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ABSTRACT 

We present the S-flavor formalism for scattering pseudoscalar mesons from 

baryons in the class of models in which the baryon is viewed as a “hedgehog” 

soliton in the meson field. To test this formalism, we apply it to ~FN scattering 

in the Skyrme model. The result, as compared with the 2-flavor Skyrme model, 

is an overall improvement in agreement with experiment. 
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Despite universal acceptance of the quark model, recent times have seen a 

revival of interest in Skyrme’s imaginative treatment of the baryon as a soliton 

in the field of pions.’ The soliton picture of the baryon can be motivated from a 

consideration of QCD in the limit in which N,, the number of colors, is taken to 

infinity. 2’3 The popularity of the Skyrme model in particular is largely due to 

the ease with which it permits moderately accurate calculations of a wide variety 

of hadronic properties. 4’5 The starting point is the modified nonlinear a-model: 

L = g Trd,Ud’Ut + 
16 & Tr[(d,U)Ut, (bU)Ut]2, u E SU(2), (1) 

which admits a hedgehog soliton solution (“skyrmion”) 

UO = exp{iF(r)P -3) , (2) 

where F solves a nonlinear variational equation. Of course, any rotation AUoA-1 

is an equally acceptable solution; indeed, the proper identification of (2) with a 

nucleon or A requires the quantization of the “collective coordinates” A.4 

Pions can readily be added to the modellg by considering fluctuations about 

the skyrmion: 2o 

UO + exp{F(r)i: + 277(x, t)/fT}. (3) 

In so doing one can explicitly calculate the S-matrix for zN scattering and in the 

process obtain the spectrum of N and A resonances, with surprisingly good re- 

sults: rough qualitative agreement for most partial-wave amplitudes, ‘JO and 8% 

agreement on average with experimental resonance masses.” In addition, using 

only the hedgehog structure of the skyrmion, one can derive model-independent 
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linear relations between experimental partial wave amplitudes for ~FN + TN and 

~FN --) TA , with similar success. 7,lO 

In retrospect, these successes of the model are probably due in part to the 

fact that, to leading order, the ?rN phase-shifts are independent of NC.2 Indeed, 

it appears that calculations in the Skyrme model have the best chance of quanti- 

tative success if they are formulated in such a way that the leading dependence 

on NC explicitly cancels out. For example, while Adkins et al. obtained values 

for pP and pn that were 30% lower than experiment, the ratio pp/pLn is accurate 

to better than 3%. Similarly, while their values for fr - N,‘/” and CJA - NC are 

in poor agreement with experiment, the quantity fi/gA - NC0 turns out to be 

likewise accurate to 3%.21 

It is important to consider the effect of incorporating additional low-lying 

mesons into (1). In this paper we begin a study of the extension of meson- 

skyrmion scattering to the case of three light flavors. The crucial first question 

addressed here is whether the 2-flavor successes of the model obtained in Refs. 6 

and 10 survive this extension. In fact, we shall find a modest overall improvement 

in agreement with experiment. Elastic TN scattering is a particularly rigorous 

proving ground for the S-flavor formalism, due to the reliability of the experimen- 

tal phase-shifts. l6 In a later paper, we will discuss the comparison of theory with 

experiment for channels involving strange particles. For purposes of simplicity, 

we shall work here in the chiral limit of unbroken sum x Sum, restricting 

ourselves, as in Refs. 6 and 7, to a leading-order analysis in 1/NC.22 

We begin with a sketch of the general formalism for bouncing bosons from 

baryons in the 3-flavor Skyrme model; a detailed derivation will be presented in 

Ref. 8. One should keep in mind that, apart from Eq. (6) below, the development 
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presented here is valid, to leading order in l/N,, for any S-flavor chiral soliton 

model in which the skyrmion is a hedgehog. 

The usual starting point for S-flavor chiral soliton models”“’ consists of 

embedding the skyrmion (2) in the upper left of a 3 x 3 matrix. It is fruitful 

to forget about the baryon’s collective coordinates at first, and to concentrate 

instead on the simplified problem of a pseudoscalar-octet meson 4” scattering 

from an unrotated skyrmion; we shall refer to this as reduced scattering. The 

4’s are naturally incorporated into the Lagrangian by letting (cf. Eq. (3)) 

UO s exp{#(r) 2 FiXi) + exp{iF(r) 2 ?“A’ + F 2 @A’} (4 
i=l i=l = a=1 

with Xa the Gell-Mann matrices. For the case of three or more flavors, the action 

must be augmented by the addition of the Wess-Zumino (WZ) term Ill 

iN, -- 
240~~ J 

d5x&jklrn Tr(Utd~UUt~jUUtdkUUtd~UUt~,U) (5) 

which correctly reproduces the flavor-current anomalies of the strong interactions; 

here the integration is over the manifold S3 x D2 whose boundary is compactified 

space-time S3 X S1.3 

The complete action is then expanded about the skyrmion to quadratic order 

in the 4’s. In particular, the WZ term makes a contribution 

iN, 
- d4x 
479 J (6) 

to the action.23 O(r$“) terms are ignored in our lowest-order treatment, as they 

are suppressed by powers of l/fr - l/a. Th e result is a set of linear second- 

order Euler-Lagrange equations for the 4’s. 

