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1. Introduction 

The internal consistency of dual string models depends on the scattering am- 

plitudes satisfying a huge class of Ward-like identities PI which can be expressed 

as the decoupling from any physical scattering process of on-mass-shell single 

string states of the form L-, 1 ‘E) , n > 0, where the L, are the generators of the 

Virasoro algebra. For example, the no-ghost theorem shows that this decoupling 

mechanism removes all negative-norm single-string states from physical processes 

if space-time has dimension d 5 26’2931 . For the massless vector and tensor states, 

these Ward-like identities (which involve only L-1) give precisely the restrictions 

on S-matrix elements which guarantee the proper Lorentz transformation prop- 

erties for massless spin-l and spin-2 particles. The above decoupling mechanism 

generalizes to the fermionic string WI , with the L-, replaced by their appro- 

priate graded extension. 

At the tree level, decoupling of the states created by the L-, is a consequence 

of the (super)conformal invariance of world-sheet dynamics. At the one loop level, 

the Ward-like identities may be anomalous, as is true in the chiral superstring [%lOl 

unless the gauge group is SO(32), Spin(32)/&, or &3 x &‘11’121 . It is interesting 

to note that these anomalies break the SO(2,l) subalgebra which is associated 

with one of the most fundamental properties of string models-duality WI . 

As long as one limits consideration to S-matrix elements, the on-mass-shell 

decoupling of states is an adequate statement of the underlying invariances nec- 

essary for the consistency of the theory. However, this is not sufficient for formu- 

lating an action principle for string dynamics. To date, the only action principle 

which has been formulated for interacting strings is the one based on light-cone 

dynamics [14’15] and re-expressed in terms of a string field theory through the ma- 

chinery of second quantization PI ; this formalism makes use of a preferred frame 

and a fixed gauge. But for the free string theory, the problem of formulating a 

Lorentz-covariant, gauge-invariant action principle has recently been solved. The 

zero-slope analysis of the open and closed string theories [17,181 suggested that 
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one should search for exact off-shell gauge invariances. An important step toward 

the realizaton of these invariances was the development of a manifestly Lorentz- 

covariant, though still gauge-fixed, action principle llgl based on the BRST (first) 

quantization of the string Pwl . Later, off-mass-shell gauge transformation laws 

were postulated [w3] and several groups constructed free-string Lagragians with 

these symmetries as invariances [W4] . In particular, three groups [22,25,261 sue- 

ceeded in constructing a linearized local string field theory from which the for- 

mulation of ref. 19 could be recovered by gauge-fixing. 

In this article, we will show how the gauge-invariant formulation of refs. 22, 

25, 26 reduces upon suitable gauge-fixing to the light-cone formulation of refs. 

14, 15, 16. We believe it is important to understand this question, because the 

most pressing problem for the gauge-invariant formulation-the construction of 

the interaction terms-has already been solved in the light-cone formulation PI . 

It is likely that an understanding of the precise relation of these two formulations 

will offer insight toward the construction of a gauge-invariant interaction. 

The reduction of the gauge-invariant formulation to the light-cone gauge is 

not entirely straightforward, since the proper local gauge-invariant string action 

contains new degrees of freedom, beyond those supplied by the string modes of 

oscillation, and additional gauge transformations which act only on these new 

states. This means that the argument for the sufficiency of the transverse light- 

cone states131 , even as recently recast 1271 as a gauge-fixing prescription for an 

earlier, nonlocal form of the action W3l , needs to be re-examined and perhaps 

modified in this new context. From the point of view of counting propagating 

degrees of freedom, the covariant formulation has already been shown to agree 

with the light-cone formulation [281 . What we will do here is explain the explicit 

manner in which the reduction to the light-cone gauge is achieved. 

We will, in fact, present two different arguments which connect the two for- 

mulations. The first, presented in Section 3, generalizes the argument of ref. 27 

in proving that all solutions to the equations of motion of the gauge-invariant 
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free string theory are gauge-equivalent to transverse oscillations of strings. This 

establishes the connection even at the quantum level, though by a somwhat in- 

direct argument. The second, presented in Section 4, proceeds by a direct and 

brutal gauge reduction of the action. 

We will present our arguments in a unified notation which makes clear that 

they apply to open and closed bosonic strings, and to open and closed fermionic 

strings in the Neveu-Schwarz-Ramond formulation. This notation, which was 

introduced in ref. 22, is reviewed in Section 2. Whenever a formula must be 

written explicitly, we will use, for simplicity, the example of the open bosonic 

string. 

2. Formal Preliminaries 

In this section, we will review the structure of the gauge-invariant free string 

theory to the extent necessary for our analysis. We will use the notation of ref. 

