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ABSTRACT 

The graviton propagator in a de Sitter background is found to be divergent. 

We show that as a consequence of this divergence, de Sitter space is not a solution 

of the equations of motion of the complete theory. If we start from de Sitter space - 
as a classical ground state, quantum corrections change it into flat Minkowski. 
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An outstanding problem in the theory of gravitation is the observed van- 

ishingly small value of the cosmological constant.’ In perturbation theory this 

parameter can assume any value and one has to fine-tune it to zero in order to 

have a vacuum state corresponding to flat Minkowski space. Several attempts 

have been made to argue that the zero-value may be preferred dynamically2’3 

and in this letter we want to discuss a new approach along this line. We shall 

present only our method and results and we shall leave all technical details for a 

lengthier publication.4 Although all our formulae and conclusions can be trivially 

extended to d-dimensions, in this letter we shall restrict ourselves to d = 4. 

Our starting point is the observation that the propagator of a massless scalar 

field in four-dimensional de Sitter space is singular.5 To be more precise, let us 

consider a scalar field described by: 

l = f d2i{Spy (a#P) (h(p) - m2 p2} . 

We choose the background metric of the form: 

gpu = S,, = (t2a2)-l vpu 

(1) 

(2) 

-with qllV the flat Minkowski metric. The Lagrangian (l), after some algebra and 

a field resealing, becomes: 

with 

D-1=-#-~2+; (3) 

The inverse of the operator D-l depends on the initial conditions one chooses to 

impose, but for a choice which preserves the symmetries of de Sitter space,’ D 

2 



is given by: 

1 qg-v) r($+v) 
D (5, t; S’, t’) = tt’ 

w2 
F i-v, ;+v, 2; l+ f-g] (4) 

where a2 is the invariant distance a2 = (a2tt’)-l[(t - t’)2 - (~2 - i?)“], 

and F is a hypergeometric function. We see that for m2 + 0 

the 

for 

propagator develops a pole of the form l/m2. 

Our argument will be based on the fact that the same pathology occurs also 

the graviton propagator in de Sitter background. Let us first prove this 

statement. We start with the Lagrangian: 

We expand around the background given by Eq. (2) and we write: 

s,.w = I& + h,u . 

(5) 

(6) 

The scalar curvature of the background is: 
-_ 

Z = -12a2 = A tc,2 . (7) 

We must now choose a gauge, isolate in (5) the quadratic part and solve the 

corresponding equation of motion in order to find the graviton propagator. This 

is quite lengthy and tedious, so we try to find a gauge in which the differential 

equation reduces to that of the scalar field whose properties have been studied in 

the literature. We found it convenient to have as much gauge freedom as possible 
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and we promote the Lagrangian (5) into a locally conformally invariant one by 

introducing a scalar compensating field Q(z). 

fT = fi 1 -; (a,(p) (&p) spy - & R(V + P)2 + X(V + f&g4 1 (8) 

where conformal invariance is spontaneously broken by the vacuum expectation 

value of cP(z) which we wrote as p(z)+V with V = 2&/rc. The coupling constant 

X is equal to Arc4(24)- 2. We wrote the Lagrangian (8) in four dimensions but 

it can be extended to arbitrary d, still preserving local conformal invariance. 697 

Now we can impose five gauge conditions and we take them to be: 

hop = 0 ; hj=O . (9) 

It is straightforward to compute the graviton propagator in this gauge. We must 

expand (8) according to (6) and keep only terms quadratic in the fields. After 

some algebra, diagonalizing the h - cp terms and resealing the fields we obtain 

with 

D-l = lim GM t+o {[ 
-ai - z2 + f 1 qik qje - 2z2 r]ik wje + e-l r]ij qke (10) 

where wij = kikj/L2. The last term proportional to e-l is due to the fifth gauge 

condition hf = 0. We can invert the operator (10) by introducing the complete 

set of S-dimensional projectors for symmetric rank-4 tensors Pc2), P(l), P(“--sw), 

p(o--wd, p(“--8), p(-“) h w ose precise definition is given in Refs. 8 and 7. We 
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only notice that Pt2) is the projector for the transverse and traceless, spin-two 

part. In terms of these operators we can show that: 

APc2) + BP(l) + CP(O-“1 + D P(o--SW) + p(O-ws) 
> 

+ Ep(O-w) -' 1 
= a p(2) + ; p(l) - I3 

02--E 
pP--8) + D 

D2-CE 
(pP-4 + pP-4) 

C - 
02--E 

pw-4 . 

