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ABSTRACT 

Model-dependent and model-independent results for TN + 
rrN and TN ---) ?rA in the Skyrme model are reviewed. An 
extension of the formalism to the 3-flavor case is presented. 

1. INTRODUCTION 

It is by now generally accepted that QCD is the correct theory of the strong 
interactions. Yet, in searching for meaningful, theory-specific tests of QCD, it is 
crucial to keep in mind that many properties of hadrons are in fact more basic 
than QCD, depending only on symmetry considerations. One immediately thinks 
of soft-pion physics, which would still be valid even if QCD itself were overthrown, 
so long as the observed pattern of chiral symmetry breaking were preserved. What 
has become clear in the last few months, in the context of skyrmion physics, is 
that many processes that lie well beyond the soft-pion energy range might fall into 
this category as well. (We’ll return to this claim in Sec. 5.) 

In this talk, I shall focus on meson-nucleon scattering in the Skyrme model.” 
Surprisingly, we shall see that many essential features of the partial-wave scatter- 

ing amplitudes, most notably the quantum numbers and the relative ordering of 
the approximately thirty observed nucleon and A resonances, follow directly from 
Skyrme’s non-linear sigma model, with no need to appeal to an underlying the- 
ory of quarks and gluons (Table I). The 2-flavor results that I shall review (both 
model-dependent and model-independent) were developed in collaboration with 
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Table I 

Comparison between experiment and Skyrme model predictions 
for masses of baryon resonances (in MeV) 

H311 2416 2346 -3 2327 -4 
1111 2577 2631 2 2558 -1 
1313 2794 2658 -5 2579 -8 

K113 2612 3032 16 2882 10 
K315 2990 2943 -2 2810 -6 

o) The notation is as follows: The pion partial wave, followed by 
twice the total isospin and twice the total angular momentum. 

b) Fit # 1 - Nucleon mass fixed; e = 6.29, j,, = 142. 

c) Fit # 2 - Nucleon mass allowed to vary; e = 4.79, jr = 150. 

d) Not present in our lowest-order formalism; this ‘number comes from Eq. 9 of Ref. 14. 

e) Average of two peaks at 1732 and 1981 MeV. 

j) Average of two peaks at 1831 and 2032 MeV. 
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Marek Karlinergl and Mike Peskinl”l at SLAC, and independently by the group 
at Siegen University rrl-131; the reader is directed to these publications for further 
details. Later, in Sec. 6, I shall discuss how to adapt the formalism to the 3-flavor 
case. 

We shall be examining Lagrangians of the form 

(1) 
where U E SU(2). The leading term is the usual 2-flavor nonlinear sigma model, 
while the dots stand for higher-derivative terms whose presence is necessary to 
yield a stable soliton solution, or “skyrmion,” 

Uo = e iF(r)?i? . (2) 
Such a “hedgehog” configuration has baryon number (i.e., topological charge) 
unity and is Skyrme’s candidate nucleon. 151 Note that although the skyrmion ro- 
tates under isospin 7 (which acts on 2) and angular momentum 3 (which acts 

on F), it is left invariant by the simultaneous action of 7 + 3 = 7i’. We shall 

make crucial use of this ‘fi-symmetry a little later on. 

The skyrmion lay more or less dormant for nigh on twenty years, until 
Witten’s realization that, in large-N, baryons should indeed emerge as solitons 
in the field of pions (N = number of colors). r%r’l With this motivation, we shall 
examine pion-skyrmion scattering in leading order in the large-N expansion, and 
gear all our approximations accordingly. The results discussed below are of two 
types. Model-dependent results depend on the detailed form of the Lagrangian l, 
and correspondingly on the precise shape of the skyrmion profile F(r). Modef- 
independent results, in contrast, just depend on the hedgehog structure of the 
skyrmion, Eq. (2), hence constitute a more-or-less.direct test of the l/N expansion. 

