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ABSTRACT 

The ensemble projector Monte Carlo method is a promising method to study 

lattice gauge theories with fermions in the Hamiltonian formulation. We study 

the massive Schwinger model and show, that consistent results are obtained in 

the presence of positive and negative matrix elements. The expectation values for 

the average energy calculated from matrix elements with negative and positive 

scores, and calculated from the average scores are consistent with each other 

and with results obtained from the local Hamiltonian Monte Carlo method. In 

contrast to the latter method, the ensemble projector Monte Carlo method can 

be applied also to gauge field theories in 2+1 and 3+1 dimensions. 



1. INTRODUCTION 

The introduction of more effective methods for the Monte Carlo simulation of 

gauge field theories with fermions is an important problem in present day lattice 

gauge field theories. Most of the Monte Carlo algorithms used at present start 

from the Wilson formulation of lattice gauge theories.’ A second method is the 

Hamiltonian formulation of lattice gauge theories,” where the time remains a 

continuous variable and the formulation is in terms of the lattice Hamiltonian 

and lattice eigenstates. 

The local Hamiltonian Monte Carlo method3 is an effective Hamiltonian 

method to treat lattice theories with fermions in d = 1 + 1 dimensions. This 

method was applied to model gauge field theories, like the massless and massive5 

Schwinger model, models with gauge bosons, Higgs bosons and fermions6 and 

supersymmetric models.’ Unfortunately, it is not possible to extend this method 

to models with more than one spatial dimension. 

The projector Monte Carlo method is a new Hamiltonian Monte Carlo method8 

which was applied to lattice models8 and to pure lattice gauge theories in 

d = 2 + 1 dimensions,g to the Schwinger model with fermionsl’ and to the 

.d = 1 + 1 SU(2) lattice gauge theory. l1 This method is however rather ineffective 

especially for large lattices due to the large fluctuations of the scores which go into 

the calculated expectation values. Because of this, this method was improved in 

several ways: 8,12-14 The parallel scores method was shown to give good results 

for the d = 2 + 1 U(1) gauge theory without fermions. Another generalization is 

the ensemble projector method,13’14 which was applied to the pure U(1) lattice 

gauge theory in 2+115 and 3+113 dimensions, to a study of the string tension 

and of screening in the Schwinger model16 and to the d = 1 + 1 SU(2)-lattice 
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gauge theory with fermions. l7 Here we continue to study and use this method 

for the Schwinger model in d = 1 + 1 dimensions. the aim of the present paper 

is, to study the calculation of expectation values with this method in a situation, 

where matrix elements and scores can have negative signs. This happens in the 

Schwinger model, if we does not restrict the calculation to lattice configurations 

periodic in time direction as was done using the local Hamiltonian Monte Carlo 

method. 3-5 

It was also shown in Ref. 18, that the presence of intrinsic negative signs in 

the matrix elements does not prevent the Hamiltonian Monte Carlo calculation. 

The same problem will occur again in Hamiltonian lattice gauge theories with 

fermions in d = 2 + 1 and d = 3 + 1 dimensions, which we did start to study.” 

In Section 2 we present the ensemble projector Monte Carlo method as applied 

in this paper, in Section 3 we apply the method to the massive Schwinger model. 

In Section 4 we present and discuss the results. 

2. THE ENSEMBLE PROJECTOR MONTE CARLO METHOD 

We introduce a lattice Hamiltonian H defined on a discrete spatial lattice, 

14, I+>, etc. are lattice eigenstates. The operator exp(-/3H) is a projection 

operator to the lowest energy eigenstate with given quantum numbers. 