In our case the operator (10) is of the form of the 1.h.s. of (11) with the identifi- 

cation 

A&;-P+;; B=A-i2, C=A+2e-l; 

(12) 
D = fi t-l ; E = A - 2g2 + e-l . 

We see that A, whose inverse is precisely the coefficient of the transverse part of 

the propagator, equals the operator given by (3) with m2 = 0.’ It follows that, at 

least this part, contains the singularity of the massless scalar field. This result is 

valid in all dimensions. How are we sure that this result is not an artifact of the 

special gauge we have chosen ? First we notice that, since the singularity appears 

-in the transverse part of the graviton propagator, it cannot be removed by a 

change of gauge. However, the real proof of the relevance of this effect consists 

in computing a physical quantity and showing that it is affected by the presence 

of the singularity. In the rest of this letter we shall do just that. We shall also 

show that, as a result of the singular nature of the propagator, the ground state 

changes into flat Minkowski space. 

An immediate consequence of our result is that a consistent quantization 

around a de Sitter background requires an infrared regularization. The simplest 
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choice is a term linear in the quantum field h and so we add to the effective 

Lagrangian a term r^h;, where r^ is a parameter with dimensions [mass14. This 

regularization breaks local coordinate as well as conformal invariance and gives a 

mass to the graviton. However, the compensating field Q(Z) is not an independent 

degree of freedom. Local conformal invariance implies 

(13) 

In the presence of the infrared regulator ih,, P the equations of motions are, be- 

cause of (13), inconsistent. In order to restore consistency we must also add the 

term Z@(z) with c^ equal to 8+/V. At the end the limit i: + 0 must be taken. 10 

Let us now expose our program: The theory, in its minimal form, contains 

a mass scale rc-l or, more conveniently, V and two dimensionless parameters X 

and r = F/V 4. Every physical quantity can be computed as a function of them. 

We shall concentrate on the curvature R. It is obtained by setting equal to zero 

the coefficient of the linear term in hz in the effective action. This coefficient is 

given by the sum of the graviton tadpole diagrams. In the tree approximation 

we find: 
-_ 

R(o) = 24 (A + 2r) V2 . 04 

At the limit r + 0 we obtain fz given by Eq. (7). At higher orders we must 

introduce a suitable ultraviolet cut-off and, in practice, we shall use dimensional 

regularization. The result will be a function R(V2, A, r, E) where E = 4 - d. The 

physical value is obtained by first taking the limit r + 0 and then letting E --+ 0. 

This minimal theory can be easily extended to include matter couplings, 

if any, as well as higher derivative terms in the metric tensor. In fact, such 
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terms may be desirable if we want to achieve (i) renormalizability, (ii) a bounded 

Euclidean action or (iii) simply to introduce more dimensionless parameters in 

order to obtain a consistently truncated expansion. We shall come back to this 

point presently. 

Of course, we are not able to sum exactly the series of tadpole diagrams and 

obtain the exact value of R. Therefore, we must use some kind of approximation. 

One possibility is to remark that each term in the series becomes singular when 

i -+ 0, so we can try to isolate, order by order, the most singular terms. This 

may be possible because, in this approximation, only graviton lines contribute 

and both propagators and vertices become quite simple. However, in this letter 

we shall present, as an illustration, the results of a first order calculation with 

only one-loop diagrams taken into account. In order to make this truncation 

consistent we need one more coupling constant. The idea is similar to the one 
13 used in dimensional transmutation, i.e. we arrange things so that, in some 

small expansion parameter, one-loop diagrams become of the same order as tree 

diagrams and all multi-loop diagrams become of higher order. The simplest 

addition to Einstein’s gravity which achieves our goal is the introduction of a 

term proportional to R 2. This term does not solve either the renormalizability -_ 

or the boundedness problem, but, on the other hand, it does not spoil unitarity. 