2. SKETCH OF TWO-FLAVOR FORMALISM 

Now, in truth, nucleons (and A’s) should properly be identified with rotating 
skyrmions, which is done by introducing collective coordinates.141 However, let us 
ignore this complication for the moment and concentrate on the simplified problem 
of how to describe pion scattering from an unrotated skyrmion in its canonical 
“hedgehog” orientation.12 This is naturally accomplished by letting 

F(r)3 ---+ F(r)? + ?7?(2, t) 
fir (3) 

fl2 Throughout this talk, I shall use the expression physical scattering to mean that the rotation 
of the soliton has been properly taken into account through the use of collective coordinates, 
so that the skyrmion does in fact have the quantum numbers of a nucleon or A. 
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in (2) and expanding fZ about the skyrmion in powers of the pion field. We find: 

/ d3x L: = -M&yrdn + I d3xTi*(x)&jd(x) + O(r’/fr), (4 

where eij is a self-adjoint 3 x 3 matrix of differential operators in isospin space. 
The absence of terms linear in the pion field is of course due to the fact that the 
skyrmion is a local minimum of the action. In the large-N scheme, fr - fi, so 
we will ignore the O(?r3/fir) t erms, consistent with our lowest-order approach. 

We are thus interested in constructing the tree-level pion propagator in the 
unrotated skyrmion background. As in any multi-dimensional scattering problem, 
this task is greatly simplified by judicious use of symmetry. In the familiar case 
of a particle scattering off a spherical potential, for example, the wavefunction is 
expanded in terms of the spherical harmonics; this leaves a purely radial problem 
characterized by a “reduced” S-matrix so. In the case at hand, traditional 

pion angular momentum t is not conserved, nor for that matter is the pion’s 

isospin, but the peculiar hybrid ?? = I(pion) + x is. The appropriate normal 
modes are the so-called vector spherical harmonics 

familiar from nuclear physics. The result of the normal-mode expansion is, once 
again, a purely radial scattering problem, the details of which depend on the exact 
form of the Lagrangian. This radial problem is characterized by a reduced S- 
matrix SKLIL(W) (ZE SKLLI(~)) with L and L’ labeling the incoming and outgoing 
pion partial waves. In terms of this reduced S-matrix, the amplitude for a pion 
with Ie = n in a partial wave 2 to scatter off an unrotated skyrmion (URS) and 

become a pion of Ia = m in a partial wave 2’ is given by: 

S(T?(~) + URS --+ P(f) + URS) = 

c (K&ILlL,n) (L’lL;+&) SKL’L. (6) 
KK, 

So far, we have been considering pions scattering from unrotated skyrmions. 
As we have seen, neither isospin nor angular momentum-only the sum of the 
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two-is conserved in such a process. A slight generalization is pion scattering 
from a rotated skyrmion VA E A&A-‘; the natural result is 

S (T” + URS + rrm + URS) * c A,k l S(r* + URS + rrk + URS) l A,-,l. (7) 
k,l 

Now, properly speaking, nucleons and A’s should be identified with a superpo- 
sition of VA for all values of the collective coordinate A E SU(2), weighted by 
an appropriately constructed wavefunction x(A). P ion scattering from nucleons 
and/or A’s is described accordingly by the expression 

dAXj(A)A,kS(r’ + URS + rrk + URS)A;-,‘xi(A)a (8) 

We shall see shortly that this formula, which characterizes “physical” pion-nucleon 
scattering in the skyrmion picture, properly encompasses the individual conserva- 
tion of both total isospin and total angular momentum. 

The physical picture behind this formula is as follows. In large-N, the rota- 
tional velocity of the skyrmion scales like l/N, and so can be neglected in lowest 
order. The approaching pion thus sees a fixed value of the collective coordinate 
A, which remains essentially constant throughout the interaction. A quantum 
superposition over all possible values of A weighted by their contribution to the 
initial and final baryon wavefunctions yields the above formula. Note that this pic- 
ture breaks down near threshold, where the skyrmion’s period of rotation becomes 
comparable to the interaction time. In this regime, it is Schnitzer’s “soft-pion” 
approach which is appropriate.181 

It turns out that the integral over A indicated in (8) can be performed in 
closed form, thanks-to the compact expression for the baryon wavefunction14l 

c8) . ~‘s’(A)-‘]sz,iz = ; A)-l]--dz,iz . (w.l)- 
(9) 

with s = i for nucleons and s = i for deltas. Projecting the initial (final) pion- 

baryon states onto states of definite total isospin 7 (7’) and angular momentum 

s’ (I’) yields, after a little massaging, 

where we have introduced the “P-symbols” 

