivial, being the square roots 

of the momentum operator P +. We may call these kinematical supersymmetries. 

Only the Q+ depend on the nonlinear interactions contained in H. 

It would be useful to understand this algebraic structure a bit better. To 

gain some experience with it, let us make use of it in working out the light-cone 

dynamics of 10-D supersymmetric Yang-Mills theory. This theory is the simplest 

supersymmetric theory in 10 dimensions, and it is simple indeed, containing only 

a vector gauge boson and a Majorana-Weyl gaugino A, which satisfies 7”X = A. 

The action for the theory is 

Let us work out the quadratic part of the light-cone Hamiltonian. Begin with 

the fermion dynamics. Using (69), (70), we can write the free Lagrangian for X 

28 



as 

=+Ti[JZ (+) a++& (+) a- (83) 

+($++]A=. 
Let us decompose 

the Weyl condition on X induces 7:X- = -A-, 789X+ = A+. Then 

lT2 = -$ XT,(id+)X+ + sAT(ia-)A- - f [ x?i$. a’x+ + x:iqs . a’x- 1 , (85) 

Now recall that the evolution parameter for light-cone dynamics is r = z+; z- 

and P+ = ia- are purely kinematical. Fields which appear in the Lagrangian 

with no derivatives a+ are thus auxiliary fields which must be eliminated to set 

up the Hamiltonian formalism. A- is such a field. Integrating it away reduces 

(85) to 
- 

(86) 

Let us rename X = 2-‘i4 X +. (Hopefully, this object, which is a Majorana-Weyl 

spinor of O(8), will not be confused with the original A.) Then f,Z2 falls into the 

final form 

L2 = XTid+X - - x - 1 T ka2) x 
2 P+ (87) 

Turn now to the bosonic half of the theory. In a light-cone reduction, the 
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gauge boson Lagrangian takes the form 

&= -i (FG)2 + F+iF-i + f F+-F+- . (88) 

Choose the gauge A- = 0; this insures that iD- = ;a- = P+ remains simple in 

the presence of interactions. Then 

L2 = -i [Ai(_d2)Ai - (diAi)2] + [a+Ai - diA+]d-Ai + i (a-A+)2 a (89) 

In this Lagrangian, A+ is an auxilliary field. Integrating it away, we find 

L2 = -f Ai(-a2)Ai + i (8iAi)’ + a+Aid-Ai 

- f (d-aiAi) s (a-ajAj) (90) - 

We have now reduced (82) to the expressions (87)) (90)) which involve only the 

dynamical fields A, Ai. Note that these fields include equal numbers of fermions 

and bosons: After the Majorana and Weyl conditions on X, each multiplet con- 

tains 8 real components. The Lagrangians (87), (90) lead to the commutation 

relations - 

[A’(z), &A’(y)]- = f. dQ)(z - y) i+j 
2 

and the light-cone Hamiltonian 

H2= d% 
1 { 

F2 
iAiP2Ai+iXTp+X (92) 

To make this look more symmetrical, let us define A = & X. Then the equations 
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defining the light-cone dynamics take the form 

~A&), Am] = & 6(‘)(z - y) hap 

[A’(z), Ai( = & dg)(z - y) c+ 

The manifest fermion-boson symmetry of 

kinematical part of the supersymmetry algebra 

metry charges Q+a take the explicit form: 

r 

(93) 

(93) is a direct reflection of the 

(81). The kinematical supersym- 

Q+a = / d9z 2i (Aiyk(P+)3/2A), . 
J 

These Q+a satisfy the commutation relations 

[Q+a, Aj] = -in 7$ Ap , 

[Q+,+] = -i JP+rhgA’ , 

so they are indeed the square roots of P+. For your 
- 

(94) 

reference, the dynamical 

supersymmetry generators for the free theory, which square to Hz, are given by 

Qsa = / dQz(-+yjAj&$%+A), . (96) 

The reduction we have seen here of a space-time vector to its propagating 

transverse components is quite analogous to the reduction of the string coordinate 

z”(c) which we saw at the beginning of the previous section. It is then not unrea- 

sonable that a 10-D string theory, formulated in the light-cone frame, in which 
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the transverse coordinates z’(z) are supplemented by an O(8) Majorana-Weyl 

fermion might possess space-time supersymmetry. Indeed, Green and Schwarz 

succeeded in constructing a manifestly supersymmetric string theory by working 

precisely along this line. We are now ready to review their construction. 

The final form of the light-cone string action derived in the previous section, 

eq. (22)) is 

1 sx = -- 
47rcY' / 

d2z (&zidQzi) ; i= 1,...,8 (97) 

We must now add to this an action for fermions propagating on the string surface. 