The conformal extension of a theory with R and R2 terms can be written as: 

where cy2 is a new dimensionless coupling constant and q ip denotes the covariant 

box acting on a(z). We prefer to work with Lagrangians containing only first 
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derivatives and this can be easily achieved with the introduction of an auxiliary 

field F(z).~ After some rather lengthy algebra, we rewrite (15) in the classically 

equivalent form: 

- T (VF + shwo + chwf)’ ( ~)2+Av4(l+~)4} 1+ 

+ih;+c^ 5 (a+f) 

where we have gone through the following steps of field redefinitions: 

F=---& (LB+) ; 6=+-F 

F’ = F - vj’ ; a’ = 6 - V@ ; v = vip + VF 

shw = F ; ‘-hw = 3 ; 
V V 

(16) 

(174 

(174 
-_ 

The Lagrangian (16) is still not very convenient for calculations because it 

contains non-diagonal terms bilinear in h, 0 and f. In order to diagonalize the 

quadratic forms we introduce new fields: 

in terms of which there are no mixed propagators. We are finally, in a position to 

compute the curvature R, in terms of the independent parameters of our theory 
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which we choose to be cy2, X and V. In the tree approximation, the vanishing of 

the coefficient of the linear term in h gives: 

-Rv2-12a2V2v;+24XV4+48rV4=0 . 

On the other hand, Eq. (17a) gives for VF: 

R 
vF = fjVa2 - 

(19) 

(20) 

The combination of (19) and (20) yields the value of Rco) given in Eq. (14). At 

higher orders we must compute all tadpole diagrams. The following remarks, 

results of a rather lengthy, although straightforward calculation, simplify this 

task: (i) only graviton internal lines give divergent contributions when r goes 

to zero. (ii) For the purposes of this computation, the three-graviton coupling 

constant turns out to be Rv2 while each graviton propagator brings a factor l/v2. 

(iii) For perturbation theory to be meaningful we must assume that o2 < 1. In 

fact, in this paper, we shall also assume that o2 < X; in this case V2/v2 is of 

order 02. With these remarks in mind, the higher order corrections to Eq. (19) 

can be written down easily. At the one-loop order we obtain: -_ 

R2-RV2+24XV4+48rV4=0 , (21) 

where we have omitted terms of order cx 2. The term proportional to R2 comes 

entirely from the one-loop calculation. We have split its contribution to two parts. 

The only diagram which contributes to the B-term, the one which diverges when 

r + 0, is the graviton loop. All others, scalar as well as Faddeev-Popov ghost 

loops, contribute only to A. We see that, if we are allowed to truncate the loop 
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expansion and solve (21) for R, we find, at the limit r + 0, R = 0. At this 

point the presence of the second coupling constant ar2 is crucial. Indeed, one can 

verify that the two-loop diagrams contribute to Eq. (21) terms of order a2R2 

and similarly for higher loops with increasing powers of the coupling constant. 

It follows that, for a2 < 1, it is consistent to keep only the terms present in 

Eq. (21). We conclude that, although we started with a de Sitter background 

space-time, quantum corrections force the curvature to vanish. de Sitter space is 

not a solution of the equation of motion. 

Before closing we want to remark that the one-loop truncation was made only 

for convenience. As we mentioned earlier, one could sum the most singular terms 

to all orders with the same result. However, we believe that a completely non- 

perturbative proof should exist, similar in spirit to the ones showing the absence 

of spontaneous breaking of a continuous global symmetry in two dimensions, 14 

establishing an inequality of the form R 2 0, thus excluding the case of de Sitter 

space. 
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