PLLI~~~IJK = (-1)s’-u&28 + 1)(2s’ + 1)(2K + 1) { 8:-;} { :-;}* (lob) 
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We make the following observations: 
(i) Conservation of isospin and angular momentum is now manifest in the Kro- 
necker 6’s. (Note that these emerged from the analysis, and were not simply put 
in “by hand.“) 
(ii) The above formula can be shown to satisfy unitary. 
(iii) The 6-j symbols embody various triangle inequalities on both the entering and 
exiting channels (Fig. 1) which one might expect to impose unduly strict selection 
rules for ?rN -+ ?FN and rrN -+ IDA . But in fact, one obtains precisely the same 
constraints on these processes that would otherwise follow just from conservation 
of isospin and angular momentum and parity. In particular, there is no %xtra” 
conserved quantum number z(pion) for the physicctl IAN amplitudes (as opposed 
to scattering from an unrotated hedgehog). 
(iv) The formula is analogous to the Wigner-Eckart theorem, in that a large num- 
ber of physical amplitudes are expressed in terms of a smaller set of “reduced” 
amplitudes modulo some group-theoretic coefficients. In particular, all the model- 
dependence arising from the precise form of the Lagrangian is buried in the reduced 
S-matrix SKLJL; the rest is pure group theory, depending only on the hedgehog 
structure of the skyrmion. 

Fig. 1. Triangle inequalities implicit in Eq. (10). 

We can take advantage of observation (iv) in one of two ways. On the one 
hand, one can calculate the 8KLlL numerically in the context of a specific model 
such as Skyrme’s, reconstruct the physical amplitudes using (lo), and compare the 
results to experiment; I will discuss the outcome of such a program in Sec. 4. Al- 
ternatively, one can find those magical linear combinations of physical amplitudes 
such that the model-dependent reduced S-matrix elements (i.e., the right-hand 
side of (10~)) cancel out completely. The result is a set of predicted energy- 
independent linear relations directly between the various experimental TN -+ ?rN 
and rrN + rrA amplitudes in a given partial wave. These relations depend only 
on the hedgehog structure of the underlying skyrmion; they therefore serve as 
model-independent tests of the validity of the skyrmion approach. In addition, 
they are tests of the legitimacy of our various large-N approximations. 
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3. MODEL-INDEPENDENT RELATIONS 

Let us consider such relations as applied to the elastic case AN -+ AN . 
We can represent the physical rrN elastic amplitudes as SLIJ with I = $, $ and 
J = L f i. Eq. (10) can then be shown to imply: 

SL;,L-+ - - ’ 
L-l s 

4L+2 L&L-; 
3L+3 s -. 

- 4L + 2 L;,L+f = O 

and 
3L 

SL;,L+; - - * 
L-k2 

4L+2 
SL;,L-; - - * 

4L+2 s&L+; = 0. 

014 

These relations are depicted graphically in Fig. 2 for a variety of partial waves 
L n3 The experimental isospin-i . amplitudes (indicated by solid lines) have been 
juxtaposed with the appropriate linear combinations of the experimental isospin-i 
amplitudes in the same partial wave (dotted lines). The general impression is of 
surprisingly good agreement, especially for F-waves and higher. There is a fairly 
consistent splitting of = 200 MeV between the isospin-i and isospin-g curves which 
can be attributed to a higher order l/N effect (as in the splitting between the N 
and A); such effects have been entirely neglected in our lowest-order treatment. 
The prediction Pl3 = P31 is intriguing in that it relates two out of only four elastic 
amplitudes that exhibit clear-cut repulsive (i.e., clockwise) motion near threshold. 
It is an automatic consequence of the fact that both the skyrmion and the P-wave 
pion have I = J.n4 