Let us introduce a two multiplets SA, A = 1,2, of light-cone-Majorana-Weyl 

fermions. The conditions on SA are, more explicitly, 

7+iP=o, (sA)* = SA, 7lV= +SA. (98) 

The first condition on S is the opposite of the condition we imposed on A; the 

reason for this will become apparent a bit later. Each SA is formally a 32- 

component object; however, it is reduced to 8 real components by the conditions 

(98). In particular, the light-cone condition effects the reduction: 
- 

styoy-S = fist l O  s 
(+) 0 0 (99) 

Let us represent the &dimensional Dirac matrices on the string surface as 

follows: 

+(p -J +(p ;) . PW 

Note that these matrices also have been constructed in a Majorana representation 
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which allows a further Weyl reduction, since p3 = pop’ is real diagonal. Since 

( 0 
p.a=-i & - a, 

4, - a, 0 > 
, (101) 

the Dirac equation on the string surface is solved by spinors whose upper (p3 = 

+l) component is a function only of (r - a), a right-moving wave, and whose 

lower (p3 = -1) component is a left-moving wave. 

We can merge these ingredients by considering the index A of SA as a 2- 

dimensional spinor index. Then a natural theory of free fermions constrained as 

in (98) is given by 

ss Jztz, 
= +s+ (+) p”p.as 

i =- 
47r / 

37-p 0 as , 

(102) 

where 3 = S7 ’ p ‘. The boundary condition on S (for open strings) should be 

that the momentum flux of the fermions Jb = s7-p”S must be zero on the 

boundary. This gives the condition 

- 
s+7-pus = di s+ 

(i--/q (q-G) s=” 
(103) 

We can satisfy this condition naturally by insisting that Sl(a) = S2(a) at both 

boundaries of the string: Q = 0, ?r. 

As we did for xi, we should Fourier-expand SA consistently with the boundary 

conditions: 

z’(o) = x0 + C 2 Xn cos no/P+ 
n>O 
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Co 
S aA = 

= ( x 
einu/P+ 

n=-00 > 
e-ino/P+ s (104 

We have used the fact that the Dirac eigenfunctions will be right-moving (left- 

moving) for p3 = +l (-1). As we showed explicitly for z, the modes of S with 

n # 0 correspond to excitations of the string of higher P-, i.e. of higher mass. 

In fact, the S system has the same steps as for the bosonic string: 

rn2 = 2P+P- = 2n or n/a’. (105) 

For the bosonic string, the n = 0 mode costs little energy to populate, so we 

wrote arbitrary functions of 20: 

which are naturally interpreted as states of arbitrary transverse momentum. The 

dynamics of the n = 0 mode of S is, however, more intricate. The equal-time 

anticommutation relations for PA (a) lead to anticommutation relations for the 

Fourier components S$ of the form - 

{s&g} = 2 7+7- [ (1 +;ll)]@ 

(107) 
= 2pp on the constrained subspace . 

The So* are actually a set of 8-D 7 matrices! The states on which the St act 

form a collection of string modes with P- = 0 which may be identified with the 

massless particle states of the sting theory. 
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As a step toward identifying this space, it is worth thinking for a moment 

about the spinor representations of O(8). Dirac spinors in 8 dimensions are 16- 

component objects, which may be reduced by Weyl conditions to an 8-dimensional 

7: = +l spinor (which I will call the 8,) and an 8-dimensional789 = -1 spinor (the 

8:). The matrices 7: anticommute with 7:, so they flip the 789 eigenvalue. The 

matrices 7E, then map from the 8, into the 8: and vice versa; the block matrices 

7$*) defined in (75) are essentially Clebsch-Gordan coefficients for coupling the 

8,, the 8: and the vector representation 8,. The light-cone condition we have 

placed on S, eq. (98), implies that S belongs to the 8:; we can then represent St 

asa block of 7; viewed as a matrix linking the 8, and the 8,. Since O(8) allows 

an automorphism which interchanges 8,, 8,, and 8’8, the Dirac matrices viewed 

in this way still have their standard anticommutation relations. The SE then act 

on a multiplet of states containing an 8, and an 8#; these states may be identified 

with the states created by A’ and A in our discussion of lo-dimensional Yang-Mills 

theory on the light-cone. Note that, because we have found a purely transverse 

vector and a chiral spinor, the string theory can be Lorentz-invariant only if 

there is no zero-point contribution to P-. Fortunately, any such contribution 

will cancel if supersymmetry on the string surface is maintained. 

It is worth exploring the action of St on the zero-mass states somewhat more 

explicitly. To do this, it is useful to know how to split the product SoaS, into its 

pieces symmetric and antisymmetric under a! c) /3. This is accomplished by the 

following identity: 

(108) 



where 

Rij = f (sor’iso) rij = 7F7$ . (109) 

The symmetric part follows from the anticommutation relations for St. The 

antisymmetric part arises as follows: The only I’ matrices built of 7: which 

are antisymmetric in their indices and commute with 7: are I? and TijkLmn. 

But I’ijk’mn = tijk’mnpq7~I’W, which reduces to I? on 7: = +l states. The 

normalization can be fixed by tracing with some Tij. 

Now we can represent the action of the St on the appropriate Hilbert space. 