22; the reader should note that the free-string actions of refs. 22, 25, and 26, 

while somewhat different in appearance, are completely equivalent. We will also 

set up our conventions for the light-cone formalism. 

Let us first review the gauge-invariant action for the open bosonic string, in 

the formulation of ref. 22. The basic objects used in this formulation are string 

differential forms. The simplest string form is a string field, a general functional 

of a string position Z(O). Such a functional may be expanded in eigenstates of the 

single-string Hilbert space. Let cyf: denote creation and annihilation operators for 

string modes: 

[cY[, a;] = n qpy 6(n + m) (2.1) 

(In general, positive (negative) indices will denote annihilation (creation) opera- 

tors.) Let @(o) d enote the single-string vacuum, the state annihilated by on for 
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n > 0. Then we may expand: 

@[x(a)] = {4(x) - iA,(z)a~, - ;h,,(z)a’,olY, - iv,(z)cr”-, + . . . }a(‘) (2.2) 

Notice that the center-of-mass coordinate xp is retained in the coefficient func- 

tions; thus, these coefficient functions are local fields of increasing spin. 

String differential forms are string fields which, additionally, carry two sets 

of indices (upper and lower). These indices take values which run over positive 

integers; these are in l-to-l correspondence with the annihilation operator gen- 

erators of the Virasoro algebra: {L,: n > 0). Each set of indices is completely 

antisymmetrized. Indices are raised and lowered with the metric 

We denote a form with a upper and b lower indices as an (:)-form. Exterior 

differentiation is defined on these forms as follows: View the Virasoro operators 

as the basic differential operators on the space of strings. Write the commutation 

relations of the Virasoro algebra symbolically in the form 

[Lm, Ln] = VmnP Lp 

P --my L-n] = - Vmnp L-p 

iLm,L-nl = Wmn’Lp + WnmP L-, + vmnL(m) , 

(24 

where m, n,p are positive integers. Then for C an (:)-form, define dC as the 

operation of differentiating by L,, appropriately covariantized, and 6C as the 
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operation of differentiating with respect to L-,: 

PC) [ml...m,] 
[nl...na+l] = L[nl C[m1*‘*ma1n2...n~+l] + a Wp[nl [m1 CPm2~~~ma1nt...n~+l] 

(~C)[ml...ma-ll[nl..~n~~ = L-, C[pm’...m~-‘]~nl...ns+ll + b WLnlp* C[pml~*~ma-l]qnn . . . n61 

- f (a - 1) VkJml Ck’mn...ma-ll[n,...ns]. 

P-5) 
The inner product of two forms may be defined to include the contraction of the 

upper indices of the first with the lower indices of the second. Then, an (;l>-form 

CA would have a nonzero inner product with a (:)-form Cg. With this definition, 

d is the adjoint of 6: 

(d&4 1 CB) = (CA 1 6cB). (2.6) 

Let us define three auxiliary operations, raising and lowering operators fi and 

4 which preserve the separate antisymmetry of raised and lowered indices 

( > fit 
ml...m,+l 

nl...n&l = q i-2 Cm2...m”+llgnl...ns_1 

ml...m,-1 (2.7) 
nl--nb+l = V[nlq Cqml”‘ma-lna...ns+~] 3 

and a generalized kinetic energy operator 

K = 2(Lo - 1 + (sum of indices)), (2.8) 

which, in the free string theory of ref. 22, equals the free-field action p2 + M2 on 

each string mode. Using these operations, we can write the algebra of d and 6: 

d2C = 0, b2c = 0, P-9) 

d6--6d=K#. (2.10) 

For the bosonic string, eq. (2.10) is true only in 26 dimensions. The exterior 
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derivatives and auxiliary operators satisfy a number of other useful identities. 

We will require, in particular, the relations 

{U, 4 = {W} = 0, 

and, if C is an (:)-form, 

a(b+l) fig C - b(a+l) &fi C = (a-b)C. 

(2.11) 

(2.12) 

Some further identities are given in Section 5 of ref. 22. 

Our ability to raise and lower indices with the metric (2.3) allows us to 

bring indices to the same level and then to symmetrize or antisymmetrize them. 

It is, in fact, useful to consider (t)-f orms of definite symmetry under general 

permutations of their a + b indices. The symmetry property may be represented 

by a Young tableau with a + b boxes. Since the upper and lower indices are each 

completely antisymmetrized among themselves, the full permutation symmetry 

must be given by a Young tableau with no more than two columns. We will refer 

to such a tableau, with columns of length k,& by writing (k,e); the notation is 

illustrated in Fig. 1. (Also shown there is a convenient notation for some other 

tableaux which will arise in the course of our discussion.) An (i)-form, with 

a > b, may then be symmetrized according to (a, b), (a + 1, b - 1), . . ., (a + b, 0). 