In contrast, the relation Sal = Srr is obviously grossly violated at low ener- 
gies, where the amplitudes move in opposite directions around the unitarity circle. 
The relation is all the more disturbing in light of Weinberg’s famous soft-pion cal- 
culation of the S-wave scattering lengths, 211 which correctly predicts the observed 
low-energy behavior for the T-matrix elements: Sir = -2&r. Here we witness 
rather dramatically the breakdown of our approximations in the soft-pion regime, 
where-despite large-N considerations-the period of rotation of the skyrmion 
can no longer be neglected uis-&-vi8 the time of interaction. In this regime, it is 
SchnitFer’s treatment which is appropriate, and as he has shown, the validity of 
Weinberg’s theorem (as of all soft-pion results) in the context of skyrmion physics 
is assured.18] Reassuringly, beyond the soft-pion regime, the relation S31 = S11 
becomes quite reasonably satisfied; note in particular the nice correspondence be- 
tween the peaks in the real parts of the Srr and S’s1 amplitudes at 1.6 GeV. It 
would clearly be desirable to have a unified formalism that interpolated smoothly 
between the two regimes. 

fl3 The experimental elastic TN amplitudes are drawn from Ref. 19. 
fl4 This relation was actually predicted over thirty years ago by Harlow and Jacobsohn201. 
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Fig. 2. Comparison of experimental isospin-t xN 
with linear combination of isospin-i experimental 
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elastic amplitudes (solid lines) 
amplitudes (dotted lines). 

We can shed additional light on the discrepancy by appeal to the skyrmion’s 
translational and rotational zero-modes. To lowest order in l/N, these show up 
as boundstates in all reduced channels SKLIL with K = 1; these boundstates sit 
precisely at the (unrotated) skyrmion mass. Now, to next order in l/N, the S- 
matrix poles corresponding to these bound-states are undoubtedly perturbed in 
various directions in the complex energy-plane, with possibly drastic effects on the 
behavior of the K = 1 reduced amplitudes near threshold. This will, in turn, cause 
drastic changes in the low-energy behavior of those physical amplitudes which 
couple to SK=r,LfL via Eq. (10): namely, the S-, P- and D-wave pion-nucleon 
amplitudes. The moral of the story, then, is that a zero&order l/N analysis of 

8 



meson-skyrmion scattering cannot be trusted at low energies in the S-, P- and 
D-waves. It is reassuring that it is only in these waves that one finds serious 
violations of the linear relations. We shall return to this point when we consider 
the specific case of the Skyrme model. 

Figure 3 depicts a handful of linear relations obtainable from (10) involving 
the reaction rrN + rrA.n5 Although the relative signs of the amplitudes are always 
given correctly, the sizes can occasionally be off by as much as a factor of four, 
as in Fig. 3(b). Note that Figs. 3(c) and 3(d) actually relate the experimental 
amplitudes for rrN + rrN to ?rN -+ aA , with reasonable success. 

(0 (b) 

(d) 

Rx: rc ‘... .i _.. 
I 
. ..’ 

-0.0 0 05 

,t~~ 

0.0 0 l-l-l RET 0.8 0.4 0.8 
AW (GeV) 

Fig. 3. Test of linear relations for the process TN + KA. 

tf5 The experimental amplitudes for these processes have been drawn from Ref. 22. The two 
letters labeling each channel stand for L and L’, which are not necessarily equal for nN + uA 
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4. MODEL-DEPENDENT RESULTS 

Returning to Eq. (lo), one can apply this formula to a specific model first 
written down by Skyrme in 1961:15] 

L = $Trf3pU3pU+ + &T#$JJ)u+, (&u)u+]2. (12) 
The explicit calculation of the reduced S-matrix in the Skyrme model is a lengthy 
procedure, involving the following steps: 
(i) The pion fluctuation field is expanded in vector spherical harmonics, and the 
action is expanded to second order in the pion field. The integration over solid 
angles can be carried out explicitly; this leaves a purely radial problem, charac- 
terized for each value of K by second-order linear differential equations in r and 
t, or equivalently, r and w. 
(ii) These differential equations are solved numerically for each (positive) value of 
w, by starting with the well-behaved solutions at the origin and integrating out to 
large r. 
(iii) At large r, the skyrmion is negligible, so the theory is one of free pions. Ac- 
cordingly, the pion field can be fit to a sum of incoming and outgoing spherical 
bessel functions, and the phase-shifts extracted in the usual manner. This yields 
the partial-wave reduced S-matrix sKL#L(W). 
(iv) The physical partial wave pion-nucleon amplitudes in the Skyrme model are 
then assembled by multiplying the reduced S-matrix elements by the appropriate 
group theory coefficients, as dictated by Eq. (10). 