Let Ii) denote a transverse vector state and Ip) a spinor state. Then 

where 7$ is an element of the real symmetric 7:. These relations are inverse to 

one another, in the sense that 

{St, S,“} Ii) = 2Pb Ii) , (111) 

as required. Notice that these relations are ezactly what we found before for the 

action of the kinematical supersymmetry operator Q+a on the states created by 

the light-cone dynamical fields of supersymetric Yang-Mills theory, A and Ai. 

supersymmetric Yang-Mills theory. One can check that R’j acts as a helicity 

operator: 

Rij Ik) = bik lj) - bik Ii) s (c”)kl If!) 

Given the states, we should next construct the vertex operators. But because 

the correspondence to the light-cone description of supersymmetric Yang-Mills 
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theory is so close, we can almost guess the right form by looking at the interac- 

tions in that theory. This analysis is carried out in detail in ref. 19; I will discuss 

here only the simplest part of the result. Let us first recall the correspondence 

between local field vertices and string vertex operators for the case of the bosonic 

string. The local field of a charged scalar boson couples to a massless vector via 

the vertex: 

k’ k 
= (k + k’)i ei 

The form of this vertex is reflected directly in the structure of the corresponding 

string vertex operator 

& .i.i eip-z , 
(113) 

since ii is the momentum density at the boundary of the string. The couplings 

of a vector to local fields of higher spin contain also a spin term; the expression 

given above for scalars is modified to 

[(k + k’)i + ZC’iPj] . (114 

We might then expect that the vertex operator for an external transverse, p+ = 0, - 

gauge boson in the Green-Schwarz superstring is: 

VB = ci[ii(o = 0, T) + Rij(a = 0, T)Pj] eip” , 

where 

R’j(o,,) = f sriiS(a,T) . 

(115) 

(116) 

Crossing the inserted boson in (114) with an external fermion suggests the fol- 

lowing form for the vertex function corresponding to a massless, p+ = 0, fermion 
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state: 

v, = @‘7’s _ f Riipi7is] eiP’z , 
017) 

Green and Schwarz have shown, first, that the single-string theory we have dis- 

cussed is Lorentz invariant and fully supersymmetric, and, second, that these 

vertex operators are carried into one another by supersymmetry and lead to 

Lorentz-covariant scattering amplitudes. 

To complete this discussion of the structure of the superstring, we should 

now turn our attention to the closed strings. I will restrict my discussion to a 

description of the zero-mass states of the closed string. The analysis of these 

states follows straightforwardly from our previous discussion. The fields on the 

string surface obey the same local equations as for the open string but receive a 

three-fold our previous discussion. The fields on the string surface obey the same 

local equations as for the open string but receive a three-fold modification from 

the new boundary conditions. First, the boundary condition (103) which fixed 

Sal = Sa2 disappears, so that we now have two independent 2-dimensional spinor 

fields, each of which will have its own multiplet of associated zero-energy states. 

Second, as for the bosonic string, the condition s Pb+ now become nontrivial; 

in particular, a string state containing a zero-mass left-moving state must also 

contain a zero-mass right-moving state. Finally, since no constraint now links S1 

and S2, we may choose these to have the same or opposite chirality under 7”. 

The zero-mass states of the closed superstring can thus be written as follows, 

using the notation la, b) to denote a state which is the direct product of the state 

la) of the S,’ and the state lb) of the Si: 

lG> 3 Ia, 4 , Ii, 4 , ld) . (118) 
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Ii, j) is a general transverse tensor; this can be decomposed into a symmetric 

tensor hij, an antisymmetric tensor oij, and a trace 4. Io,i) contains a spin-i 

particle +ai, plus a trace part xa = 7$ Ip, i). Ii, cr) gives a second set of fermions 

$i, x. IQ, p) gives a set of bosons whose content depends on the relative chirality 

of S’ and S2. 

Let us first consider the case 

711S1 = +s', 792 = -&p. (119) 

This is called the type IIA superstring. We can finish determining its particle 

content by noting that the states ICY,@) fill the reducible representation 8, x 8: of 

O(8). This representation contains a vector, since the invariant 7’ maps 8, to 8:, 

and a rank-3 antisymmetric tensor. Thus, the complete content of the massless 

sector is: 

h.. aij 4 v 
+i(+) X(+) .i fIiik1 , 
h(-) X(-) 

where, for the spinors, (f) denotes the eigenvalue of 7:. As for the bosonic string, 

the symmetric tensor hij may be interpreted as the graviton. Similarly, the spin- 

j fermions $i(*) may be interpreted as gravitinos. This theory, in fact, does 

contain two sets of supersymmetry charges, with 7"Q = kQ. The massless 

content of this theory is exactly what one would obtain by dimensionally reducing 

to 10 dimensions an 11-dimensional theory of with the field content 

Hij q; Fijk , (121) 

which is precisely the content of the ll-dimensional supergravity theory. (The 
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correct field content of ll-dimensional supergravity was actually discovered in 

this way1241 .) 

If we take both S’ and S2 to be 7” = +l fields, ICY,@ belongs to 8, x 

8 8’ This contains a scalar, since the 8# is real, and antisymmetric tensors of 

even rank. There are still two gravitinos (so that the theory still has N = 2 

supersymmetry), but now both gravitinos have the same chirality and cannot be 

obtained as components of a higher-dimensional object. This theory is called the 

type IIB superstring. Its full massless content is 

h.. a;j 4 ‘3 
$S x 

ftq x’ 
t7 b[ij] c[ijkL] 3 (122) 

where c[ijkl] is self-dual. 

