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ABSTRACT 

The heavy quark-antiquark potential is shown to be a monotone non-decreasing 

and convex function of the separation. This property holds independent of the 

gauge group and the details of the matter sector. 
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Some interesting theorems relating the order of energy levels of quarkonium 

to convexity properties of the heavy quark potential, V(R), were recently derived 

by Baumgartner, Grosse and Martin. ’ In particular these authors showed that if 

V is a convex function of R2, then 

En,t < En-1,~+2 , (1) = 

where the energy levels are labelled by the angular momentum .f! and the number 

of nodes of the wavefunction n. In this note I would like to point out that 

convexity of V as a function of Ra, for all cr > 1, is a general property of gauge 

theories, independent of the choice of gauge group and the details of the matter 

(light fermion and scalar) sectors. 

I should state right at the outset that this paper makes no claim to originality. 

The convexity of V as a function of Ra means that 
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for all cr 2 1. This is equivalent to the combined statements: 
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i.e. that the quark-antiquark force is everywhere attractive and a monotone 

non-increasing function of their separation. That this is indeed so is known to 

physicists who have worked on rigorous aspects of lattice gauge theories,2 but 

given the simplicity of its proof, it has been considered unworthy of particular 
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emphasis. It has thus escaped the attention of a wider audience, which I believe 

it actually deserves since: 

(a) combined with the result of Baumgartner et al., it elevates the ordering (1) 

of the levels of charmonium ($), bottomium (Y), toponium, etc., to a most 

general rigorous theorem of quantum field theory, and 

(b) it provides a subtle and apparently forgotten consistency check for Monte- 

Carlo simulations of quarkonia. 

In this note I will thus present the simple derivation of this result. 

Let us start with a pure gauge theory on a hypercubic lattice3 with sites 

s = (s1,s2,s3,s4) E z4. The role of the lattice is only technical, and sets the 

stage for a rigorous proof; the inclusion of dynamical matter will be discussed 

later. The fields U(b) are as usual defined on the directed bonds b = (f, 5’) of 

the lattice, and take values in the gauge group G. A group element can more 

generally be assigned to every directed path w = (se + ~1 -P . . . --) SJ) on the 

lattice 

Traversing the same path in the opposite direction induces hermitean conjugation 

U(-w) = u+(w) , (3) 

with -w = (of + ff-1 * ..* -+ s1 --+ se). For the action we take N N N 

s=’ c g2 Re tr U(p) 
plaquettes p 

(4 

with the trace in, say, the fundamental representation, but any other one-plaquette 

action would do. Finally, the heavy quark-antiquark potential can be extracted 
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from the expectation value of long rectangular Wilson loops3 W, with sides of 

length 2’ and R (see figure la) as 

V(R) = lim 
T+CO 

-flog (tr U(W)) + constant 
> 

, (5) 

where 

(tr U(W)) = / n [dU(b)] ewstr U(W)/ / n [dU(b)] ems 
b b 

and [dU(b)] is the invariant group measure.‘l We should emphasize that the 

potential, so defined, is the vacuum energy in the presence of infinitely heavy 

external q~ sources, and does not include spin-dependent interactions. 

The action (4) enjoys a remarkable property, reflection positivity, which guar- 

antees the existence of a positive-metric Hilbert space, and of a transfer (time- 

evolution) matrix. 4 Indeed, take any S-dimensional hyperplane normal to a prin- 

cipal axis of the lattice, for instance the hyperplane s1 = 0, and denote collectively 

the set of sites, links, plaquettes, etc., that lie above, on or below this hyperplane 

by L+, LO or L- respectively. Define a reflection 8 on all functionals of bond 

variables 

U(V)) = f* Web)) (64 

111 Strictly speaking, the physical potential, is obtained by taking the appropriate scaling limit 
g2 (u) 4 0 as the lattice spacing u shrinks to zero. Since, however, we will establish convexity 
for any value of g2, it will also hold in this limit. 
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where the reflection on sites, bonds, paths, etc. is, of course: 

e: = e(s1,s2,s3,s4) = (-s~,~~,s~,~~) 

eb = e(E,$) = (e:,ef) w 

Then for all functionals f that only depend on the bond variables in L+ U Lo we 

have 

(fef) = 2-l J brIkK?b~Iexp 

VW)1 fvJ(w exp 

. m WWI f * (U(eb)) em 
beL- 

P(b)1 fP(b)) exp 

which implies the Schwarz-type of inequality 

Wf2>” 5 (hefd - (f2ef2) . (7) 

Using this inequality for a reflection about a hyperplane parallel to the (long) 

time axis, and normal to the plane of the Wilson loop of figure (la), and recalling 

5 



eqs. (3) and (6), we obtain 

(tr u(W)> = C (u(w,)ijeu(wz)ij) 
i,j 

5 (tr(u(Wl)U(-ewl)))1’2 (tr(U(W2)U(-BW2)))1/2 . 

Here i, j are indices in the fundamental representation of the group G, the paths 

Wr and W2 are defined in figure (lb), and the last step is the conventional Schwarz 

inequality. From the definition of the heavy-quark potential, Eq. (5), we then 

deduce immediately for all 0 < t < R that 

V(R) > $V(R-r)+$V(R+r), = 

i.e. V is indeed a convex function of R. 

It remains to show that V is also monotone non-decreasing. In view of its con- 

vexity, we need only prove this asymptotically, i.e. show that no finite repulsive 

force can survive at infinite separation. But this follows immediately from the 

fact, established by Simon and Yaffe,’ that large Wilson loops can be bounded 

from above by a perimeter-law decaying exponential, so that the potential is 

bounded from below by a constant. 

Let us finally discuss the inclusion of dynamical matter. Adding light fermions 

will not destroy convexity, even though it drastically modifies the shape of the 

potential (in particular one looses heavy-quark confinement due to screening). 

The reason is that a gauge theory with light fermions is still reflection positive,n2 
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and reflection positivity was the only ingredient in our proof of convexity. The 

same is true in the presence of (Higgs) scalars rj(f), except that the definition of 

the heavy quark potential, Eq. (5), should now be modified to take into account 

the direct Yukawa couplings of the scalars to the external sources: 

V(R) = TLir iflog (trU(W)*exp (Ag((E))) +constant) , 1 

where X is the Yukawa coupling constant and the summation runs over all lattice 

sites on the Wilson loop W. The proof of convexity then goes through as before. 

I thank Gregory Athanasiu, Dick Blankenbecler and Lefteris Tomboulis for 

a discussion. 

fl2 Provided one uses only nearest-neighbour fermion interactions. * . By universality this is, 
presumably, not an essential restriction. 
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FIGURE CAPTIONS 

1. (a) The large WI 1 son loop W, with sides of length T and R. The dotted 

line is its intersection with the reflection-hyperplane. 

(b) The paths W  1 and W2, going from A to B, used in inequality (8), and 

their reflections. Note that W  is the combination of WI and -0W2. 
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