Figure 4 displays a selection of Skyrme-model phase-shift plots for aN --$ 
TN juxtaposed with the experimental results. The general impression is of quite 
good qualitative agreement, particularly for F-waves and beyond. Obviously, the 
Skyrme model amplitudes for most partial waves take much too big an excursion 
through the unitarity circle, and hug the rim more closely than their real-life 
counterparts; this is simply due to the fact that, in our treatment, we haven’t 
allowed for the multitude of inelastic channels which open up at high energies in 
Nature. In particular, multiple pion production, although formally suppressed by 
factors of l/o, h ence absent from our treatment, becomes the dominant feature 
of zN scattering at high energies. 

Table I (given earlier) presents the resonance msss predictions of the Skyrme 
model as compared to experiment. These are based on a least-squares fit to the 
observed spectrum. In Fit #l ( a one-parameter fit), the nucleon mass has been 
held fixed, while in Fit #i (a two-parameter fit) it has been treated democrati- 
cally with the others. In the latter case, a best fit yields for the Skyrme model 
parameters: fr = 150 MeV (us. 186 MeV in Nature) and e = 4.79; interestingly, 
these values yield substantially improved static properties of skyrmions as com- 
pared with Ref. 14. (Static properties are poorly given by Fit #l.) The average 
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l3q. (9) of Ref. 14. The width is also from Ref. 14. 
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mass agreement between theory and experiment is 8%, although the nucleon mass 
is off by 27%. Note that agreement is respectable all the way up to 3 GeV. It is 
surely surprising that one obtains so much structure from a two-term Lagrangian 
with no explicit nucleon fields. 

In contrast, the P’s channel in the Skyrme model is an ostensible disaster. 
Instead of the grand sweep around the unitarity circle associated with the A(1232), 
there is threshold repulsive behavior followed by two rather feeble resonances at 
1435 and 1946 MeV. But the absence of the A is only an artifact of our lowest- 
order treatment. Our pion energies are measured in units of e m f,r, which - No. 
But to this order, the A is degenerate with the nucleon141, and therefore would 
not show up as a resonance. Thus it would actually have been inconsistent for 
us to have seen the A in our treatment. This discussion can be recast in terms 
of the soliton’s zero-modes, mentioned previously. Recall that, corresponding to 
the rotational modes, there is a pole in the S-matrix that, to lowest order, sits 
right at the skyrmion mass. It is the quantization of the rotational zero-modes 
which pushes this pole into the physical region, where it manifests itself as the 
A resonance. This quantization- hence the nucleon-A mass-splitting-is a l/N 
effect, and could not appear in our lowest-order treatment. The resonances we 
do already find in this channel are in good correspondence with the observed Pss 
excitations at 1522 and 1868 MeV; unlike the A, these resonances have excitation 
energies 0 (NO). 

Overall, the overwhelming majority of observed nucleon and A resonances 
in Nature is accounted for in the Skyrme model. There is good agreement for 
the values of the masses even in several of the channels where the shapes of the 
amplitudes are poorly rendered by the model. It should be noted, though, that 
with the exception of the F- and G-waves, widths in the model are typically 50% 
too large. 

5. THE “BIG-SMALL-SMALL-BIG” PATTERN 

, An especially noteworthy success of the Skyrme model evident in Fig. 4 is 
that, despite the overly large motion of the amplitudes as noted earlier, the relative 
sizes of the four independent elastic amplitudes in each partial wave are correctly 
rendered. Figure 5 illustrates what can be termed the “big-small-small-big” pat- 
tern in Nature: the big amplitudes have {I = 3, J = L-i} and {I = $, J = L+)} 
while the small amplitudes have {I = $, J = L + f} and {I = $, J = L - i}. 
(Clearly the 035 stands out as the major exception to the rule.) This pattern, 
which is surely the most striking general feature of the experimental wN + ?rN 
amplitudes, was noticed a long time ago by Donnachie, Hamilton and Lea, who 
showed how it might arise by consideration of various particle exchanges.23] It turns 
out to have a simple and largely model-independent group-theoretic explanation 
in the context of skyrmion models, which I shall now explain. 
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Fig. 5. The “big-small-small-big” pattern exhibited by the 
experimental elastic TN amplitudes. 
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Recall that, according to Eq. (lo), a rrN scattering process in a partial wave 
L receives contributions from (model-dependent) reduced amplitudes SKLL with 
K = L - 1, L, L + 1. Let us make the plausible dynamical assumption that the 
deviation from unity of SL+~,LL can essentially be neglected compared to SL-~,LL 
and SLLL; this is, in fact, the case in the Skyrme model. Setting BL+~;LL E 1 then 
yields: ” 