/jl Our conventions are 6°1234 = co123 = -c0123 = -1. 
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As in the 2-flavor procedure, we can obtain an effective radial problem by 

expanding 4” in eigenstates of the symmetries of the unrotated skyrmion: in 

this case, (K2,KZ,Y). H ere K (not to be confused with the kaon!) is the 

vectorial sum I + L of the meson’s isospin and angular momentum, and Y is its 

hypercharge. Each effective radial problem is then characterized by a “reduced” 

amplitude slfLii (w) , with L and L’ henceforth denoting the initial and final meson 

partial wave. Specifically, the meson fluctuations decompose into the following 

noninteracting sectors: 

(a) There are the fluctuations in the pion directions: {I, Y} = {l,O}. These 

are expanded into radial functions rjKK,L(r)eiwt, K = {L - 1, L, L + l}, summed 

against the vector spherical harmonics IIfKZ (0) familiar from the 2-flavor anal- 

ysis. The resulting equations of motion for the 4’s can be integrated numerically 

out to large values of r, where the effect of the skyrmion’s tail is negligible and 

the theory is one of free mesons. In this region, the 4’s can be fit to a sum of in- 

coming and outgoing Bessel functions, and the phase-shifts extracted in the usual 

manner. Exponentiation yields the reduced S-matrix elements ~21;~; a moment’s 

thought will confirm that these are identically the same as for the 2-flavor case, 

as depicted in Refs. 6 and 13. 

(b) There are the fluctuations in the q direction, {I, Y} = {O,O}, expanded 

in the usual spherical harmonics. The result of fluctuations in this direction is 

just free field theory: s:~?~(w) = bKLbLL1. 

(c) In analogy to (a), there are fluctuations $KK&(r)eiwt, K = L f k, in the 

direction of the kaon or antikaon doublet, summed against the “spinor spherical 

harmonics” 
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(L&K, + fr, -#&) yL&+;(n) 
BY parity, ti KK,,K-; cannot scatter into +KK,,K+~, so that L must equal L'. a 
The effective radial equation of motion for fluctuations in this direction turns 

out to be:n2 

d2 
(F2 +2sin2 F) p ($KK,L/F) 

q2 
+ [2r” - 4F’sinF + F’(l + cosF)(m + 6sinF)] --$ ($KK,L/F) 

+ [L(L+i) -K(K+l) -it] [2+3F”sinF+ 5sF22F - (F')2 

- (1 +cosF)(l+ 
4 sin2 F 

r”2 
- 2(F')2)] - (L - l)(L + 2) [l+ sin,, F - + (F’)2] 

2F 
N 

F2 sin 2F 
+ +2sin2F)F”+iF’+F’2sin2F-P- 

sin2 F sin 2F 
l-cosF -4- 4 r”2 1 

+w2(F2 + 2sin2 F + F2(F')2) f T F' sin2 F -(~~KK,L/J') =O . 

(7) 

Here the bracketed expression in the next to last line is the defining equation for 

F, which vanishes identically. lg4 The final term in (7) represents the effect of 

the WZ term, the + and - signs referring to the antikaon and kaon fluctuations, 

respectively (cf. Ref. 14). N umerically, the contribution of the WZ term turns 

out to be extremely small, so that ~$2 z s$iL”. 

We have just given the complete recipe for constructing the reduced S- 

matrix that characterizes the scattering of a pseudoscalar-octet meson from 

fl2 We have multiplied the equation directly obtained from a variation of the Lagrangian by 
2F/(l- cos F) and introduced the dimensionless variable 7 = efrrr. 
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an unrotated skyrmion. The conserved quantities for this unphysical process 

are the sum K = I + L of the meson’s isospin and angular momentum, and 

the meson’s hypercharge Y. Of course, these are not preserved in physical 3- 

flavor meson-baryon scattering, for which the conserved quantities are the total 

meson-baryon angular momentum J, and the total SU(3)aavor quantum num- 

bers {&ot,7,1tot,Ltot,Ytot}.24 Pleasingly, these conservation laws emerge natu- 

rally from the skyrmion formalism once the collective coordinate structure of the 

baryons is properly taken into account.’ Other physically relevant (albeit not 

necessarily conserved) quantum numbers are the meson partial wave L, and the 

spin s and flavor representation R of the baryon [i.e., (s, R) = (i,f3) or ($,l~)]. 