To obtain a theory with N = 1 supersymetry, we can reduce the spectrum of 

states of the type IIB theory by identifying states with reversed orientation 

p+(a), S(a)]) = Iqz(?rP+ - a), s(7rrp+ - a)]) . (123) 

Then we obtain only the following states at the zero mass level: 

- lij) + Iji) Iia) + jai) lab) - Iba) . (124 

This theory, the type I closed superstring, thus has as its massless states 

h ij 4 $f X b[ij] 9 (125) 

which is the content of the N = 1 supergravity in 10 dimensions. Unlike the 

previous closed string theories, this one can be consistently coupled to the open 

string theory, which is necesssarily only N = 1 supersymmetric. 
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Both the type I and type IIB theories have chid massless spectra. This 

means that they are not necessarily free of chiral anomalies in the matrix element 

of gauge bosons and gravitons. But here some miracles occur. Alvarez-Gaume 

and Witten have shown that the supergravity theory with the content of 

the massless states of the IIB theory is free of gravitational anomalies. Green 

and Schwarz I21 have computed the gauge anomaly explicitly in the type I theory 

with open strings and have shown that the anomaly cancels when the theory 

is embellished with an 0(32) gauge group. They have argued that the gravita- 

tional anomalies also cancel in this particular theory. The same cancellations 

should occur in a string theory with N = 1 supersymmetry and the gauge group 

Es x Es. Such a theory (the heterotic string) has recently been constructed by 

Gross, Harvey, Martinet, and Rohm[261 . Since Es and its subgroups have long 

been recognized as natural grand unification groups [27,=1 , this latter theory is a 

promising candidate for a theory containing all of the fundamental particles and 

forces. 

3. GAUGE PARTICLES FROM STRINGS 

In our explicit analysis of the properties of bosonic and super strings, we 

found zero-mass transverse vectors and tensors which could naturally be identified 

with gauge bosons and gravitons. These bosons obey the correct on-shell Ward 

identities. But, clearly, there is much more here to be understood. One might 

pose the basic question in two different ways. On the one hand, one might 

focus on the fact that the equations of gravity and Yang-Mills theory have a 

geometrical structure. How does this structure arise from string geometry? On 

the other hand, one might consider the appearance of vectors and gravitons as 

reflecting the presence of exact gauge invariances of the string theory, viewed as 
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a field theory in the embedding space-time. What are these gauge invariances? 

The answers to these questions are not especially well understood; indeed, they 

are central issues of the current research into string theories. In the past year, 

however, a certain amount of progress has been made in unraveling these issues, 

and I would like to indicate what has been learned. One would expect that the 

two questions I have posed have the same answer. But I will only be able to give 

you two quite different answers, each somewhat incomplete. Their completion- 

and connection-I must leave to you. 

The first pieces of insight which I will describe comes from generalizing the 

theory of strings embedded in flat space, which is what we have discussed up 

to now, to strings embedded in a curved background space-time. This theory 

has been worked out both for bosonic strings and for superstrings by Fradkin 

and Tseytlin 1291 , Sen13” , and Callan, Martinet, Perry, and Friedan WI . I 

will restrict myself here to illustrating their analysis for the case of the bosonic 

string. 

The key to their argument is conformal invariance, the symmetry we used in 

a very strong way in our discussion of the bosonic string to unveil its structure 
- 
and to compute its scattering amplitudes from finite-time information. Even in 

a flat-space background, there is an anomaly which can spoil the conservation of 

conformal generators; this anomaly cancells only in d = 26. We have noted this 

point in our earlier discussion; let us now present it formally in way that will 

generalize. Return, then, to the action (2): 
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In our earlier discussion, we used that fact that the Weyl symmetry 

gab + c’(‘)gab . (127) 

is a gauge invariance of (126). H owever, since (127) has the form of a scale trans- 

formation, we should expect that, when the theory is quantized, this symmetry 

will be spoiled by the regularization. Polyakov [321 discovered that there is a sub- 

tlety in this computation: One must consider the effect of the regulator both on 

the d coordinate fields z”(t) and on the gauge-fixing determinant which appears 

when one fixes gab to the conformal gauge. Considering both effects, Polyakov 

found 

(128) 

where Z’,” is the trace of the energy momentum tensor on the string surface, 

and Rc2) is the curvature of the string 2-geometry. This anomaly disappears in 

d = 26, leading to the exact conformal invariance which we assumed in our earlier 

analysis. 