S.Lf,L-; 1 s 2L-1 
-•( 

L+1 - 3L SL-1,LL - 1) + - 3L * (SLLL - 119 

SL$,L+f - l s 3L + 3 -5-- i (SLLL - 11, 

s+-; - 1= PL--W-1) .( 
6L(2L + 1) SL 1,LL - 1) 

_ 

2L-1 
+ 6L - * (SLLL - q, 

sL;,L+; - l= 4L + 2 2L . (SL-1,LL - 1) + g ’ (SLLL - 1). 

The big-small-small-big pattern is simply due to the small coefficients in the middle 
two equations compared with the outer two! These relations further predict that, 
of the two “big” amplitudes, the first will be bigger than the last; this, too, is 
confirmed in Nature, with the exception of the P-waves. 

It is important to emphasize that the big-small-small-big pattern will be 
correctly reproduced, not only by the particular model written down by Skyrme, 
but in fact by any of the large class of skyrmion models whose associated reduced 
amplitudes satisfy the dynamical condition stated above. As such, the pattern 
should be considered a quasi-model-independent result. 

Why is this significant ? It is easy to convince oneself that the big-small- 
small-big pattern- together with the consistent isospin-splitting mentioned earlier 
-accounts for a good deal of the “fine structure” of the (non-strange) baryon 
mass table, viz.: 

-The fact that the only reliable resonances in the H-, I- and K-waves are 
in the SL;,L-; =d SL;,L+5 I channels (i.e., the “big” channels); 

-The fact that (ignoring the S-wave) there are 11 and 12 resonances ob- 
served in the two “big” channels, but only 5 and 6 in the two “small” channels; 

tf6 The notation is the same as for EZq. (11). 
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-The fact that SL+,L-T 1 resonances are lighter than their S,;,,,; partners. 
(However, there is no such pattern for the isospin-i resonances.) 
What we have seen is that these features can be ezpected, so long as the“optima1” 
S-flavor nonlinear sigma model of Nature falls into the large class of models which 
satisfy the stated dynamical assumption. This, then, is the justification of the 
rather bold statement made in the Introduction: that not only the quantum num- 
bers of the baryon resonances, but much of their relative ordering as well, finds a 
largely model-independent explanation in the context of skyrmion physics. To the 
extent that this is true, these features (like soft-pion results) can be considered 
more basic than the particular underlying gauge theory that gives rise to chiral 
symmetry breaking. 

6. EXTENSION TO THREE FLAVORS 

I would now like to discuss how to extend the scattering formalism to the case 
of three light flavors, restricting ourselves to the idealized case of exact SU(3)flooor. 
The unrotated skyrmion can be embedded in an SU(2) subgroup as follows:171~24] 

with Xa , a = 1, . . . . 8, the Gell-Mann matrices. We identify the isospin subgroup as 
the group generated by fXi with i = 1,2,3. Then the skyrmion is invariant under 
+ 
K = 7 + -J‘ as in the 2-flavor case. In addition, it is invariant under hypercharge 
Y, which is proportional to X *. Another novel feature of models with three or 
more flavors is that the Lagrangian, Eq. (l), must be augmented by the sc+called 
Wess-Zumino term, which reproduces the correct flavor-current anomalies.251~17~ 

The general procedure outlined earlier for reducing a 3-dimensional scatter- 
ing problem to a purely radial one is to expand the meson field in a complete set 
of eigenstates of the symmetries of the potential. In the case of scattering from an 
unrotated 3-flavor skyrmion, these are the meson states of definite (K2, K,,Y). 
Accordingly, the fluctuations about the skyrmion, which we identify with the octet 
of pseudoscalar mesons, decompose into the following non-interacting sectors: 