Of these, the structure (a, b) with the longest possible second column will play 

a special role. Let us refer to an (t)-f orm with such a symmetry as maximally 

symmetrized. 

The free-string action of ref. 22 is constructed from a string field Qpo (a ($- 

form) and a sequence {@2k} of maximally symmetrized (:)-forms. Thus, the 

basic fields are string forms symmetrized according to 

(2.13) 
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In terms of these fields, the action takes the form 

S = -; (-1)' (@2k 1 KQ24 
{ 

- (-l)k (k + 1)’ (dh + 6@2k+2 Ifi (d%k + 6@2k+2)) 
> 

. 

(2.14) 

The action (2.14) is constructed to be gauge-invariant under the transformations 

'k%k = -dC2k-1 + bC2k+l, (2.15) 

where C2k+r iS a (kl’)-f orm symmetrized according to (k + 1, k) , and the right- 

hand side should be understood to be symmetrized according to (k, k). It is 

important to note that some of the transformations (2.15) are redundant, since 

the right-hand side of this equation is invariant to the second-level transformation 

$ C2k+l = @2k + 6 $2k+2, (2.16) 

where +&+2 iS a ( ‘i2)-form symmetrized according to (k + 2, k). The $ trans- 

formation law is in turn left invariant by transformations parametrized by (ki3)- 

forms C’, symmetrized according to (k + 3, k), and so on. 

This formalism generalizes straightforwardly to other string theories I291 . For 

closed strings, one must extend the range of the indices of string forms to run 

over the positive integers for both the left- and right-moving Virasoro operators, 

and then project onto states such that K& = KR* . For fermionic strings, one 

must extend the range of the indices to run over the positive-index generators of 

the Neveu-Schwarz and Ramond algebras. It is also necessary to convert Young 

symmetrization to graded Young symmetrization, in which one supplies an extra 

(-1) for each interchange of indices corresponding to anticommuting generators, 

* The free closed-string field theory was derived earlier, in a slightly diffzwnt, form, in ref. 25. 
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and to change the dimensionality of space-time to 10. Both of these modifications 

produce definitions of d and 6 which satisfy the identities (2.9) and (2.10). Thus, 

the action (2.14), with the new definitions of forms and of d and 6, is again a 

gauge-invariant free string action. The arguments we will give to fix the light- 

cone gauge in the case of the bosonic string go through without change for these 

other string theories. 

The main objective of this paper will be to show how to fix the gauge freedom 

just described to cast the action (2.14) into the light-cone gauge. In preparation 

for that study, we should set out explicitly our notation for light cone gauge 

dynamics. First of all, we will use the metric 

x.y = 5.3 - .oyo (2.17) 

In the light-cone quantization, we regard 

x+ = a A- (x0 + xl) 
as the evolution parameter. The variable conjugate to x+ is 

p- = -$ (p” - p’) * id+ = i A. 
X 

(2.18) 

- x , p+, and a- are purely kinematical quantities. Transverse directions are 

indexedbyi=2,...,d-1. 

In a gauge theory of ordinary local fields, one fixes the light-cone gauge by 

setting to zero the lowered (-) components of tensors. In QED, for example, 

where the basic field is A,, one places the gauge condition A- = 0. Then A+ 

may be eliminated by kinematical equations, leaving the transverse components 

of A as the dynamical fields. In string field theory, local tensor fields appear as 

component fields in the expansion (2.2). S ince a typical term in this expansion 
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has the structure 

A plp2...pb d!lnl * * * d!ia > @(‘) 9 (2.20) 

fields with - (+) ’ d’ m ices multiply operators CYST (c&). Let us, then define 

K,, = a,+, Mn = (Y;. 

These operators obey the algebra 

[Kn,Mm] = -nh(n+ m). 

(2.21) 

(2.22) 

The direct analogue of the light-cone gauge condition for string fields would be 

that no terms appear in @[x(o)] in which an Mn acts on a(‘). The condition is 

equivalent to 

KnQ = 0. (2.23) 

The analogue of the statement that only the transversely polarized states prop- 

agate is the statement that the propagating fields in the string action belong to 

the subspace 7 defined by 

7 = {a : Kn@ = Mm0 = 0, (2.24) 

We will show in Section 4 that, by imposing a gauge condition on the full set 

of fields {@2k} which is slightly weaker than (2.23), we can show that only com- 

ponents of <PO belonging to f are propagating states. This accords with the 

formalism of refs. 14 and 16. 