It is natural to expect that, for strings in a curved background geometry, 
- 
the problem of anomalies becomes even more severe. Let us now analyze that 

situation. To begin, we need a generalization of the action (126) to a arbitrary 

background metric; a reasonable choice is 

SC1 
47ro’ / d2z figabGpy(x) dax’$,x’ . (129) 

If we fix the conformal gauge, gab = &, , this becomes a two-dimensional nonlinear 

sigma model with variables which live on the space-time manifold with metric 
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G ccv* But that means that we are in trouble. Consider, for example, the case in 

which the background manifold is a sphere. Then (129) contains an additional 

parameter, the radius of the sphere, which acts as a coupling constant. This 

coupling constant is well known to have a nontrivial p function; thus, in this case, 

the model (129) is not conformally invariant. It is useful to cast this problem into 

a more general setting. Friedan, in his thesis I331 , studied the renormalization of 

a nonlinear Q model with variables on a general manifold, considering the space 

of metrics G,, as a generalized space of coupling constants. He then computed 

the P-functional for GCIY(x) which determines the scale-dependence of the action. 

He found that this functional takes a geometrical form; to one loop, 

= &(x) . (&gabaaz”abz”) + (Polyakov piece) , (130) 

where R,, is the curvature computed from G,,. Thus, the more general theory 

(129) is conformally invariant if d = 26 and 

R 0. pu = (131) 

Note that this is equivalent to R,, - 4 G,,R = 0, Einstein’s equation for a 

background metric in empty space. This suggests that, in more general circum- 
- 
stances, the requirement of conformal invariance implies the field equations of 

the background geometry. 

Let us check this hypothesis for the most general set of massless background 

fields available in the bosonic closed-string theory. The vertex operator for mass- 

less states is: 

r]ijdtXi&XjCik’z . (132) 

This is the l-particle matrix element of a term in the Lagrangian of the 2- 
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dimensional field theory which would be of the form 

6s = 
/ 

Ctij(X)a,Xi&Xj m (133) 

Separating t into symmetric and antisymmetric parts, and making (133) generally 

covariant in 2 dimensions, this equation becomes 

6s = 
/ 

d2z[6Hp,figabdaxp&$ + 6Bp,~abaaxpf3bxY] (134 

Note that, at the classical level, T,” = ~gabaaX”&,Xy is traceless; thus, the trace 

of H does not couple into (134) at this level. Polyakov’s calculation suggests 

that the scalar closed-string state, the trace of tij, couples for the first time via 

a counterterm of the form12’] : 

/ 
d2z,/ij R(2)9(x) . (135) 

Combining all of these insights, we can write the complete coupling of the string 

to massless background fields as 

s=1 
47ra’ 

,/ijgabGpv(x)aaxpaaxY + ~abBpv(x)i3axpt3&’ 

- 
+ f &R(2)Q(x) 

4 

(136) 

We must now compute (g). I n p rinciple, the coefficient of each term in (136) 

can be changed; however, by dimensional analysis, no new terms can arise. Thus, 

= p~v(~gabaaxpabx”) + @vEabdaXpab~Y + P’ i &Rc2) (137) 

Following ref. 31, let us discuss the leading contributions to each of the coeffi- 

cients in this equation in the natural perturbation theory of the nonlinear sigma 
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model. This is an expansion in powers of the curvature of the associated mani- 

fold; the dimensionless expansion parameter is k2 x cy’, where k is a characteristic 

momentum of the background field. For the evolution of G,,(x), one finds 

PG P” = R,, - f H;“Hv~a + 2V,J7,9 , (138) 

where HvxQ is the field strength for Bpv: 

H~ux = 3V[,Bvxl . (139) 

The first term in (138) is Freidan’s result quoted above. To understand the second 

term, notice that the coupling of Bpy in (136) has the form of a Wess-Zumino 

term added to the 2-dimensional action, and recall Witten’s result Bl that the 

/3 function of nonlinear sigma model on a group space has a zero for a particular 

nonzero value of the coefficient of the Wess-Zumino term. The renormalization 

of the Wess-Zumino term itself is given by 

/3fu = VXHXpy - 2Vx@ HAP, . (140) 
- 

If we set @  to a constant, this vanishes when Hxpv is covariantly constant. Finally, 

the next correction to the result (128) is 

/3@=-$ (s)+--& {4(V@)2-4V2~-R+&H2} . (141) 

The second term of p4 can be shown to be independent of x by using $$ = 0, 

piV = 0, and the Bianchi identities. To recover the conformal invariance of the 
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string, we must insist that all three of the PA are zero. If we also insist that d 

remains equal to 26n2 , 

/3jfu = 0 =+ Vxc-2@H;, = 0 , 

ptu=O * eq2@ (R - i H2 + 4(V@)2) - 4V,(e-2@V5D) = o , 

Bfu + 8?r2/?@G,, = 0 =+ (R,, - f G /u/R) = T,,u , (142) 

where Tpy has exactly the form that allows all three equations to follow from the 

effective action 

s= 
/ 

dax&e-“* R + 4(V9)2 - $ H2 
> 

. (143) 

This is a geometrically invariant action principle. It is, as well, covariant under 

shifts of the scalar field O(x): 

@+@+A =S s + e-2AS . (144 

% 1. x 1s usually called the dilaton field; (144) suggests that a shift of this field 

changes the coupling constant of the effective action. If we now take the step of 

identifying the background fields in (136) with their associated string particles, 

we can consider this argument to be a derivation of the Einstein-Hilbert action for 

gravity. The authors of refs. 29-31 have derived a coupled Einstein-Yang-Mills 

system by extending this construction to the heterotic string. 