(a) There are the vector spherical harmonics familiar from the 24avor anal- 
ysis, Eq. (S), where the first, second and third components stand for fluctuations 
in the rr+, ?y” and r- directions, respectively. These are definite states of Ka and 
Kz by construction, and have Y ,= 0. Since L is not conserved, II::{ and II::; 
mix. By parity, neither of these mixes with IIgKz. We will call the associated 
reduced S-matrices @CL with K = L - 1, L, L + 1. For the 3-flavor Skyrme 
model, these are in fact exactly the same as for the 2-flavor case; in particular, the 
Wess-Zumino term does not contribute. 

16 



(b) Analogously, one can define “spinor spherical harmonics” 

yfK=(n) = ( 
’ L&K, ( - & ;tKKz) yL,Ks-;(n) 

. (Li, Kz + 4, -iIKKz) yL,Ks+;(n) 1 9 (15) 
where the first and second components stand fo; fluctuations in the K+ and K” 
directions, respectively. These have Y = 1. By parity, yE!$ does not mix with 

? 
YET:, so that L = L’. The associated reduced S-matrices will be called sgr with 

2 
K = L f i. The Wess-Zumino term contributes a term linear in time derivatives 
to the differential equations that determine the meson field (from which the phase- 
shifts are extracted) .zcl 

(c) Same as above, with the first and second component now standing for 
-K’ and K-. These fluctuations have Y = -1. The corresponding reduced 
S-matrices, which we shall call sk?‘, are extracted from precisely the same dif- 
ferential equations as @ in, except that the Wess-Zumino term contributes with 
the opposite sign. 261 In the absence of the Wess-Zumino term, we would have 

(d) Finally, fluctuations in the q direction, expanded in the usual spherical 

harmonics. These have 2 = 2 and Y = 0. The corresponding reduced S-matrix 
is sf”. It does not receive any contribution from the Wess-Zumino term. 

This decomposition allows us to characterize the S-matrix for the process 
-b’ 

@(t) + URS + $*( L ) + URS, with 4 the meson field and URS standing for 
“unrotated skyrmion” as before. Here a and b are SU(3) flavor indices labeling 
the octet; each is short for the triplet of indices (;,iz,Y). When a and b are of the 
form (1,&O), Eq. (6) is valid. When a and b are both of the form (), i,, +l) or 
(f, iz, - 1) , the relevant formula is 

(16) 

where the reduced amplitude stands for skin or s$$, respectively. And when 
a = b = (O,O, 0), the S-matrix is just 

These formulas together form the 3-flavor analog of Eq. (6). Physical meson- 
baryon scattering, that is, scattering with the collective coordinate structure of the 
skyrmion properly taken into account, is of course now described by the analog 
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of Eq. (8), with the integral now ranging over the group SU(3). For this we 
require the correct SU(3) generalization of the SUP) baryon wavefunctions, Eq. 
(9), which is given by: 

i$$(R)(A)-l]a,a. (-I)-’ 

where a = (s, -se, l), b = (;,i=,Y), and R denotes the representation of the 
baryon. It7 

As in the 2-flavor case, it is particularly illuminating to combine the initial 
(final) pseudoscalar octet with the baryon octet/decuplet to form a definite SU(3) 
state in a representation &,t (I&). Th’ 1s is accomplished with the help of an 
SU(3) Clebsch-Gordan coefficient@ 

which can be factored conveniently into the product 

(ili2izlie2IItotI~tot) * 
RI R2 

ilYl 
i2y2 

of an SU(2) Clebsch with a so-called isoscalar factor. z71 The projection onto states 

of definite total angular momentum f (7’) ’ IS of course accomplished with ordi- 
nary SU(2) Clebsches as before. 