Provided that Ix) and 14) are states not orthogonal to the lattice ground 

state I$) we calculate expectation values of operators as follows: 

(1) 

4 



or 

olv2l+> = 25% (xlemPH GWPHI& 
(xle-2PH14) * (2) 

To calculate the matrix elements in (1) and (2) one splits /3 in L intercalls Ar 

p=LAr (3) 

and furthermore the Hamiltonian into two (one more) parts 

H = H1 i-H2 . (4) 

This splitting is arbitrary provided it leads to local matrix elements down in 

expression (6) h’ h w IC contain only the variables of one lattice point and its nearest 

neighbors. We define Uk = exp(-ArHk) and find 

e -ATH=UlU2 l-f AT~[H~,H~]+... 
> 

(5) 

-.that for sufficiently small Ar the terms in Ar2 can be neglected. We obtain for 

the partition function the expression 

Y(P) = (xle+H14 = (xl P2 hlL Id> 

= c (xIi2L+l) ( i2L+lp2li2L) (i2LI77lli2L-1) * * * G2lullq (W> 

izL+1,22L,...,il 

(6) 

where the ik are complete sets of eigenstates. All matrix elements (iiIU,lij) are 

local. Each of these matrix elements can be represented as a product of the 
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probability Pii and the score Sij 

(GIuklij) = Pii . Sij(k) . (7) 

The Pii are positive definite and normalized 

C Pii = 1 
i 

(8) 

but otherwise arbitrary, they should be chosen in such a way that the resulting 

Monte Carlo method converges optimally. In the projector Monte Carlo method, 

Pij(k) is used as the probability to sample the slate Iii) from a given state Iii) 

and Sij(k) gives the weight of the state obtained. The result of one iteration 

starting from a state 14) is a sequence of states ir, iz,. . . , iz,3+r at different time 

slices with the weight 

w (i2L+l, i2L, - . . , ii) = (xji2L+l) s2L+1,2L ’ s2L,2L-1 . . . s3,2 . s2,l sign ((ii 14)) . 

(9) 

For a lattice of large spatial and temporal extension, these weights might fluctuate 

widely, making the projector Monte Carlo method rather ineffective. 

-. In the ensemble projector method these weight fluctuations are suppressed in 

the following way. We use an ensemble of say M = 1000 lattice states. After each 

updating of one of these states using the probabilities Pii follows a replication 

step using the score Sij(k) and some average score S. For 

9ij = %(lc) < 1 
S (10) 

the given state is retained in the ensemble with the probability qij or removed 

with the probability 1 - qij. For qij = f!, + Gij 2 1, where e, is the integer part 
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of qij, we add kj copies of the state to the ensemble and retain the original state 

with the probability &j. The average score S is adjusted in such a way, that the 

number of lattice states in the ensemble remains constant. After equilibrium is 

reached, the average score will be 

S = exp (-AT Ee) (11) 

and can be used to determine the energy E. proj of the ground state. Simultane- 

ously, expectation values of other operators can be measured according to (2). 

3. APPLICATIONS OF THE PROJECTOR 

MONTE CARLO METHOD TO THE 

MASSIVE LATTICE SCHWINGER MODEL 

The lattice Hamiltonian of the massive Schwinger model is well known5 

H=~g2aC(L~-a)2+~~(x~a~xn+l+x~+1an~n)+m~(-l)nX~Xn 
n n n -. 

(12) 

n runs over the N spatial lattice points. The fermion creation and destruction 

operators xz and Xn sit on the lattice points, the gauge boson creation and 

destruction operators a: and a, sit on the links between the lattice points n and 

n + 1, L, is the boson occupation number operator, g2 is the coupling constant, 

the O-angle, B = 27rc~ characterizes the constant electric background field and m 

is the fermion mass. Equation (12) uses Susskind fermions2’ to prevent fermion 

doubling. 



We represent the Hamiltonian as 

H = x hn,n+l 
n 

(13) 

h n,n+l = i 92a(Ln - a)2 + & (X;t 4 Xn+l + X;t+l an Xn + m(-l)n xi Xn) . 