fl2 The analogous statement for the superstring is required to maintain supersymmetry. 
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The power of this background-field technique seems very puzzling, however, 

when one realizes that this technique yields only consistency conditions for string 

dynamics rather than the actual equations of motion of the string theory. But 

what are these more fundamental equations ? To explore this question, we must 

go back to the beginning and set off again in a different direction. A particular 

aspect of this problem which I will explore is the form of the underlying gauge in- 

variance which gives rise to gauge bosons and gravitons as string modes. As yet, 

no formulation of the equations of string theory is known which is fully gauge- 

invariant and describes the theory completely. However, following a very beau- 

tiful covariant-gauge second quantization of the string displayed by Siegel I351 , 

several authors136’371 ’ Identified the gauge invariances of the linearized string the- 

ory and constructed gauge-invariant free-string actions. Let me now explain 

briefly what form these invariances take. 

We might begin by trying to write a second-quantized string action with as 

much reparametrization invariance as possible. To do this, let us consider again 

the Fourier decomposition of a single open string in an orthonormal (but not 

necessarily light-cone) gauge: 

- xp(a) = xp + C 2 X( cos na 
fi 

O<UIT. 
n>O 

The conjugate momenta to x(a) are given by 

P+) = i 
( 

pp+~fiP~cosno . 
n>O > 

Define c& by 

(145) 

(146) 

Xn = & (an - a-n) 9 Pn = $ (an + a-n) 9 p=ao; n 
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I 

then the Q’S are raising and lowering operators for string eigenmodes: 

(148) 

and p(a) and x’(a) are simple functions of the o’s: 

p”(u) = i 2 af: cos no 
n=-00 

(149) 
$ xP(a) = x’P(a) = C of: isin nb . 

n 

It is useful to combine 
00 

?rpf x1= c 
a eFinu n . 

n=--00 

Then we can write 

f (7~p f x’)~ = g LneFinu , 
n=-00 

(150) 

(151) 

where I have defined 

- Ln = f 2 : (Y~+,CYcl_m : . (152) 
n=--OO 

The L, are called the Virasoro operators 1331 . To understand their role, recast 

; (?lP f x’)2 = ; [(7rP)2 + (xy] f 7r cp * XI] z 7T(U f P) , 

where U and P are Hamiltonian and momentum densities on the two-dimensional 

surface. Thus, the Ln are the generators of r and u reparametrizations. The 
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operator LO contains the excitation counting operator: 

Lo = c+Ca-n’OZn; 
n>O 

(153) 

thus, 

q&-- 1) =p2+2 c (n,o~-n%-l) =(P2+M2), (154 

where M is mass operator for string eigenstates (with eigenvalues 2(n - 1)). This 

means that the operator 2(Lo - 1) is a reasonable first guess for the free string 

Lagrangian. The other Ln’s generate non-constant conformal transformation of 

the (a, 7) space. A fully conformally invariant wavefunction would satisfy: 00 6 I@) = i c bnL-n (a) = 0 3 (155) 
n=-00 

with b, = b’;,. 
. 

Let us now attempt to construct a field theory of strings with the Ln as 

symmetry generators. In the standard fashion by which one constructs a second- 

quantized field theory from the quantum mechanics of a single particle, we pro- 

mote the single-string wavefunction I@) to a classical string field @[x(u)]. This 

field is a functional of the string coordinates. We seek a free-field action of the - 
form 

s = -f 
/ 

DX(u) @[x(u)] mD[x(u)] - -f (@ J@) , (156) 

where K is a kinetic-energy operator to be determined. The condition that (155) 

is a symmetry of this classical field theory takes the form: 

6s = i C bn(@, [KY L-n]@) = 0 s (157) 
n=--00 

It is not at all difficult to construct a K which commutes with Lo, but the problem 
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of finding a K which commutes with all of the L’s is more subtle. It was solved, 

as a problem in mathematics, by Feigin and Fuks in their abstract study of the 

algebra of the Virasoro operators [=I . Let us now discuss their construction. 

We begin by defining a subspace of the full space of functionals @[x(u)] which 

I will call the subspace of level 0 states. These are the states which satisfy the 

condition 

LnQO = 0, for n > 0 . (158) 

These states are often called simply physical states. On this subspace, the con- 

formal motion (155) can be rewritten 

6@0 = i C bnL-n@o . 
n>O 

(159) 

If @  is restricted to level 0, and we use the modified transformation law (159), 

the variation of S becomes 

~(@o,KQo) = ibo(%, [K, Lo]%) + i C bn(@o, KL-n@o) + C.C. 
n>O 

(160) 

This variation vanishes if K commutes with Lo and if 

KL-n = 0, n>O. (161) 

This second condition is equivalent to the condition that K contains a projector 

onto the subspace of level 0 states. To explain this point, let me make a small 

digression. 
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The operators Ln obey a slightly nontrivial algebra, the Virasoro algebra 