The same manipulations as in the 2-flavor case then allow us to express the 
physical scattering of a pseudoscalar-octet meson in a partial wave L (~5’) from a 
spin-s (spin-s’) baryon in an SU(3) re p resentation R (R’), where the initial (final) 
meson-baryon system is projected onto a state of definite total angular momentum 
+ +’ 
J ( J ) and total flavor as described by the quantum-numbers {Rtot, 7, Itot, Istot, 

- 

fl7 These differ somewhat from the wavefunctions given in Ref. 24, which have nonstandard 
transformation properties under I and J. The fact that the “left-handed hypercharge” is 
unity is a nontrivial quantization condition arising from consideration of the Wess-Zumino 
term.24l Our normalization in (9) and (18) is such that JsU(21 dA = 2x2 = ~svtsl dA. 

fl8 Here -y is a largely redundant index whose only real purpose is to distinguish between de- 
generate representations that can occur in the product of two SU(3) representations, as for 
example the 8,, and 8sntisym in 8 x 8. 2’1 It is not in general conserved, as is clear if one 
considers the non-vanishing coupling Tr({B, @}[B, 91) of the baryon and meson octets. 
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Y&t} ({R&, 7’, I&, Iitot ,Y&}) . The desired expression reads: 

JLL’ 48) 
dimR.dimR’ 

dim Rtot 

This is the 3-flavor analog of (10). The F-symbols are defined exactly like the 
P-symbols, Eq. (lob), with the single exception that the l’s in the 6-j symbols 
arz to be replaced by f’s (reflecting the fact that kaons have isospin $). Only 
half-integral values of the index I contribute to the coefficient of spion, while only 
integral values contribute for skaon and skmbar. The long string of Kronecker 6’s in 
the first line of Eq. (19) expresses the reassuring fact that total angular momentum 
and SU(3)fzavor are conserved in the scattering process. 

An interesting consequence of this formula is that, even if we restrict the 
initial and final states to pions, nucleons and deltas, one must nevertheless take 
into account contributions from reduced amplitudes with nonzero strangeness. 
One can therefore ask: Will the big-small-small-big pattern survive the extension 
to (unbroken) SU(3)? Following the reasoning of Sec. 5, let us make the dynamical 
assumption that, for each partial wave L, the deviations from unity of the reduced 
amplitudes sE$ LL, I sit’, s?Jr L and I$$“~ 

5’ 
are essentially negligible compared to 

the other four. This is in fact’numerically the case in the SU(3) Skyrme modeL2*] 
Setting these amplitudes equal to unity, one indeed finds the same pattern of bigger 
and smaller coefficients as in the 2-flavor case (Eq. 13), albeit with somewhat 
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different numbers. 

As in the 2-flavor case, Eq. (19) points the way to two possible avenues of 
inquiry. On the one hand,28l one can calculate the reduced amplitudes in a specific 
model, such as the 3-flavor Skyrme model. On the other hand, one can extract 
from Eq. (19) a host of model-independent linear relations between scattering 
amplitudes in different representations of SU(3) and different channels of total 
angular momentum, albeit in the same partial wave. Work along both lines is in 
progress. I shall close by considering how inclusion of a third light flavor modifies 
the linear relations for ?rN --) zN as given by Eq. (11). 

Let us recall the 2-flavor situation for a moment. For each partial wave L, 
there are four independent elastic zN amplitudes, corresponding to I = g or i 
and J = L f ). By Eq. (lo), these are expressed as linear combinations of the 
three reduced amplitudes 8KLL with K = L - 1, L, L + 1. One therefore expects 
one nontrivial linear relation between physical amplitudes for each L. In fact, 
there are two, which enabled us in Eq. (11) to .solve for the I = g amplitudes 
as linear combinations of the I = 4 amplitudes. In the 3-flavor case, in contrast, 
the same four physical zN amplitudes are expressed as a superposition of eight 
reduced S-matrix elements. As a result, there is no longer any exact linear relation 
between physical amplitudes. 

It should therefore come as a surprise that (lb) and (lib) are nevertheless 
almost satisfied in the 3-flavor case. Specifically, the right-hand sides, instead of 
vanishing, are proportional to the differences of the reduced amplitudes sp:S L - 
s k-bar LfL L. Recall that these differences would vanish identically were it not fey the 
preience in the S-flavor Lagrangian of the Wess-Zumino term, and can therefore 
be expected to be small.llg But it is certainly an intriguing possibility that the 
Wess-Zumino term, which is forced on us only when we consider the existence of 
a third light flavor, might partially account for discrepancies in purely 2-flavor 
predictions. 
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fl9 This is numerically the case in the 3Alavor Skyrme model.28l 
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