In Section 3, we will make use of a slightly different characterization of the 

transversely-polarized states which is more naturally related to the d and 6 oper- 

ations. Following ref. 3, let us define the subspace 7 of the single-string Hilbert 
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space: 

(2.25) 

where the L, are the Virasoro operators. The subspace 7 is isomorphic to the 

subspace f , as can be easily recognized by observing that T is generated from 

the Fock vacuum by the DDF operators [301 A’,. These operators obey an algebra 

isomorphic to that of the C& (eq. (2.1)) corresponding to transverse directions in 

space-time. We will make repeated use of the basis for the single-string Hilbert 

space given by the vectors 

L?lL15)2. . . Liy,K’;K$. . . KfyyI~) , (2.26) 

where the vectors 17) f orm an orthonormal basis for 7. For any p+ # 0, the 

states (2.26) are linearly independent for arbitrary complex values of p- Kwl . It 
is of course well known that light-cone dynamics is singular on states for which 

p+ = 0; we will, then, restrict our attention to states with p+ # 0. With this 

restriction, the vectors (2.26) span the single-string Hilbert space. Because L, 

and Kn (n > 0) annihilate IT), th e action of the L’s and K’s on the states (2.26) 

is completely determined by their algebra 

[La, Km] = -mKn+m 3 [Kn,Km] = 0 , (2.27) 

and eq. (2.4). 
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3. Equivalence via the Equations of Motion 

In this section, we will establish the equivalence of the gauge-invariant and 

light-cone formulations of the free string by making use of the equations of motion 

of the gauge-invariant theory. Our method will be to extend the arguments of ref. 

27 to prove that all solutions to the equations of motion of the gauge-invariant 

free string theory are gauge-equivalent to the solutions for which @o is in 7 and 

the higher @  2k vanish. First, though, we will explain why this statement suffices 

to prove the equivalence for the full quantum theory. 

We begin by reviewing the conclusion of ref. 27 that the gauge-invariant 

Lagrangian reduces to the correct form when restricted to states in 7. Since the 

components To of &, lying in 7 are annihilated by L, for n > 0, they decouple 

from the higher @zk’s; their contribution to the action is then just 

SLC = - ; (To 1 Lo - 11 To) 

= - f (To 1 (pi)2 - 2p+p- + 2 &a!~ 
n=l 

I > To - 
(3.1) 

Since ITo) is also annihilated by Kn for n > 0, the (Y; in (3.1) may be replaced 

by the DDF operators A:. Since the algebra of the Ai is isomorphic to that of 

the cyli, eq. (3.1) takes exactly the form of the light-cone gauge action of ref. 16. 

Now let us discuss the utility of identifying the solutions to the equations of 

motion. Write 

s=s,, + i, (3.2) 

where ,$ involves only the fields which must eventually be eliminated. Call these 

&2k; these include all components of 4&k for k > 0 and all components of ipu 

which are elements of the subspace spanned by the vectors (2.26) with Ck kXk + 
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ck kpk > 0. From the gauge transformation law for 00 

6c!Do = L-p P, (3.3) 

we see that all components of @po with & k& > 0 may be set to zero by a 

gauge transformation, and that this completely fixes the gauge for @e. (Note 

that the TO component of <PO in the decomposition with respect to (2.26) is gauge 

invariant .) 

g is a bilinear form in the fields &k. We will show in a moment that, for 

any fixed complex value of p-, the only zero eigenvectors of this bilinear form are 

pure gauge degrees of freedom. This means that after we fix the remaining gauge 

invariance, there are no zero eigenvectors of the bilinear form for any complex 

value of p- . The bilinear form L? has no coupling between components with 

different eigenvalues of K and hence can be broken into a sum of finite bilinear 

forms, each at most quadratic in p-: 

s = c c (W 1 A&‘(p-) 1 W). (3.4 
p- L=O 

Each iMce) is a quadratic polynomial in p- with no zero eigenvectors for any 

complex p-. Integrating out the &(L) fields yields a factor 

n fi det-dM(c)(p-) . (3.5) 
p- c=o 

Since det M(l) (p-) is a polynomial in p- with no zeroes, it must be the trivial 

polynomial, i.e. 

co co 
n det-;M(L)(p-) = n det-iM(L)(0) . 
e=o .c=o 

(3.6) 

This establishes the nondynamical nature of integrating out the redundant fields. 
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Then 

/ 
D@2k &.F.edS = N - 

/ 
DTo emSLC , P-7) 

where N is a normalization factor, the product of the factors (3.6). This is a 

statement of the equivalence we sought. 

Now, we return to the proof of our assertion that the bilinear form ,$ has no 

zero eigenvectors after gauge fixing. The problem of finding zero eigenvectors of 

,!? is just the problem of finding the solutions of the classical equations of motion 

for the fields 6. The classical equations of motion are just 

LK - ck + 1)26 fi d + k2d fi &]I @2k) = (k + 1)‘s fi 6 1@2k+2) - k2d fi d 1 f&k-2) . 

