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Introduction 

We will describe a high gradient structure capable of accelerating extremely 

short electron bunches. 

The structure proposed is a very simple induction linac; this induction linac 

is similar to Radlacl in one way, and to the wakefield accelerator in another. The 

closest kin is the switched power linac proposed by Willis.’ 

The Structure 

A set of parallel metallic disks with a small hole in the center is alternatively 

charged at a potential +Vi with respect to the adjacent disks, which are at 

ground (Fig. 1). An ideal switch distributed around the periphery of the disks 

is closed at t = 0, generating a wave that moves towards the center of the disks. 

The wave grows in amplitude because of the increasing impedance, just like in 

the pillbox wakefield transformer. The timing is adjusted so that the high field 

appears at the central hole when a short electron beam bunch to be accelerated 

enters the gap between the two disks. The beam gains energy traversing this 

gap; the voltage applied is the wave voltage, V, minus the DC voltage, VDC and 

V >> VDC. In the following gap the electric field is in the “right” direction, so 

that the total energy gain is V, neglecting beam loading. 
-. 

The following is an attempt to calculate the accelerating gradient. 



Calculation of the Accelerating Gradient 

Two parallel disks of radius b form a capacitor initially charged at Vo (see 

Fig. 2). At t = 0 the outer edge of the disks is shorted, i.e. a wave -Vi is injected 

from the periphery towards the center. 

The electric and magnetic field at a radius r and time t are given by the 

following expressions:3 

O” Ez f ( > ,t =2Eo c 
Jo (ze f) cos xe $ 

e=l xe Jl (xe) (1) 

BP ; ( > SE0 ,t =-- O” J&e; 
C c ) sin xe 4 

(2) 
e=l xe JI (xe) 

Jo(x,E) and 51 (xei) are the Bessel functions calculated at xei, xe being the 

solutions of Jo(xce) = 0. 

A plot of the electric field as a function of time for different positions along 

the radius is in Fig. 3. The E field grows as m; a simple energy conservation 

argument can be made for this dependence: since the pulse length does not 

change while the pulse travels towards the center of the disks, then 

where (1) and (2) refer to two different voltages at different values of radii; 

therefore 

since Z(R) is proportional to l/R. 

The solution contains an impedance pole at r = 0, so that one sees a reflected 

wave following the initial step. This distance in time between the reflection and 

the front step decreases as one approaches the center, i.e. the two waves merge, 
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Fig. 3 through 6. The expression given in Eq. (1) allows us to calculate more 

precisely the energy gain of an electron crossing the gap, under the following 

assumptions: 

(1) The wakefield induced by the accelerated charged is neglected. 

(2) No beam loading. 

(3) The E, field is not modified by the presence of the center holes, i.e. we use 

the analytical solution even though the boundary conditions are slightly 

different in reality. 

(4) The Ez field is ideally fast, i.e. no dispersion is applied to E,(t). 

At a certain position r one electron enters the gap, the time to. The electron 

will exit the gap after a time g/c. The increase in momentum A will be: 

A=qtT’Ez(; ,t) dt (3) 
to 

Integrating Eq. (13) term by term: 

2q b E. F ?Cxei) 
e=l xe Jl Cxe> 

sin e _ sin xec(tO + f) 
C b b 1 (4 

-- The momentum gain calculated by Eq. (4) can be thought of as a time average, 

,!?, of the electric field acting upon the charge q 

The value of E has been calculated for two fixed radii of 1 meter and 4 meters, 

varying the gap from 2 to 14 mm in lmm increments. The results are plotted in 

Fig. 7 and summarized in Table I. Each curve represents the value of E for a fixed 

gap length, as seen by an electron appearing in the gap at different phases from 

4 



the wave. The electron is always injected in the disk’s geometrical center. These 

calculations show that the peak value of E is related to the ratio R/g (R f b) 

(5) 

Table I summarizes the values of peak field us gap, and the ratio E/E - m 

for the 1 m radius and 4 m radius disks: G is the gain, i.e. the ratio between the 

pulsed and the DC field. For instance, a radius of 1 m with a 2 mm gap will 

provide a time averaged field E about 62 times larger than the DC field. The 

peak field however will be much higher for a very short time. 