As in the 2-flavor case,697’1o the S-matrix characterizing physical scattering in 

S-flavor skyrmion models can be expressed as a linear combination of the reduced 

amplitudes described above:8 

S ({ LsRRtot rbot &tot Kot J} --) {L’s’R’R,bt~‘~~ot~,‘,,tY,~tJ’}) = 

s,o,,t ‘kotI:,t k&.,t bYt,,Yt:t sJ J ) sJz J: ’ (- l)g’-g 
ddimR.dimR’ 

dim Rtot 

C Cx(2i+1)(2K+l) 
{IY} i K 

(8) 

The quantities in braces and parentheses are 6j symbols and SU(3) isoscalar 

factors, l5 respectively. The summation indices i and K run over all values allowed 

by the triangle inequalities implicit in the 6j symbols, and {IY} is summed 

over {lo}, {00}, and {k, fl}. The long string of Kronecker 6’s expresses the 

conservation of total angular momentum and SU(3)aavo,, as promised. 
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We are now in a position to compare 3-flavor meson-baryon scattering in the 

Skyrme model to Nature. We will focus in the present paper on the familiar 

process zN + zN . Note that, according to Eq. (8), there are contributions to 

this process from the “strange” reduced amplitudes with {IY} # (10). 

Elastic zN scattering was the subject of exhaustive analysis in the context 

of the a-flavor Skyrme model. The result was close agreement with the observed 

spectrum of nucleon and A resonances. 6 The four F-wave amplitudes were partic- 

ularly closely reproduced. loy6 There was substantial disagreement in the Prl, P33 

and ,531 channels 25 which we attributed to mixing with the rotational and trans- 

lational zero-modes of the underlying soliton. The higher partial waves were in 

good accord with experiment, the main source of discrepancies being the overly 

elastic nature of the Skyrme model amplitudes. 

Figure 1 depicts the 2- and 3-flavor H-wave amplitudes in the Skyrme model 

as compared to Nature. Clearly the size of the amplitude has moved into closer 

agreement with experiment. The same pattern holds for most partial waves, 

and is due to the opening-up of additional inelastic channels such as CK in the 

3-flavor approach. Note that the 3-flavor Skyrme model does just as good a 

job as the 2-flavor model in mimicking the “big-small-small-big” pattern which 

characterizes the experimental curves for nearly all partial waves. Specifically, the 

amplitudes with { Itot, Jt,t} = {i, L- f} or { %, L+ k} are marked by much greater 

excursions through the unitarity circle than those with {Itot, Jt,t} = {k, L + i} 

or {g, L - $}. We should emphasize, however, that the poor agreement in the 

Prr, P33 and 5’31 channels is not improved; improvement in these channels must 

await a higher-order l/NC analysis. 697 

A particularly intriguing modification of the 2-flavor results occurs in the Fl5 
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and F37 channels (Fig. 2). The dominant peaks in these graphs indicate Skyrme- 

model resonances at roughly 1820 MeV,26 in reasonable accord with the &star 

Fl5 (1684) and F37(1913) states found in Nature. The interesting new feature 

is the emergence in the 3-flavor model of additional (weak) resonances at 2060 

MeV, in plausible correspondence with the experimental l-star Fis(1882) and 

2-star F37(2425). Suggestively, no such second peak emerges from the Skyrme 

model in the F17 channel, where in Nature no second resonance is observed. 

The F35 amplitude in both the 2- and S-flavor models is characterized by two 

overlapping resonances at 1830 and 2030 MeV, but the experimental situation 

here is somewhat unclear: although the traditional assignment is to a single broad 

resonance centered at 1905 MeV with the caveat that “there might be additional 

structure,” l6 the experimental speed-graph seems to reveal two nearby peaks,’ 

and recent work points to two closely-spaced resonances. l8 Curiously, a similar 

splitting of the F35 is predicted by the quark model.17 

Finally, it should be emphasized that the values of the resonance masses 

are hardly affected by inclusion of strangeness, as is exemplified in Fig. 2. In 

particular, the 8% “best-fit” agreement with experiment found in Ref. 6 continues 

to hold. Overall, the inclusion of a third light flavor improves the agreement 

between the Skyrme model and experiment for TN --+ zN . 
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FIGURE CAPTIONS 

Fig. 1. The four independent H-wave T-matrices for the 2- and 3-flavor Skyrme 

models (dotted and solid lines, respectively) compared with experiment. 

Fig. 2. Speed diagrams for the four F-wave amplitudes in the 2- and S-flavor 

Skyrme models (dotted and solid lines, respectively). 
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