(3.8) 

Our analysis of these equations will make essential use of the property that 

the space of free string fields possesses trivial cohomology, in particular, that the 

statement 6C = 0 implies that there exists a D such that 6D = C. Were it not for 

the structure constant terms in the definition of 6, this latter statement would 

be obvious. We have proved it for the simplest case that C is a (:)-form; this 

will suffice to prove that 90 is restricted to 7. To show that the higher &k’s are 

pure gauges, one needs this property also for (kFl)-forms and for (:)-forms, for 

arbitrary k. We believe that all free string forms have trivial cohomology, but 

we do not yet have a proof. 

Begin with the equation for au, 

After using the gauge freedom to set all components of @e with xk k& > 0 to 

zero, (3.9) becomes a set of two equations, since then the left-hand side of (3.9) 
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has xk k& = 0 while the right-hand side has xk k& > 0. Thus, 

K@o =o, (3.10) 

OdQo + 6fiM2 = o. (3.11) 

The components TO appear only in (3.10) ( since dTo = 0); they do not appear 

either in (3.11) or in the equations (3.9) for k > 0. 

A zero eigenvector of ,? must therefore be a non-trivial solution of (3.11) and 

the k > 0 components of (3.8). Let us first explore the constraint of (3.11). This 

equation implies 

-ET d@o + fi 6% = 613~ , (3.12) 

where Ez is a a-form with 2 upper indices. Applying lJ to this equation and using 

the identities (2.11), (2.12) yields 

d@o + +a+ 4l E2) = 0. (3.13) 

Call (<P2+ lJ Ez) = A2 (a (:)-form), and consider (3.13) in component form: 

n-l 

LnQO + 2 L-pA’n + C (n + p)Apn-, = 0 , 
p=l p=l 

(3.14) 

for n > 1, and 

LlQilJ + 2 L-,AP1 = 0. 
p=l 

Since LltDpo has xk k& = 0, (3.15) implies 

(3.15) 

Lltl&-J = 0 (3.16) 
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and 00 c L-,APr = 0 . 
p=l 

Regarding APr as the p component of a 1 form, CP, eq. (3.17) is just 

6C = 0, 

(3.17) 

(3.18) 

which implies that there is a $2 such that 

Apl = CP = (Q2)P = c L-,Sqp - ; x(2k - p)$k,p-k . (3.19) 
Q k<p 

The p = 1 component of (3.19) is just 

All = c L-,cy , 
Q 

(3.20) 

so the n = 2 component of (3.14) is just 

0 = L2% + 2 L-,Ap2 + 3A1r 
p=l 

(3.21) 

= L2fDo + 2 L-,(AP2 + 3gp1) . 
p=l 

Since Lz@u has xk k& = 0, (3.21) implies 

L2@‘0 = 0, (3.22) 

2 Lep(AP2 + 3gp1) = 0 . 
p=l 

(3.23) 

The pair (3.16), (3.22) imply LnQo = 0. In other words, ipu = To, or &I = 0. 
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Plugging this conclusion into (3.11) shows that 

6fiuD2 = 0. (3.24) 

To proceed, we need the following relation: 

6 fi 6 f&k = 0 implies ‘2k = [6cl(,,k) ’ (3.25) 

for some (“fl)-f orm C, where the bracket denote symmetrization corresponding 

to the Young tableau (k, k) (in the notation of Fig. 1). We shall prove this 

relation in a moment. First, though, note that (3.25), together with (3.24), 

implies that 

@2 = PC31 (1,l) ’ (3.26) 

This means that !f?z is a pure gauge; it can be set to zero by a gauge transforma- 

tion (2.15). Once this choice is made, the k = 1 component of (3.8) reads 

6fi69r = 0. (3.27) 

(3.25) then implies that @J also may be gauged to zero. Continuing in this way 

we learn that all of the <Pzk with k > 0 may be gauged away . Thus after gauge 

fixing there are no zero eigenvectors of the bilinear form ,$ for any complex p-. 

Finally, we return to the proof of the relation (3.25). 6 fi 6<Pzk = 0 implies 

k+l that there exists a (k-l)- form E such that 

fi6@2k = 6E. (3.28) 

Applying u to (3.28) and using (2.11), (2.12), and that fact that Jj. annihilates 
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@2k, we find 

k26@ + lLl,tE = 0. 