Table I 

g,mm @7ii G E/d% m G wm 
lm lm lm 4m 4m 4m 

2 

3 

4 

5 

6 
-. 

7 

8 

9 

10 

11 

12 

13 

14 

22.36 61.69 2.758 44.72 117.5 2.63 

18.26 49.73 2.723 36.51 98.7 2.70 

15.81 42.62 2.696 31.62 86.4 2.73 

14.14 38.06 2.691 28.28 77.7 2.74 

12.91 34.79 2.695 25.82 71.2 2.76 

11.95 32.18 2.692 23.90 66.0 2.76 

11.18 29.98 2.681 22.36 61.7 2.75 

10.54 28.15 2.670 21.08 58.0 2.75 

10.54 28.15 2.670 21.08 58.0 2.75 

9.535 25.41 2.665 19.07 52.1 2.73 

9.13 24.30 2.661 18.25 49.7 2.72 

8.77 23.28 2.654 17.54 47.6 2.71 

8.451 22.38 2.648 16.90 45.8 2.71 

Zero Risetime 
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Equation (4) gives the accelerating field for a zero risetime pulse. In practice, 

the switch across the outer edge of the radial line will have a finite risetime. Using 

Eq. (1) for the electric field, (and Eq. (2) for B,) we have introduced the effect 

of finite risetime T by calculating the value of the ,?? as the super position of 

infinitesimal successive steps varying in time as 

E(t) = EOeetIT 

so that Eq. (1) becomes 

Ez(f ,t,r) =2 2 A e=l e7 (-$) cos y(t-t’)dt’ 

0 

where A, is 

A, = ,“$;f; 
e e 

Substituting (6) into (7) we obtain 

Ez (f ,t,T) = ? 2 AeJ ewt’/’ cos y (t - 7’) dt’ 
e=l 0 

Setting d = cr/b 

Ez(i ,t,d) =2Eo 2 A,[l+ygdz COST + ,TsdZ sin y] 
e=l e e 

Note that Eq. (9) is identical to Eq. (1) for T = 0. 

(6) 

(7) 

(8) 

(9) 

Using Eq. (9) we calculate E as it was done in Eq. (4). Intuitively the finite 

risetime effects should be similar to extending the gap g to larger values. 
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Fitting the calculated values of E we obtain a relation similar to (5): 

Ez2Eo 
R 

.48g + .5777Rc (10) 

where rR is the 10% to 90% risetime. A convenient approximation of (10) is: 

EE2Eo 
2R 

g + TRc 
(11) 

Conclusions 

The radial line transformer technique is capable of providing a high gradi- 

ent for very short electron beam bunches. Such linac requires a very fast (few 

picoseconds risetime) and very efficient switch to become a reality. 
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Figure Captions 

1. Schematic arrangement of the linac structure. 

2. One set of electrodes. The variables of Eq. (1) and (2) are indicated. 

3. Electric field at different radii as a function of time, as calculated by Eq. (1). 

4. Same as in Fig. 3, moving closer to the center (r/b = .Ol), i.e. this is the 

electric field seen by an observer 1 cm away from the disk’s center, when 

the disk’s radius is 1 meter. Remember that this is a step response, and 

yet the pulse is already extremely short. 

5. Same as in Fig. 4, 2.5 mm from the center. 

6. Closer yet, 1 mm from the center, the peak field is larger but the “width” 

has decreased. 

7. Value of E, as defined by Eq. (15), f or a 1 m radius disk, with gap varying 

from 2 mm to 14 mm. The value is calculated in the geometrical center. 

The horizontal axis is the position of the wave front at the time at which 

the test electron enters the gap. 
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