[Ln,Lm] = (n - m> Ln+m + f n(n2 - 1) 6(n + m) . (162) 

The homogeneous term reflects the algebra of conformal transformations. The c- 

number term (or, central charge) is a quantum-mechanical anomaly which makes 

it inconsistent to demand that a state be fully conformally invariant, in the sense 

that it is annihilated by all of the L,. This term may be easily obtained by 

regulating the definition (152): 

A 
Ln = lim t C 

A+00 2 
: CYn+mCY-m : ; 

m=-A 
(163) 

after commuting two of the operators (163), one finds, first, that the result needs 

to be normal-ordered and, secondly, that the new c-number terms which arise 

from normal-ordering can be grouped together only after a shift of the summation 

variable, so that they cancel incompletely. The appearance of this term is a direct 

reflection of the conformal anomaly alluded to in our discussion of the bosonic 

string; the precise connection has been explained by Friedan 1401 . 
- 

The Virasoro algebra has an infinite number of generators. However, since 

&L-n = L-n(L) +n), (164 

L-n rasies the mass level of the string by n units and so a finite number of 

generators suffice to describe the string at finite levels of excitation. We can 

thus build up the representations of the Virasoro algebra level by level in the 

following way: Start from the states at level 0, which satisfy Ln<po = 0 (n > 0). 
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Define the states at level 1 as those formed by applying L-1 to a level 0 state. 

Define the states at level n as the states formed by applying to level 0 states 

any product of L-m operators whose indices sum to n; for example, the states at 

level 2 are formed by applying L-2 and LL1 to level 0 states. The tower of states 

constructed from a particular @po is called a Verma module. States at different 

levels of a Verma module are orthogonal; for example, 

(Ql, 90) = (t-lo;, %I) = (a$, LIQO) = 0. (165) 

Except at discrete values of the parameter oi = p2 (none of which occur in the 

Euclidean region beyond the string ground state mass: p2 > 2), the decomposi- 

tion into levels is an orthogonal decomposition of the space of functionals @[x(u)]. 

Thus, since L-n@ is at least of level n, it must be annihilated by the projector 

onto level 0. 

This digression has actually given us the information we need to construct a 

KR which commutes with all of the L-n. Such an operator must necessarily take 

the same value on all states in a Verma module. Thus, define KR conveniently 

on the level 0 states-following (154), we should set KR = 2(Lo - 1) there-and 

define KR on the rest of the Verma module to be equal to its value on the level - 
0 state from which the module is generated. 

The analysis leading to this conclusion gives as a byproduct another possible 

expression for K, the simple form 

K = 2(LrJ - 1) ' P , (166) 

where P is the projector onto level 0. This action does not have the full reparame- 

trization symmetry (155), though it does preserve the subset (159). Its advantage 
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is that it possess an additional, enormous group of gauge symmetries, symmetries 

which are, in fact, local on the space of strings. Since P annihilates L-,, any 

motion of the form 

Ga?(x(u)] = -Lb*n[X(u)] (167) 

is a symmetry of (156) if this expression is chosen for K. A transformation of 

the form of (167) includes many more symmetries than a global or a local gauge 

transformation, since the gauge parameter is local on the next higher space. It 

is appropriate to call this a chordal gauge transformation. 

To understand more precisely the content of the symmetry (167), it is useful 

to expand 9 and each \En in eigenstates of the string mass operator. Let a(‘) be 

the string ground state, defined, as before, by the condition CX,@(~) = 0 (n > 0). 

Note that @co) d oes not include z, the zero mode of x(u). We may then expand 

@[x(u)] = [#J(X) -i A,(x)df, -; h,,(x) a~,c~Y_~ -W’(X)(Y~~ +...I@(‘) ; (168) 

the dependence on x resides in the coefficient functions, which become local 

fields of increasing spin. Acting on an expression of this structure with Lsl = 

-CEO * a-1 + a-2 * al + . . . = p - a-1 + a-2 - a1 + . . ., one finds 

L-l\El = [-iaP&o-l - dpA~&,Cl - iAyLuf2 + . . .1@(O) . (169) 

Similarly, the gauge motion involving L-2 is given by 

L-2*2 = [-iav2a-2 - fd2a-l. a-1 + . . .piw . (170) 

From these equations, one can read off the gauge transformation laws for the 
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fields at the lowest three mass levels: The ground state field is gauge-invariant: 

6fj(z) = 0 . (171) 

The vector field at the first mass level transforms as 

44(4 = +A(4 , (172) 

which is just the linearized tranformation law of a gauge field. The fields at the 

next level have their own gauge invariance: 

&w = 2a{,A~v} - 'liw42, 6V, = Al, + ,3r42 (173) 

The choice (166) for the string kinetic energy operator thus leads, at the level of 

free field theory, to exactly the gauge symmetry we had orginally sought, plus 

enormously more gauge symmetry than we might have suspected. 

Let us, then, adopt the choice (166) and work out the action (156) for the 

lowest mass levels. Up to the first excited level, one can easily see that P takes 

the form 
- 

P= l-L-r&+... , (174 
0 

since this choice reduces to 1 on level 0 states and annihilates level 1 states. 