Both parts of the Hamiltonian 

HI = C hn,n+l ; HZ = C hn,n+l 
nodd nevsn 

are sums of commuting operators. We introduce lattice eigenstates at times tj 

in the occupation number representation 

Itj) = I-I (X~)i"n (ai)kj'n IO) 
n 

(15) 

where ii,n (= 0,l) and kin (= , integer) are the fermion and boson occupation 

numbers. 

The matrix elements of the operators Vi between the eigenstates (ij,n, ij,n+l, kj,n) 

are well known.5 Only few elements are different from zero 

-. uj Il,l,l> = Al IL be> 

uj lo,& e> = A2 lOJU> 

Ui Il,O,.t) = al Il,O,e) -a2 lO,l,C-- 1) 

The Ai and ai are given in Ref. 5. In Table I we give our splitting of the matrix 

elements into the probabilities Pij and scores Sij. 
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We calculate also the expectation values of the Hamiltonian H. Our starting 

states I+) are a half-filled fermion band 

14) = 5 [Il,O,l,O ,...) + ~O,l,O,l,... )] 

and a boson state with all occupation numbers ki,n = 0. 

There arises one problem applying the ensemble projector method to a fermion 

model like the Schwinger model, where matrix elements and scores of both signs 

are present, see Table I. In fact the sign of the total score of a state will change 

stochastically during the updating of the state. Only the total score is of im- 

portance, therefore no problems would arise if, at the end of the calculation, we 

reject all states with negative total scores. In this case, it is justified to use for 

the replication the nonnegative values of the individual scores. A subset of these 

states with positive total score are the states which are periodic in time direc- 

tion. These were the only states used formerly in the local Hamiltonian Monte 

Carlo method.3-5 In fact using only the states with positive total score we use 

about half of all possible states and therefore more than in the former method. 

Using half of all states should be sufficient to calculate the expectation values. 

-‘In fact, since the sign of each state changes stochastically during the updating, 

we could as well use only the states with total score of negative sign. In fact 

we do both, calculating the expectation values of matrix elements separately for 

the two ensembles of states with total score of positive and negative sign. We 

expect, that both expectation values should agree. Furthermore, if we calcu- 

late the expectation value of the Hamiltonian, both values should agree with 

the ground state energy determined from the average score according to (11). 

We will see in the next section, that this is really the case in our Monte Carlo 
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calculation. Therefore we are confident, to apply the ensemble projector Monte 

Carlo method also to models with more than one spatial dimension where only 

the subset of states periodic in temporal direction, which could be used in the 

local Hamiltonian method, would not be representative for the model. 

4. RESULTS AND DISCUSSION 

In order to demonstrate the problems of the simple projector Monte Carlo 

method, without the replication step, we present in Fig. 1 a distribution of total 

scores obtained for the Schwinger model using this method. The score fluctua- 

tions increase dramatically with the lattice size, in the example of Fig. 1 we use 

NZ = 20 spatial lattice positions and 2L = 40 time slices. The relative weights 

of the lattice configurations in this example differs by 3-4 decades. Only about 

10e3 of all configuration sampled in the Monte Carlo calculation contribute sig- 

nificantly to the expectation values calculated, this leads to large fluctuation in 

the results. 

In our ensemble projector Monte Carlo calculation we use again NZ = 20 

spatial lattice positions and ensembles of about 500-2000 lattice states. The Ar 

-‘steps have a value of Ar = 0.1, in units of the spatial lattice spacing a = 1. 

All our calculations reported here are for a vanishing background field (Y = 0. 

Our calculations are for two values of the gauge coupling constant g = 0.2 and 

g = 0.57. In Fig. 2 we plot for two different sets of parameters the expectation 

values for EL, EG and E,p’oj bt o ained from our ensemble of states always after 

10 iteration steps Ar in time direction. The measurements start after an initial 

set of 300 iteration steps. As can be seen, after a total of about 300 iteration 

steps, the ensemble of states seems to have attained thermal equilibrium. The 
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numbers of states with positive and negative total scores fluctuate during the 

updating but agree usually to some 5% or better. 