This relation implies that there exists a (‘il)-form F such that 

(3.29) 

k2cP+ UE 

But consider the Young symmetrization 

symmetry (k,k). However, # E cannot 

symmetrize (3.30) according to (k, k), the 

desired conclusion 

= 6F. (3.30) 

of the terms in (3.30)‘. @2k has the 

have this maximal symmetry. If we 

lJ E term drops out and we obtain the 

@ ‘Jk = t k2 ibFl(k k) - f 
(3.31) 

This completes our analysis of the equations of motion of the free string 

theory. Two points are worth reiterating. First, the analysis does depend on our 

unproved assertion that the space of free strings has trivial cohomology. Second, 

modulo this first objection, our analysis and conclusions apply for all complex p-. 
This allows us to extend a classical analysis of the equations of motion to the fully 

quantum statement (3.7): integrating out the redundant fields yields the light- 

cone formulation of the theory, corrected only by non-dynamical determinants. 

4. Direct Descent to the Light-Cone Gauge 

Now let us turn to a second line of argumentation, one somewhat closer in 

spirit to the conventional light-cone quantization of a gauge theory. In this sec- 

tion, we will explain how to apply gauge-fixing directly to the free-string action, 

eq. (2.14). In this section, we will work in the basis of states formed by applying 

K-n’s, ALn’s, and transverse Q-~‘S to the Fock vacuum. The argument given at 

the beginning of the previous section can be repeated in this basis to prove that 

the correct light-cone action arises if all states are removed except those in @u 
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which belong to f . We will call this space of states 70. We will show that the 

nonredundant gauge transformations in (2.15) give precisely the freedom required 

to reduce the full Fock space to 70 

Our analysis will concentrate on removing the (lowered) - components of 

the tensor fields of the free string theory; this is equivalent to removing Fock 

space states in which some M-n is acting on the Fock vacuum. However, one 

must exercise some care in this reduction process. Because of the commutation 

relation (2.22), the M annihilation operators Mn destroy excitations created by 

the K creation operators K- n, and vice versa. Thus, a state of the form KaMb IO) 

has a nonzero inner product only with a state of the form KbMa IO). If we gauge 

away or otherwise remove states with more M’s than K’s, states with more 

K’s than M’s can appear in the action only when their surfeit of K’s is explicitly 

compensated. Often, these states can appear only in terms with no ~3,‘s; they are 

then nondynamical and may, in fact, serve as Lagrange multipliers to eliminate 

states which cannot be removed by gauge transformations. 

To understand how this works in more concrete terms, we will first perform 

the gauge-fixing of the first two mass levels very explicitly, counting carefully the 

K and M creation operators which appear. We should note that the operators 

d and 6 which appear throughout (2.14) can contribute extra factors of M and 

K, since, from the definition of Ln, 

Ln = p+Mn + p-K, + . . . (4.1) 

At the first mass level, the free-string action is simply the action of an Abelian 

gauge boson. We can remove the component A- by using the gauge motion 

k@o = L-d? = (P+M-~ + . . .)C1 P-2) 

to remove the component of Qe of the form M-1 IO). (The corresponding Faddeev- 

Popov determinant contains p + but not p- and so is nondynamical.) After this 
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gauge-fixing, the component of (PO proportional to K-110) can survive in the 

action only if it appears in a term with two explicit M’s. The only such term 

comes from the second piece of (2.14) (after integrating by parts): 

PolQW@o) = (@oIP+MI-P+M-~ +...Iao). (4.3) 

The term with two M’s contains no a-, so A+, the coefficient field of K-1 IO), is 

nondynamical. It is, of course, just the Coulomb potential. 

At the second mass level, we can divide the states which appear into five 

classes as subsets of the following sets of states: 

(1). % (4). Kt,ifo, M-LK-I?=~,, A@,% 

(2). K-l%, M-l% (5). % 
(3). K-27,, M-27, 

Set (5) contains the first Stueckelberg fields. Sets (2) and (3) can be elim- 

inated just as explained in the previous paragraph. Concentrate, then, on the 

classes (4) and (5). States of the form M-~K-~To and M!,~o can be elimi- 

nated by (4.2), using the components K-170 and M-1 70 of the string field Cl; 

again, the gauge-fixing determinant is nondynamical. After gauge-fixing, states 

in K!,~o can only appear in terms of the action with two explicit M annihilation 

operators. The only such term is 

(@21dfidl@o) = (%~P+MI.P+MI+..+~). (4.4 

From the structure of this term, we can see, first, that the states K?,To are 

nondynamical and, second, that they are Lagrange multipliers which eliminate 

the states 72, leaving behind only a nondynamical determinant. We have now 

eliminated all states except those of class (1); this is the desired result. 