Then, using (164), 

K = 2(Lo - l)P = 2(Lo -l)- LILI +... (175) 

Apply this K to @  given by (168) and examine the result mass level by mass 
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level. At the lowest level, 

-10 = (P” + m2)d , 

where m2 = -2. At the first excited level 

-11 = (p2V - p“p”)A, ; 

this is equivalent to 

-; (VW11 = / -a (&J2 , 

(176) 

(177) 

(178) 

the result required by gauge-invariance. On high mass levels, one finds higher- 

spin gauge invariant theories. These theories are actually nonlocal in the present 

formulation, but they can be made local by introducing Stueckelberg compensat- 

ing fields. The simplest example of this phenomenon arises at the massless level 

of the closed string theory; let us, then, turn to that theory. 

We saw in our earlier discussion that closed strings have a doubled spectrum 

-of normal modes, corresponding to left- and right-moving waves. Excitations of 

these modes are created and destroyed by two commuting sets of operators {on}, 

{&}, each of which obeys the algebra (148). Applying (152), to each set, we can 

form two sets of operators {La} and {z,} such that the two sets are mutually 

commuting and the elements of each set have the commutation relations of the 

Virasoro algebra. After a Euclidean continuation (r ‘f a) + i(r f ia), the L, 

generate mappings of the z plane which are analytic functions of z, and the z, 

generate mappings which are analytic functions of 5. The two algebras share 
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their zero mode: 

but the two types of excitations contribute independently to the mass of the 

string state. The generalization of (154) to this system is then 

b2+M2)=4[(Lo-1)+(&l-1)]. (180) 

The generalization of our gauge-invariant action is constructed by adding to this 

expression the projector onto level 0 in both of the commuting reparametrization 

algebras: 

S = -3j4[(Lo - 1) + (Lo - l)]PPpq . (181) 

The chordal gauge symmetry of this Lagrangian is 

Specializing to the zero-mass states with total P+ = 0, this reads: 

1 <p(O) - 

(182) 

(183) 

or, more simply, 

To understand the content of this transformation, note that tp” is a tensor of 

general symmetry which can be decomposed into its symmetric and antisymmet- 

ric parts. Label the antisymmetric part of this tensor as V”; this field has the 
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transformation law 

&py = a[“(( - f)“] . (185) 

This is the natural gauge transformation of a 2-form field; it leaves invariant the 

field strength 

The symmetric part, hpy, tranforms according to 

6hp” = &‘(c + Ti)4 . (187) 

If we identify the spin-2 field h with the linearized gravitational field, (187) is 

just a linearized general coordinate transformation. 

It is straightforward to work out the actions for these fields by evaluating 

(181) using the formula 

- 
PP = [l-L-& ,Ll] [l - z-1 &El] + . . . 

0 

The term in S quadratic in b,, turns out to be just 

(188) 

(189) 

The term quadratic in h,, is slightly more tangled. It is convenient to add and 
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subtract a term to bring it into the form: 

-2(-a2) (r)“’ - 7) (t+, - T)}hAo (190) 

+2h,, 0 rlpy - 7) (-a2) (tjxu - T 
0 I 

hxa . 

The first two lines of this expression may be recognized as the quadratic term in 

the expansion of the Einstein-Hilbert action 

/ dTiR (191) 

obtained by replacing gPv = qrv + h,,. The last line can be written, using 

R= aW’h,, - a2h; + . . . , (192) 

as a nonlocal interaction of curvatures: 

- 

/ R($$)R - (193) 

This interaction can be made local by introducing an additional scalar field ‘p(z); 

the expression 

/ ((ac,c~)~ - 2~4 (194 

reduces to (193)when (o is eliminated using its equation of motion. 
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We have now obtained a linearized action involving exactly the field content 

expected at the massless level of the closed string -an antisymmetric tensor field, 

a graviton, and a scalar dilaton. The gauge invariances of this model, though as 

yet present only at the linearized level, follow natural from a principle based in 

string geometry. As a bonus, the final action we have obtained, incorporating 

(194), is precisely a linearization of the effective action (143) obtained by the 

background field method. 

To complete this discussion, let me add two notes. First, recall our obser- 

vations here that the projected action is nonlocal, that this nonlocality can be 

removed by adding to the model additional fields, and that these new fields are 

necessary to complete the particle content of the theory. This turns out to the 

generic situation at higher mass levels. Complete local actions for the bosonic 

string have recently been constructed by several groups [37,41--431 
. Second, the 

whole discussion I have given here can be extended to ‘the superstring; there, 

linearized local supersymmetry also appears among the chordal gauge motions. 

Presumably, the two partial answers we have found to the problem of for- 

mulating the gauge invariance of string theories connect to one another and to 

-some more geometrical foundation. At the moment, no one knows what that 

connection is. I expect, though, that we will soon see progress on this question 

and soon deepen our understanding of the space of strings and the nature of field 

theories on this space. I hope that this first look at the theory of strings might 

have provided a useful step toward the imposing territory we have yet to explore. 
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