In Table II and Figs. 3 and 4 we present our results, the ground state energies 

per lattice point, for two values of the gauge coupling constant g and different 

values of the fermion mass m. The three separate expectation values (E$), (E,) 

and (,?Zt”j) obtained with the ensemble projector method are compared with each 

other and with the result of the local Hamiltonian Monte Carlo method using the 

method and computer program described in Ref. 5. We find all four expectation 

values to agree within the statistical errors. 

Per point calculated we use with each of the two methods around 4-5 minutes 

of IBM 3081 time. The statistical errors of the ensemble projector Monte Carlo 

method, after a sufficient number of heating interactions, seem to be not larger 

than the errors of the local Hamiltonian Monte Carlo method. 
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Probabilities and scores 

Table I 

the massive lattice Schwinger 

Transitions 

11, w> --+ 11, 14 

lW,~> + lWJ> 

p,o,g + Il,W 

Probability Pij Score Sij 

1 Al 

1 A2 

al 
al + a2 

al + a2 

I1,W> + l0A~- 1) 

lo, 1,e> + lo, 134 

p,1,q + llA~+ 1) 

a2 

al + a2 

a3 

a3 + a4 

a4 

a3 + a4 

-(al + a2) 

a3 + a4 

-(a3 + a4) 
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Table II 

Energy expectation values of the Schwinger model Ez, EC, E,P’Oj calculated 

using the ensemble projector Monte Carlo method and Etcal, obtained from the 

local Hamiltonian Monte Carlo method. 

m 

0. 

0.1 

0.2 

0.3 

0.4 

0.5 

0. 

0.1 

0.2 

0.3 

0.4 

0.5 

E,+ J% Ep’oj 
0 

-0.311f 0.01 -0.313 f 0.01 -0.304 f 0.01 

-0.318 f 0.01 -0.318 f 0.01 -0.310 f 0.01 

-0.329f0.01 -0.331f 0.01 -0.332f 0.01 

-0.356f0.01 -0.352 f 0.01 -0.352f0.01 

-0.392 f 0.01 -0.392 f 0.01 -0.388 f 0.01 

-0.406f 0.01 -0.4073 0.01 -0.409f 0.01 

-0.271f0.01 -0.277f 0.01 -0.265 f 0.01 

-0.290 f 0.01 -0.292 f 0.01 -0.284 f 0.01 

-0.307f 0.01 -0.306 f 0.01 -0.312 f 0.01 

-0.341f 0.01 -0.345 f 0.01 -0.343 f 0.01 

-0.368 f 0.01 -0.371f 0.01 -0.371f0.01 

-0.405 f 0.01 -0.405 f 0.01 -0.408 f 0.01 

EPal 
-0.31 f 0.02 

-0.29 It 0.02 

-0.335 f 0.02 

-0.349 f 0.02 

-0.382 f 0.02 

-0.409f0.02 

-0.26f0.02 

-0.29 f 0.02 

-0.32 f0.02 

-0.34 f 0.02 

-0.37 f 0.02 
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FIGURE CAPTIONS 

Fig. 1. Distribution of the positive total scores for a typical calculation with 

the projector Monte Carlo method. The lattice states consist of N = 20 spatial 

lattice points and 2L = 40 time slices. 

Fig. 2. Comparison of the ground state energy expectation values Ez, EL and 

Eproj obtained from our ensemble of states in steps of 10 iterations. The measure- 0 

ments start after an initial set of 300 iterations of the ensemble. 

(a) g = 0.2, m = 0.3 and (b) g = 0.57, m = 0.3. 

Fig. 3. Ground state energies per lattice point. The expectation values Ez, E, 

and E$oj were obtained from about 400 iterations of an ensemble of about 1000 

lattice states. The gauge coupling constant is g = 0.2. The measured energies 

are given as function of the fermion mass m. 

Fig. 4. As Fig. 3 for a gauge coupling constant g = 0.57. 
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