Let us now introduce some notation that will allow us to generalize this 

argument to all mass levels. Consider, first of all, the labelling of states. It is 

clear that we will need to keep track of the K and M creation operators used to 
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form each state; the Lagrange multiplier mechanism tells us that we must also 

keep track of the indices on each Stueckelberg form. More generally, consider an 

arbitrary string form, symmetrized according to the Young tableau (k,l), in the 

notation of Fig. 1. Let us denote the class of Fock states within this form with 

a K’s and b M’s acting on the Fock vacuum by writing 

K=Mb I”,“) . (4.5) 

We can count the number of such states at any given level by considering the 

indices on the K and M operators, as well as the explicit indices of the form, 

to be indices of the state. All of these indices run over the same set of values 

(the positive integers, for the case of the open bosonic string). Since the K and 

M creation operators commute with one another, the states (4.5) belong to the 

following representation of the group of permutations of all of these indices: 

{4 x @I x (he) . (4.6) 

This representation is displayed diagrammatically in Fig. 2. 

Now let us turn to the operators d and 6. In the explicit manipulations 

just given, the only pieces of these operators which are relevant are the terms 

involving M creation and annihilation operators. These terms appear when we 

wish to determine the piece of the gauge variation of a <Pzk which contains an 

additional M-n, and when we wish to evaluate the term in the action linking 

the Lagrange multiplier field, with two extra K+‘s, to a Stueckelberg field. The 

action of d and 6 which produces these terms can be described very simply: 6, 

which removes one upper index from a string form, replaces this index with an 

index on an M-n. d, which adds a lower index to the string form, acts an Mn 

on the state and so removes one index carried by a K-n. In each case, the 

total number of K, M, and string form indices is conserved. The permutation 

symmetry of these indices is also preserved. Our discussion of the gauge-fixing at 
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the second mass level gives the simplest illustration of this rule: Of the classes of 

states defined there, classes (2) and (3) correspond to states with one index; these 

are gauge-fixed separately from (4) and (5), which are states with two indices. 

Note that the Lagrange multipliers K?, z = K2 IO, 0) and the Stueckelberg states 

3 = 11,l) both h ave indices symmetrized according to 

177; (4.7) 

otherwise, they could not form a nonzero matrix element of 6 fi 6. 

Now we are ready to present the general counting argument for fixing the 

light-cone gauge. Let us define a tower of states as the sequence 

K”MblO,O), K”-‘Mb-‘)l,l), K”-2Mb-212,2), . . . . (4.8) 

The sequence terminates when either the K’s or the M’s are exhausted. Associ- 

ated with this sequences is a tower of gauge parameters Czk+r: 

KaMb-’ 11,O) , K”-1Mb-2 12,l) , Ka-2Mb-3 13,2) , . . . . P-9) 

Imagine both the two towers to be presented vertically, and interleaved, so that 

KaMb IO, 0) stands at the top, with K”MbB1 II, 0) just below, KamlMbml II, 1) 

below that, and so forth. Then, acting 6 on any state in the C tower adds an M 

and so gives a gauge transformation of the Q state just above; and acting d on 

any state in the C tower removes a K and so gives a gauge transformation of the 

<p state just below. 

Our strategy will be to gauge away as many states as possible in the towers 

with b 2 a. The remaining states in these towers must then be removed by the 

Lagrange multiplier mechanism. The Lagrange multiplier for a state KCMd Ik, k) 

is the state which completes a nonzero matrix element of 6 fi 6; this is a state 
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which has a nonzero inner product with that state after two K’s have been 

removed. Thus, the Lagrange multiplier for a state KCMd Ik, k) has the form 

Kd+2MC (k - 1, k - 1) . (4.10) 

The Lagrange multipliers for the states in the tower (4.8) (b 2 a) live in another 

tower whose top member is 

Kb+’ Ma-’ 10,O) . (4.11) 

We must then show that the second tower contains, after an appropriate gauge- 

fixing, exactly the states needed to be Lagrange multipliers for the first. 

Let us begin by working out what states in a tower with b > a remain af- 

ter gauge-fixing. To do this, we must first work out the number of nonredundant 

gauge parameters available. This means that we must subtract from the states in 

C zk+l the number of redundant parameters in ,&k+z, then add back the parame- 

ters in C!&+s, and so forth. The simplest example is given by the state Mb-’ )I, 0) 

in Cr. The redundant components are those in 6,92, where the state in $2 has 

the form MbA2 12,O) ; th ese have redundancies given by SC;, using states of the 

form Mbm313,0), t e c. We can count the number of nonredundant gauge trans- 

formations by writing each of theses states as the corresponding representation 

of the permutation group and performing the sum: 

{b-l) x (1,o) - (b-2)x (2,0) + {b-3} x (3,0) - . . . . (4.12) 

The value of the sum is given by the Young tableau identity shown in Fig. 3. 

(The identity is readily proved by systematically decomposing the products of 

representations.) The result is: 

nonredundant part of Mb-’ Il,O) = {b} . (4.13) 

This is precisely the gauge freedom necessary to gauge away Mb IO, 0). Since all 

of our manipulations have involved the use of 6, which adds an M-,, they are 
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unaffected by adding K’s to the state. Thus, we can immediately conclude: 

nonredundant part of K”Mbml 11, 0) = {a} x {b} , (4.14) 

which is precisely what is required to gauge away the component KaMb IO, 0) of 

<PO. Our counting, combined with the correspondence between Mn and Ln, has 

then recovered the result, familiar from ref. 3, that the gauge freedom in Cl is 

precisely what is required to remove every state in the basis (2.26) which contains 

an L-, acting on I r) . 

This analysis generalizes straightforwardly to the higher Czk+r’s. The re- 

dundancies, redundancies of redundancies, etc. of the gauge parameters in 

Mb-l I k + 1, k) are given by: 

Mb-‘Ik+l,k) - Mb-21k+2,k) - Mb-31k+3,k) + . . . (4.15) 

The series can be summed by the identity shown in Fig. 4. The result is: 

nonredundant part of Mb-’ Ik + 1, k) = {b} x (k, k) - (k, k; b) . (4.16) 

Both sides of this relation can be multiplied by Ka, as before. Note that in this 

case, not all of the components of the Q state KaMb 1 k, k) can be gauged away by 

the nonredundant components of C. A residue, with the symmetry {a} x (k, k; b), 

is left behind. 

If we exhaust the gauge freedom in this way, we can reduce the tower (4.8) 

(b 2 a) to its components: 

0 + (a-1)x (1,l; b-l) + (u-2)x (2,2; b-2) + (a-3)x (3,3; b-3) + . . . (4.17) 

These last components must be removed by Lagrange multipliers belonging to 

the tower starting with (4.11). The first nonvanishing term in (4.17) is precisely 
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{u-l} x {b +l},and so the (4.11) is exactly its Lagrange multiplier. At lower 

levels of the towers, only a subset of the states on the Lagrange multiplier side is 

needed to remove the corresponding components of (4.17). We proceed, then, as 

follows: Use the Cl state in the Lagrange multiplier tower to gauge away as many 

states as possible in the cP2 component of this tower (using the transformation 

law 6c@2 = dCr). Then extract from the states remaining in @2 a multiplet of 

the symmetry {u-2} x (2,2; b-2), which will be the Lagrange multiplier for the 

third term in (4.17). Gauge away the rest of @2 using Cs. Now use the remaining 

states in Cs to gauge away part of Q4, extract the required Lagrange multipler, 

and gauge away the rest of cP4 using Cg. Proceeding in this way, one can exhaust 

the gauge freedom in the Lagrange multiplier tower, hopefully leaving over the 

states which will be the Lagrange multipliers for (4.17). Let us check that the 

correct states are indeed left over. The counting of states minus (nonredundant) 

gauge parameters in the Lagrange multiplier tower goes as follows 

{b+l)x{u-1) + {b}x{u-2)x(1,1) + {b-l}x{u-3)x(2,2) + . . . 

- {b+l} x ({u - l}) - {b} x ({a - 2) x (1,l) - (l,W-2)) 

- (b-1)x ((u-33)x (2,2) - (2,2;u-3)) - . . . 

= {b} x (1,l; a - 2) + {b - 1) x (2,2; a - 3) + {b - 2) x (3,3; a - 3) + . . . 
(4.18) 

One can now check that the last line of (4.18) is exactly equal to (4.17), by virtue 

of one further Young tableau identity, shown in Fig. 5. 

Thus, for any tower of states (4.8) with b 2 a, all states that cannot be 

gauged away can be removed by a set of Lagrange multipliers given precisely 

by the states in the tower (4.11) w K cannot be gauged away. Every tower h’ h 

with b < a can be considered such a tower of Lagrange mulitipliers, except for 

the tower with a - b = 1. Once all the other states are eliminated, however, 

these states may appear only in terms in the action with two explicit M’s. Such 

terms, as we have already discussed, contain p+ but not p-; thus, these fields are 
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nondynamical. They are, in fact, the generalized Coulomb potentials. 

We have now proven, in two different ways, that the light-cone formulation 

of string theories can be derived from the new gauge-invariant formulation by 

fixing the light-cone gauge. No additional propagating states appear. We hope 

that these direct demonstrations of the equivalence of these two formalisms will 

be useful in the construction of gauge-invariant interactions. 
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FIGURE CAPTIONS 

1. Conventions for naming Young tableaux which will arise in our analysis. 

2. The permutation symmetry of the full set of indices of the state (4.5). 

3. The Young tableau identity needed to identify the nonredundant gauge 

parameters in Cl. 

4. The Young tableau identity needed to identify the nonredundant gauge 

parameters in Czk+l. 

5. Another Young tableau identity, needed to establish the equivalence of 

(4.17) and (4.18). 
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